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On H∞ Estimation of Randomly Occurring Faults for A Class

of Nonlinear Time-Varying Systems with Fading Channels
Hongli Dong, Zidong Wang, Steven X. Ding and Huijun Gao

Abstract—This paper is concerned with the finite-horizon H∞ fault

estimation problem for a class of nonlinear stochastic time-varying
systems with both randomly occurring faults and fading channels. The

system model (dynamical plant) is subject to Lipschitz-like nonlinearities

and the faults occur in a random way governed by a set of Bernoulli
distributed white sequences. The system measurements are transmitted

through fading channels described by a modified stochastic Rice fading
model. The purpose of the addressed problem is to design a time-varying

fault estimator such that, in the presence of channel fading and randomly

occurring faults, the influence from the exogenous disturbances onto
the estimation errors is attenuated at the given level quantified by a

H∞-norm in the mean square sense. By utilizing the stochastic analysis

techniques, sufficient conditions are established to ensure that the dy-
namic system under consideration satisfies the prespecified performance

constraint on the fault estimation, and then a recursive linear matrix

inequality approach is employed to design the desired fault estimator
gains. Simulation results demonstrate the effectiveness of the developed

fault estimation design scheme.

Index Terms—Randomly occurring faults; H∞ fault estimation; Fad-

ing channels; Nonlinear systems; Time-varying systems.

I. INTRODUCTION

The past decade has seen a surge of research interest on the fault

diagnosis and fault-tolerant control problems due primarily to the

increasing security and reliability demand of modern control systems.

Fault estimation, as a crucial stage for the implementation of the

desired fault detection, can provide the accurate size and shape of

the fault and has thus attracted a great deal of research attention. So

far, a variety of fault estimation schemes have been proposed in the

existing literature, see e.g. [4], [6], [9], [14], [17] and the references

therein. Nowadays, in response to the rapidly growing complexity

of industrial systems, the time-varying nature has gradually become

an indispensable means of reflecting the fast changes in system

dynamics. Accordingly, the fault estimation issues for time-varying

systems over a finite horizon have started to receive some research

attention with initial results scattered in the literature [12], [14], [19].

It should be noted that the results obtained so far have been mostly

based on an assumption that the system is linear and the sensors

are always well-conditioned so as to produce perfect measurements

containing true signals only.

On the other hand, due to the prevalence of network technologies,

the research on network-induced phenomena has been gaining a no-
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ticeable momentum especially for the filtering and control problems

of networked systems. However, in comparison with those frequently

investigated network-induced phenomena including packet dropouts

[15], communication delays [1], [18], signal quantization [8] and

randomly occurring nonlinearities (RONs) [2], [3], [5], [11], the

channel fading problem in the control/estimation communities has not

yet received adequate research attention despite its practical signifi-

cance in wireless mobile communications. Note that the main reasons

leading to signal fading are some special physical phenomena such as

reflection, diffraction and scattering, which have a great impact on the

signal power. If not dealt with properly, the network-induced channel

fading would unavoidably deteriorate the performance of controlled

systems or even cause the instability. Roughly speaking, fading may

vary with time, geographical position or radio frequency, and is often

modeled as a random process which reflects the random change

of the amplitude and phase of the transmitted signal. Up to date,

some initial results have been reported in the literature concerning

the networked control systems with fading channels, see [10], [13],

[16] and the references therein. Nevertheless, when it comes to

the time-varying stochastic systems with fading measurements, the

corresponding research problem for finite-horizon fault estimation has

not been appropriately investigated and still remains open.

It is worth mentioning that, in the existing literature concerning

finite-horizon fault estimation problems, it has been implicitly as-

sumed that the occurred fault signals are instantaneous, that is, the ac-

tuator/sensor faults occur in a deterministic way. Such an assumption,

unfortunately, is not always true. For example, in a networked control

system, due to the bandwidth limitation of the shared links as well

as the unpredictable variation of the network conditions, a number of

network-induced intermittent phenomena (including electromagnetic

interference, severe packet loss, data collision or temporary failure of

the sensors/actuators) could be regarded as different kinds of faults

when the reliability becomes a concern. Obviously, in terms of the

random nature of the network load, these kinds of intermittent faults

could be better modeled as randomly occurring faults (ROFs) whose

occurrence probability can be estimated via statistical tests. In other

words, the network-induced ROFs are typically time-varying and

would act in a probabilistic fashion.

In this paper, we endeavor to investigate the finite-horizon es-

timation problem of ROFs for a class of nonlinear time-varying

systems with fading channels. Sufficient conditions are established,

via intensive stochastic analysis, to guarantee the existence of the

desired time-varying fault estimator gains. Such fault estimator gains

are obtained by solving a set of recursive linear matrix inequalities

(RLMIs). A simulation example is finally presented to illustrate the

effectiveness of the proposed design scheme. The main contributions

of this paper are highlighted as follows. 1) The system model

addressed is quite comprehensive to cover time-varying parameters,

Lipschitz-like nonlinearities as well as ROFs, hence reflecting the

reality more closely. 2) This paper represents the first of few attempts

to deal with the finite-horizon fault estimation problem with ROFs

and fading channels. 3) The developed finite-horizon fault estimator

design algorithm is dependent not only on the current available state

estimate but also on the previous measurement, which is suitable for
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online applications.

Notation. The notation used here is standard except where other-

wise stated. Rn and R
n×m denote, respectively, the n-dimensional

Euclidean space and the set of all n×m real matrices. The notation

X ≥ Y (respectively, X > Y ), where X and Y are real symmetric

matrices, means that X − Y is positive semi-definite (respectively,

positive definite). MT represents the transpose of the matrix M . 0
represents zero matrix of compatible dimensions. The n-dimensional

identity matrix is denoted as In or simply I , if no confusion is caused.

diag{· · · } stands for a block-diagonal matrix. E{x} and E{x| y}
will, respectively, denote expectation of the stochastic variable x and

expectation of x conditional on y. Prob{·} means the occurrence

probability of the event “·”. l2[0, N ] is the space of square summable

sequences over [0, N ] := {0, 1, 2, · · · , N}. In symmetric block

matrices, “∗” is used as an ellipsis for terms induced by symmetry.

The symbol ⊗ denotes the Kronecker product. Matrices, if they are

not explicitly specified, are assumed to have compatible dimensions.

II. PROBLEM FORMULATION

Consider the following class of discrete time-varying nonlinear

stochastic systems defined on k ∈ [0, N ]:






x(k + 1) = g(k, x(k)) + α(k)Df (k)f(k) + E1(k)w(k)
ỹ(k) = C(k)x(k) + E2(k)v(k)
x(0) = φ0

(1)

where x(k) ∈ R
nx represents the state vector; ỹ(k) ∈ R

ny is the

process output; w(k) ∈ R
nw , v(k) ∈ R

nv and f(k) ∈ R
nl are,

respectively, the disturbance input, the measurement noises and the

fault signal, all of which belong to l2[0, N ]; and φ0 is a given initial

value. Df (k), E1(k), C(k) and E2(k) are known, real, time-varying

matrices with appropriate dimensions.

The nonlinear function g(·, ·) is assumed to satisfy g(k, 0) = 0
and the following condition:

∥g(k, x(k) + σ(k))− g(k, x(k))−A(k)σ(k)∥ ≤ b(k) ∥σ(k)∥ , (2)

where A(k) is a known matrix, σ(k) ∈ R
nx is any vector and b(k)

is a known positive scalar.

Remark 1: The nonlinear description (2) with the system parameter

A(k) reflects the distance between the originally nonlinear model (1)

and the nominal linear model. In fact, such a nonlinear description

resembles the Lipschitz conditions on the nonlinear functions. In

applications, the linearization technique is utilized to quantify the

maximum possible deviation from the nominal model.

The dynamic characteristics of the fault vector f(k) can be

described as follows:

f(k + 1) = Af (k)f(k) (3)

where Af (k) is a known matrix with appropriate dimensions.

The variable α(k) in (1), which accounts for the randomly oc-

curring fault phenomena, is a Bernoulli distributed white sequences

taking values on 0 or 1 with

Prob{α(k) = 1} = ᾱ, Prob{α(k) = 0} = 1− ᾱ, (4)

where ᾱ ∈ [0, 1] is a known constant.

Remark 2: The time-varying system (1) provides a way of account-

ing for the ROF phenomenon by resorting to the random variable

α(k). At the kth time point, if α(k) = 1, the fault occurs; and

if α(k) = 0, the system works normally. The fault obeying (3)

may occur in a probabilistic way based on an individual probability

distribution that can be specified a prior through statistical tests. Such

a ROF concept could better reflect the probabilistically intermittent

faults for the finite-horizon fault estimation problems, which render

more practical significance for the time-varying systems (1).

In this paper, consider the case when an unreliable wireless network

medium is utilized for the signal transmission. In this case, the

phenomenon of fading channels becomes an issue that constitutes

another focus of our present research. The measurement signal y(k)
with probabilistic fading channels is described by

y(k) =

lk
∑

s=0

βs(k)ỹ(k − s) + E3(k)ξ(k) (5)

with lk = min{l, k}. Here, l is the given number of paths.

βs(k) (s = 0, 1, · · · , lk) are channel coefficients which are mutually

independent random variables taking values [0, 1] with mathematical

expectations β̄s and variances νs. ξ(k) ∈ l2[0, N ] is also an

external disturbance. For simplicity, we set {ỹ(k)}k∈[−l,−1] = 0,

i.e., {x(k)}k∈[−l,−1] = 0 and {v(k)}k∈[−l,−1] = 0.

Throughout the paper, we assume that α(k) and βs(k) (s =
0, . . . , lk) are uncorrelated random variables. The probabilistic fading

measurement (5) is actually a weighted sum of the signals from

channels of different delays where the weights are random variables

taking values on the interval [0, 1]. Such fading measurement includes

the traditional packet dropouts and random communication delays

as special cases. For example, l = 0 corresponds to the case of

probabilistically degraded measurements (without time-delays) and

l = 1 corresponds to the case that degraded measurement and one-

step communication delay could occur simultaneously.

Letting xf (k) =
[

xT (k) fT (k)
]T

and z(k) = f(k), we have

from (1), (3) and (5) that






















xf (k + 1) = (Āf (k) + α̃(k)D̄f (k))xf (k) + Ē1(k)w(k)
+Hg(k,HTxf (k))

y(k) =
∑lk

s=0 βs(k)[C̄(k − s)xf (k − s) + E2(k − s)
× v(k − s)] + E3(k)ξ(k)

z(k) = Lxf (k)
(6)

where

Āf (k) =

[

0 ᾱDf (k)
0 Af (k)

]

, D̄f (k) =

[

0 Df (k)
0 0

]

, H =

[

I
0

]

,

α̃(k) = α(k)− ᾱ, C̄(k) =
[

C(k) 0
]

, L =
[

0 I
]

,

Ē1(k) =
[

ET
1 (k) 0

]T
.

For the purpose of simplicity, for −l ≤ i ≤ −1, we assume that

C(i) = 0, ỹ(i) = 0 and
[

vT (i) ξT (i)
]

= 0. Based on the actually

received signal y(k), the following time-varying fault estimator is

constructed for system (6):






















x̂f (k + 1) = Āf (k)x̂f (k) +Hg(k,HT x̂f (k))−K(k)

(

y(k)

−∑l

s=0 β̄sC̄(k − s)x̂f (k − s)

)

ẑ(k) = Lx̂f (k)
(7)

where x̂f (k) ∈ R
nx+nl is the estimate of the state xf (k), ẑ(k) ∈

R
nl represents the estimate of the fault f(k) and K(k) is the gain

matrix of the fault estimator to be designed.

Remark 3: It is worth pointing out that the constructed fault estima-

tor (7) can be regarded as a Luenberger-type observer. In comparison

with other kinds of estimators, the computational complexity with

respect to (7) is relatively light as one parameter K(k) needs to be

designed, where A(k) and b(k) are involved. In addition, for the

fault estimation purpose, the designed estimator should be physically

implementable in practical engineering, and therefore the unknown

(but bounded) disturbance inputs w(k), v(k) and ξ(k) are excluded

in (7).
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For notational simplicity, we denote

m(k) := g(k,HTxf (k))− g(k,HT x̂f (k))

−A(k)HT (xf (k)− x̂f (k)) (8)

Letting e(k) := xf (k) − x̂f (k), β̃s(k) := βs(k) − β̄s,

η(k) =
[

xT
f (k) eT (k)

]T
, z̃(k) = z(k) − ẑ(k) and ϖ(k) =

[

wT (k) ξT (k)
]T

, we have the following dynamic system to be

investigated:















η(k + 1) = Yl(k) + α̃(k)Df (k)η(k) +
∑lk

s=0 β̃s(k)

× C(k − s)η(k − s) +
∑lk

s=0 β̃s(k)
× E2(k − s)v(k − s)

z̃(k) = L(k)η(k)

(9)

where

Yl(k) = Af (k)η(k) +HF(η(k)) +

lk
∑

s=1

β̄sC̄(k − s)η(k − s)

+

lk
∑

s=0

β̄sE2(k − s)v(k − s) + E1(k)ϖ(k),

F(η(k)) =

[
(

g(k,HTxf (k))−A(k)HTxf (k)

)T

mT (k)

]T

,

Af (k) = diag{AH , AH + β̄0K(k)C̄(k)}, H = diag{H,H},

AH = Āf (k) +HA(k)HT , Df (k) = 12 ⊗
[

D̄f (k) 0
]

,

C(k − s) =

[

0 0
AK 0

]

, E1(k) =

[

Ē1(k) 0
Ē1(k) K(k)E3(k)

]

,

C̄(k − s) = diag{0, AK}, AK = K(k)C̄(k − s),

E2(k − s) =
[

0T (K(k)E2(k − s))T
]T

, L(k) =
[

0 L
]

.

Our objective of this paper is to find a fault estimate ẑ(k) (0 ≤ k ≤
N−1) such that, for the given positive scalar γ, the dynamic system

(9) satisfies the following fault estimation performance requirement:

J := E

{

N−1
∑

k=0

(

∥z̃(k)∥2 − γ2∥ϖ(k)∥2Pa
− γ2∥v(k)∥2Pb

)

}

−γ2
0

∑

i=−l

E

{

ηT (i)Pciη(i)
}

< 0,

∀({ϖ(k)}, {v(k)}, η(0)) ̸= 0 (10)

where Pa, Pb and Pci are known positive definite weighted matrices,

∥ϖ(k)∥2Pa
= ϖT (k)Paϖ(k) and ∥v(k)∥2Pb

= vT (k)Pbv(k).

Remark 4: The fault estimation performance requirement (10) is

adopted from the classical gain-based H∞ control theory, which

means that the influence from disturbances ϖ(k), v(k) and initial

states η(i) (i = −l,−l + 1, · · · , 0) onto the fault estimation error

z̃(k) over the given finite-horizon should be constrained by means

of the given disturbance attenuation level γ.

III. MAIN RESULTS

In this section, let us investigate both the fault estimator per-

formance analysis and design problems for system (9). Firstly, we

propose the following finite-horizon fault estimation performance

analysis results for a class of nonlinear time-varying systems with

ROFs and fading channels.

For convenience of later analysis, we denote

Γ̄(k) =
[

Γij(k)
]

{i=1,2,...,5;j=1,2,...,5},
P̄ (k + 1) = Il ⊗ P (k + 1),

Q̄(k, l) =diag{Q(k − 1, 1), Q(k − 2, 2), · · · , Q(k − l, l)},
Γ11(k) =AT

f (k)P (k + 1)Af (k) + ᾱ(1− ᾱ)DT
f (k)P (k + 1)Df (k)

− P (k) + ν0CT (k)P (k + 1)C(k) +
l

∑

j=1

Q(k, j),

Γ21(k) =HTP (k + 1)Af (k), Γ31(k) = (Λβ C̄l(k))
TP (k + 1)Af (k),

Γ22(k) =HTP (k + 1)H, Γ32(k) = (Λβ C̄l(k))
TP (k + 1)H,

Γ33(k) =(Λβ C̄l(k))
TP (k + 1)Λβ C̄l(k)− Q̄(k, l) + (Λ̄γCl(k))

T

× P̄ (k + 1)Λ̄γCl(k), Γ42(k) = (Λ̄β Ē2l(k))
TP (k + 1)H,

Γ41(k) =(Λ̄β Ē2l(k))
TP (k + 1)Af (k) + ν0ET

2 (k)P (k + 1)C(k)H̄3,

Γ43(k) =(Λ̄β Ē2l(k))
TP (k + 1)Λβ C̄l(k) + H̄0(Λ̄γ Ê2l(k))

T P̄ (k + 1)

× Λ̄γCl(k), P̂ (k + 1) = Il+1 ⊗ P (k + 1),

Γ44(k) =(Λ̄β Ē2l(k))
TP (k + 1)Λ̄β Ē2l(k) + (Λ̂γ Ē2l(k))

T P̂ (k + 1)

× Λ̂γ Ē2l(k), Γ51(k) = ET
1 (k)P (k + 1)Af (k),

Γ52(k) =ET
1 (k)P (k + 1)H, Γ53(k) = ET

1 (k)P (k + 1)Λβ C̄l(k),

Γ54(k) =ET
1 (k)P (k + 1)Λ̄β Ē2l(k), Γ55(k) = ET

1 (k)P (k + 1)E1(k),

ϕ(k) =ρ(k)b2(k)(H̄T
1 HHT H̄1 + H̄T

2 HHT H̄2),

C̄l(k) =diag{C̄(k − 1), C̄(k − 2), . . . , C̄(k − l)},
Ē2l(k) =diag{E2(k), E2(k − 1), . . . , E2(k − l)},
Cl(k) =diag{C(k − 1), C(k − 2), . . . , C(k − l)},
Ê2l(k) =diag{E2(k − 1), E2(k − 2), . . . , E2(k − l)},

Λβ =
[

β̄1I β̄2I · · · β̄lI
]

, H̄0 =
[

0nv,l·nv Il·nv,l·nv

]T
,

Λ̄β =
[

β̄0I β̄1I · · · β̄lI
]

, H̄2 =
[

0nx+nl
Inx+nl

]

,

Λ̄γ =diag{√ν1I,
√
ν2I, . . . ,

√
νlI}, H̄1 =

[

Inx+nl
0nx+nl

]

,

Λ̂γ =diag{√ν0I,
√
ν1I, . . . ,

√
νlI}, P̄b =

γ2

l + 1
Il+1 ⊗ Pb,

H̄3 =
[

Inv ,2(nx+nl) 0l·nv,2(nx+nl)

]T
.

Theorem 1: Consider the discrete time-varying nonlinear stochastic

system described by (1)–(5). Let the disturbance attenuation level

γ > 0, the positive definite matrices Pa > 0, Pb > 0, Pci > 0
(i = −l,−l + 1, . . . , 0) and the gain matrices of the fault esti-

mator {K(k)}k∈[0,N−1] in (7) be given. The fault estimator ẑ(k)
(k = 0, 1, . . . , N−1) satisfies the performance criterion (10) if there

exist families of positive scalars {ρ(k)}k∈[0,N−1], positive definite

matrices {P (k)}k∈[0,N ] > 0 and {Q(i, j)}i∈[−l,N ],j∈[1,l] > 0
satisfying

Γ(k) = Γ̄(k) + diag{LT (k)L(k) + ϕ(k),−ρ(k)I, 0,−P̄b,−γ2Pa}
< 0 (11)

and the initial condition

γ2Pc0 − P (0) > 0, γ2P−ci −
l

∑

j=i

Q(−i, j) > 0 (i = 1, 2, . . . , l) (12)

Proof: Consider the following Lyapunov-like functional candi-

date for system (9):

V (k) = V1(k) + V2(k)

= ηT (k)P (k)η(k) +

l
∑

j=1

k−1
∑

i=k−j

ηT (i)Q(i, j)η(i) (13)

where P (k) > 0 and Q(i, j) > 0 are symmetric positive definite

matrices with appropriate dimensions. Calculating the difference of
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V (k) along the solution of system (9) and taking the mathematical

expectation, we have

E {∆V1(k)} = E {V1(k + 1)− V1(k)}

=E

{(

YT
l (k)P (k + 1)Yl(k)− ηT (k)P (k)η(k) + ᾱ(1− ᾱ)

× ηT (k)DT
f (k)P (k + 1)Df (k)η(k) +

l
∑

s=0

νs(C(k − s)η(k − s)

+ E2(k − s)v(k − s))TP (k + 1)(C(k − s)η(k − s)

+ E2(k − s)v(k − s))

}

(14)

Similarly, by noting the equation (13), one has

E {∆V2(k)}=E

{ l
∑

j=1

ηT (k)Q(k, j)η(k)− ηT
l (k)Q̄(k, l)ηl(k)

}

(15)

where ηl(k) =
[

ηT (k − 1) ηT (k − 2) · · · ηT (k − l)
]T

.
Therefore, by denoting

vl(k) =
[

vT (k) vT (k − 1) · · · vT (k − l)
]T

,

η̃(k) =
[

ηT (k) FT (η(k)) ηT
l (k) vTl (k) ϖT (k)

]T

and combining (13)–(15), one immediately obtains

E {∆V (k)} = E {∆V1(k) + ∆V2(k)} = E

{

η̃T (k)Γ̄(k)η̃(k)
}

(16)

Moreover, it follows from the constraint (2) that

∥F(η(k))∥2

≤ b2(k)ηT (k)(H̄T
1 HHT H̄1 + H̄T

2 HHT H̄2)η(k) (17)

Hence we have

E {∆V (k)} ≤ E

{

η̃T (k)Γ̄(k)η̃(k)− ρ(k)(∥F(η(k))∥2 − b2(k)

×ηT (k)(H̄T
1 HHT H̄1 + H̄T

2 HHT H̄2)η(k))

}

(18)

Summing up (18) on both sides from 0 to N − 1 with respect to

k, we obtain

N−1
∑

k=0

E {∆V (k)} = E {V (N)} − E {V (0)}

≤ E

{

N−1
∑

k=0

η̃T (k)Γ(k)η̃(k)
}

+ E

{

γ2

l + 1

l
∑

s=0

N−1
∑

k=0

(∥v(k − s)∥2Pb

−∥v(k)∥2Pb
)

}

− E

{

N−1
∑

k=0

(∥z̃(k)∥2 − γ2∥ϖ(k)∥2Pa

−γ2∥v(k)∥2Pb
)

}

(19)

It can be obtained from (11) and (12) that

E

{N−1
∑

k=0

(

γ2∥ϖ(k)∥2Pa
+ γ2∥v(k)∥2Pb

− ∥z̃(k)∥2
)

+γ2
0

∑

i=−l

ηT (i)Pciη(i)

}

> E {V (N)}+ E

{

γ2
0

∑

k=−l

ηT (i)PCiη(i)− V (0)

}

≥ 0(20)

which is equivalent to (10), and the proof is now complete.

Remark 5: White noise disturbances are frequently encountered in

practice where Kalman filter (KF) or extended Kalman filter (EKF)

approaches can be used to deal with the state estimation problem. In

H∞ estimation, the noise sources are arbitrary deterministic signals

with bounded energy or average power, and a H∞ estimator is

sought which ensures a prescribed upper-bound on the L2-induced

gain from the noise signals to the estimation error. Such a H∞

estimation approach is particularly appropriate to applications where

the statistics of the noise signals are not exactly known. In fact, the

H∞ estimator has been widely adopted in practical engineering due

to its capability of providing a bound for the worst-case estimation

error. It should be pointed out that the problem addressed in this

paper is equipped with the following features: 1) the considered

external disturbances are unknown but bounded and therefore do

not possess known statistics; 2) the nonlinearities satisfy the given

bounded conditions only; and 3) the plant under consideration is quite

comprehensive that covers fading measurements, ROFs, nonlinearity

and time-varying parameters. Unfortunately, the above features pre-

vent the existing methods (such as KF, EKF) from being applied to

the H∞ state estimation problem for the underlying system in this

paper, and the proposed scheme in this paper is particularly suitable

for handling the addressed networked complex systems.

Based on the analysis results, we are now ready to solve the fault

estimator design problem for system (9) in the following theorem.

For convenience of later analysis, we denote

Γ̂11(k) =diag

{

− P (k) +
l

∑

j=1

Q(k, j) + LT (k)L(k) + ϕ(k),

− ρ(k)I

}

, H0 =
[

0 I
]T

, Λβ̄0
=

[

0 β̄0I
]T

,

Γ̂22(k) =diag

{

− Q̄(k, l),− γ2

l + 1
Pb,−

γ2

l + 1
Il ⊗ Pb,−γ2Pa

}

,

Af0(k) =I2 ⊗ (Āf (k) +HA(k)HT ), E2K = H̄K Ẽ2l(k),

Γ̂31(k) =









√
ν0H0K(k)Ĉ(k) 0

Af0(k) + Λβ̄0
K(k)C̃(k) H

√

ᾱ(1− ᾱ)Df (k) 0
0 0









,

Ẽ2l(k) =diag

{

Ê2(k − 1), Ê2(k − 2), . . . , Ê2(k − l)

}

,

Γ̂32(k) =









0
√
ν0EK 0 0

ΛβHKČl(k) β0EK ΛβE2K Ê1K

0 0 0 0

Λ̄γHKC̃l(k) 0 Λ̄γE2K 0









,

Γ̂33(k) =diag{I3 ⊗−R(k + 1),−R̄(k + 1)},
Ĉ(k) =

[

C̄(k) 0
]

, C̃(k) =
[

0 C̄(k)
]

,

C̃l(k) =diag

{

Ĉ(k − 1), Ĉ(k − 2), . . . , Ĉ(k − l)

}

,

Čl(k) =diag

{

C̃(k − 1), C̃(k − 2), . . . , C̃(k − l)

}

,

Ê1(k) =12 ⊗
[

Ē1(k) 0
]

, Ê2(k) =
[

0 ET
2 (k)

]T
,

Ê3(k) =
[

0 E3(k)
]

, R̄(k + 1) = P̄−1(k + 1),

HK =Il ⊗H0K(k), H̄K = Il ⊗ K̄(k),

EK =K̄(k)Ê2(k), Ê1K = Ê1(k) +H0K(k)Ê3(k). (21)

Theorem 2: Consider the discrete time-varying nonlinear stochastic

system (1) with the time-varying fault estimator (7). For the given

disturbance attenuation level γ > 0, the positive definite matrices

Pa > 0, Pb > 0 and Pci > 0 (i = −l,−l + 1, . . . , 0),
the fault estimator ẑ(k) (k = 0, 1, . . . , N − 1) satisfies the per-
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formance criterion (10) if there exist families of positive scalars

{ρ(k)}k∈[0,N−1], positive definite matrices {P (k)}k∈[0,N ] > 0,

{Q(i, j)}i∈[−l,N ],j∈[1,l] > 0, {R(k)}k∈[0,N ] > 0 and real-valued

matrices K(k)k∈[0,N−1] satisfying

Γ̂(k) =





Γ̂11(k) ∗ ∗
0 Γ̂22(k) ∗

Γ̂31(k) Γ̂32(k) Γ̂33(k)



 < 0 (22)

and the initial condition

γ2Pc0 − P (0) > 0, γ2P−ci −
l

∑

j=i

Q(−i, j) > 0 (i = 1, 2, . . . , l) (23)

with the parameters updated by P (k + 1) = R−1(k + 1).

Proof: In order to avoid partitioning the positive define matrices

{P (k)}k∈[0,N ] and {Q(i, j)}i∈[−l,N ],j∈[1,l], we rewrite the parame-

ters in Theorem 1 in the following form:

C(k − s) = H0K(k)Ĉ(k − s),Af (k) = Af0(k) + Λβ̄0
K(k)C̃(k),

C̄(k − s) = H0K(k)C̃(k − s), E1(k) = Ê1(k) +H0K(k)Ê3(k),

E2(k − s) = K̄(k)Ê2(k − s), K̄(k) = I2 ⊗K(k). (24)

Noticing (24) and using the Schur Complement Lemma, (22) can be

obtained by (11) after some straightforward algebraic manipulations.

The proof of this theorem is now complete.

By means of Theorem 2, we can summarize the Finite-Horizon

Fault Estimator Design (FHFED) algorithm as follows:

Algorithm FHFED

Step 1: Given the disturbance attenuation level γ, the positive def-

inite matrices Pa > 0, Pb > 0 and Pci > 0 (i = −l,−l+1, . . . , 0).

Step 2: Set k = 0 and solve the matrix inequalities (23) and the

recursive matrix inequalities (22) to obtain the values of matrices

P (0),
∑l

j=i Q(−i, j) (i = 1, 2, . . . , l), R(1) and the estimator gain

matrix K(0).

Step 3: Set k = k+ 1, update the matrices P (k+ 1) = R−1(k+
1) and then obtain the estimator gain matrix K(k) by solving the

recursive matrix inequalities (22).

Step 4: If k < N , then go to Step 3, else go to Step 5.

Step 5: Stop.

Remark 6: In Theorem 2, the finite-horizon fault estimator is

designed by solving a series of recursive matrix inequalities where

both the current system measurement and previous system states are

employed to estimate the current system state. Such a recursive pro-

cess is particularly useful for online real-time implementation. It can

be observed from Algorithm FHFED that the main results established

contain all the information of the addressed general systems including

the time-varying systems parameters, the occurrence probabilities of

the random faults as well as the statistics characteristics of the channel

coefficients. In the next section, a simulation example is provided to

show the effectiveness of the proposed finite-horizon fault estimation

technique.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we use a nonlinear pendulum in a network en-

vironment to demonstrate the effectiveness and applicability of the

proposed method. Consider a pendulum system borrowed from [7].

It is assumed that two components of the system (that is, angle and

angular velocity) are randomly perturbed by uncontrolled external

forces. The equations of motion of the pendulum are described as

follows:

θ̇(t) = λθ̄(t) + α(t)((1− λ)θ̄(t) + λθ(t))

˙̄θ(t) = −gsin(θ(t)) + (b/lm)θ̄(t) + (aml/4)θ̄2(t)sin(2θ(t))
2
3
l − a

2
mlcos2(θ(t))

−(amlλ/4)w(t)

y(t) = sin(θ(t)) + λθ̄(t) + λv(t) (25)

where θ denotes the angle of the pendulum from the vertical, θ̄ is

the angular velocity, g = 9.8 m/s2 is the gravity constant, m is the

mass of the pendulum, a = 1/(m+M), M is the mass of the cart,

l is the length of the pendulum, b is the damping coefficient of the

pendulum around the pivot, and w and v are the disturbance applied

to the cart and measurement noise, respectively. In this simulation,

the pendulum parameters are chosen as m = 2 kg, M = 8 kg,

l = 0.5 m and b = 0.7 Nm/s, and the retarded coefficient λ = 0.6.

Since the nonlinear pendulum system is in a network environment,

wireless channels are known to be sensitive to fading effects which

serve as one of the most dominant features in wireless communication

links. Letting x1(t) = θ(t), x2(t) = θ̄(t), considering the fading

channel phenomenon and discretizing the plant with a sampling

period 0.04 s, we obtain the following discrete-time system model

to be investigated:







x(k + 1) = g(k, x(k)) + α(k)Df (k)f(k) + E1(k)w(k)
ỹ(k) = C(k)x(k) + E2(k)v(k)

y(k) =
∑lk

s=0 βs(k)ỹ(k − s) + E3(k)ξ(k)

The system data are given as follows:

g(k, x(k)) =

[

0.48x1(k) + 0.2x2(k) + 0.12 sin(x2(k))
0.03x1(k) + 0.50x2(k)

]

,

Df (k) =

[

0.4 + sin(k)
0.2

]

, E1(k) =

[

0.2
0.5

]

, E3(k) = 0.1,

C(k) =
[

−0.2 + 0.1 sin(5k) 0.5
]

, E2(k) = 0.3 (26)

where xi(k) (i = 1, 2) is the ith element of x(k). The probability

of randomly occurring fault is taken as ᾱ = 0.9. In view of (26), the

other system parameters can be obtained as follows:

A(k) =

[

0.48 0.2
0.03 0.50

]

, b(k) = 0.2.

The order of the fading model is l = 1 and the probability density

functions of channel coefficients are as follows
{

ϱ(β0(k)) = 0.0005(e9.89β0(k) − 1), 0 ≤ β0(k) ≤ 1,

ϱ(β1(k)) = 8.5017e−8.5β1(k), 0 ≤ β1(k) ≤ 1.

It can be obtained that the mathematical expectation β̄s and variance

νs (s = 0, 1) are 0.8991, 0.1174, 0.0133 and 0.01364, respectively.

The H∞ performance level γ, the positive definite matrices Pa, Pb

and Pci (i = −1, 0) are chosen as γ = 1, Pa = I , Pb = I ,

Pc0 = P−c1 = 5I , respectively. By applying Algorithm FHFED, the

desired fault estimate parameters are obtained and listed in Table I.

From (10), we can obtain that

J(N) :=

E

{

∑N−1
k=0

(

∥z̃(k)∥2
)

}

E

{

∑N−1
k=0

(

∥ϖ(k)∥2Pa
+ ∥v(k)∥2Pb

)

+ η̄(0)

} < γ2, (27)

where η̄(0) =
∑0

i=−l η
T (i)Pciη(i). To illustrate the effectiveness of

the designed fault estimator, we introduce the index J(N) to reflect

the actual fault estimation performance.
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TABLE I
FAULT ESTIMATE PARAMETERS

k 0 1 2 3 · · · 29 30

K(k)





2.7544
2.7533
2.7552









0.0021
0.0002
−0.0008









−0.0067
−0.0055
−0.0301









−0.0020
0.0004
−0.0011



 · · ·





−0.0405
−0.0268
0.0097









−0.0161
0.0052
−0.0165
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Fig. 1. Fault signal and its estimate with Af (k) = −0.4I
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Fig. 2. Fault estimation performance J(N) with Af (k) = −0.4I

In the simulation, the initial value of the state is x(0) =
[

−0.55 −0.16
]T

and the exogenous disturbance inputs are se-

lected as w(k) = 0.5e−2k sin(4k), v(k) = 0.2e−4k cos(k) and

ξ(k) = 4
k+1

cos(k). First, let the matrix Af (k) = −0.4I . The fault

to be estimated is f(k) = 1. Fig. 1 plots the simulation result on the

fault signal and its estimate. Fig. 2 shows the evolution of the actual

fault estimation performance in terms of the index J(N) in (27),

from which it can be seen that the index J(N) (N = 1, 2, ..., 30) is

always less than the prescribed upper bound 1. The simulation results

confirm that the approach addressed in this paper provides a good

performance of fault estimation.

V. CONCLUSION

In this paper, we have dealt with the finite-horizon estimation

problem of ROFs for a class of nonlinear time-varying systems

with fading channels. Some uncorrelated random variables have been

introduced, respectively, to govern the fault occurrence probability

and fading measurements. By employing the stochastic analysis

techniques, some sufficient conditions have been provided to en-

sure that the dynamic system under consideration satisfies the fault

estimation performance constraint. Finally, an illustrative example

has highlighted the effectiveness of the fault estimation technology

presented in this paper.
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