
On Calibration of Modern Neural Networks

Chuan Guo * 1 Geoff Pleiss * 1 Yu Sun * 1 Kilian Q. Weinberger 1

Abstract

Confidence calibration – the problem of predict-

ing probability estimates representative of the

true correctness likelihood – is important for

classification models in many applications. We

discover that modern neural networks, unlike

those from a decade ago, are poorly calibrated.

Through extensive experiments, we observe that

depth, width, weight decay, and Batch Normal-

ization are important factors influencing calibra-

tion. We evaluate the performance of various

post-processing calibration methods on state-of-

the-art architectures with image and document

classification datasets. Our analysis and exper-

iments not only offer insights into neural net-

work learning, but also provide a simple and

straightforward recipe for practical settings: on

most datasets, temperature scaling – a single-

parameter variant of Platt Scaling – is surpris-

ingly effective at calibrating predictions.

1. Introduction

Recent advances in deep learning have dramatically im-

proved neural network accuracy (Simonyan & Zisserman,

2015; Srivastava et al., 2015; He et al., 2016; Huang et al.,

2016; 2017). As a result, neural networks are now entrusted

with making complex decisions in applications, such as ob-

ject detection (Girshick, 2015), speech recognition (Han-

nun et al., 2014), and medical diagnosis (Caruana et al.,

2015). In these settings, neural networks are an essential

component of larger decision making pipelines.

In real-world decision making systems, classification net-

works must not only be accurate, but also should indicate

when they are likely to be incorrect. As an example, con-

sider a self-driving car that uses a neural network to detect

pedestrians and other obstructions (Bojarski et al., 2016).

*Equal contribution, alphabetical order. 1Cornell University.
Correspondence to: Chuan Guo <cg563@cornell.edu>, Geoff
Pleiss <geoff@cs.cornell.edu>, Yu Sun <ys646@cornell.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

%
o
f

S
a
m

p
le

s

A
v
g
.

co
n

fi
d

e
n

ce

A
cc

u
ra

cy

LeNet (1998)
CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0

A
v
g
.

co
n

fi
d

e
n

ce

A
cc

u
ra

cy

ResNet (2016)
CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Error=44.9

Outputs

Gap

0.0 0.2 0.4 0.6 0.8 1.0

Error=30.6

Outputs

Gap

Confidence

Figure 1. Confidence histograms (top) and reliability diagrams

(bottom) for a 5-layer LeNet (left) and a 110-layer ResNet (right)

on CIFAR-100. Refer to the text below for detailed illustration.

If the detection network is not able to confidently predict

the presence or absence of immediate obstructions, the car

should rely more on the output of other sensors for braking.

Alternatively, in automated health care, control should be

passed on to human doctors when the confidence of a dis-

ease diagnosis network is low (Jiang et al., 2012). Specif-

ically, a network should provide a calibrated confidence

measure in addition to its prediction. In other words, the

probability associated with the predicted class label should

reflect its ground truth correctness likelihood.

Calibrated confidence estimates are also important for

model interpretability. Humans have a natural cognitive in-

tuition for probabilities (Cosmides & Tooby, 1996). Good

confidence estimates provide a valuable extra bit of infor-

mation to establish trustworthiness with the user – espe-

cially for neural networks, whose classification decisions

are often difficult to interpret. Further, good probability

estimates can be used to incorporate neural networks into

other probabilistic models. For example, one can improve

performance by combining network outputs with a lan-

guage model in speech recognition (Hannun et al., 2014;

Xiong et al., 2016), or with camera information for object

detection (Kendall & Cipolla, 2016).

In 2005, Niculescu-Mizil & Caruana (2005) showed that

neural networks typically produce well-calibrated proba-

bilities on binary classification tasks. While neural net-

works today are undoubtedly more accurate than they were

a decade ago, we discover with great surprise that mod-

ern neural networks are no longer well-calibrated. This

is visualized in Figure 1, which compares a 5-layer LeNet

(left) (LeCun et al., 1998) with a 110-layer ResNet (right)

(He et al., 2016) on the CIFAR-100 dataset. The top row

shows the distribution of prediction confidence (i.e. prob-

abilities associated with the predicted label) as histograms.

The average confidence of LeNet closely matches its accu-

racy, while the average confidence of the ResNet is substan-

tially higher than its accuracy. This is further illustrated in

the bottom row reliability diagrams (DeGroot & Fienberg,

1983; Niculescu-Mizil & Caruana, 2005), which show ac-

curacy as a function of confidence. We see that LeNet is

well-calibrated, as confidence closely approximates the ex-

pected accuracy (i.e. the bars align roughly along the diag-

onal). On the other hand, the ResNet’s accuracy is better,

but does not match its confidence.

Our goal is not only to understand why neural networks

have become miscalibrated, but also to identify what meth-

ods can alleviate this problem. In this paper, we demon-

strate on several computer vision and NLP tasks that neu-

ral networks produce confidences that cannot represent true

probabilities. Additionally, we offer insight and intuition

into network training and architectural trends that may

cause miscalibration. Finally, we compare various post-

processing calibration methods on state-of-the-art neural

networks, and introduce several extensions of our own.

Surprisingly, we find that a single-parameter variant of Platt

scaling (Platt et al., 1999) – which we refer to as temper-

ature scaling – is often the most effective method at ob-

taining calibrated probabilities. Because this method is

straightforward to implement with existing deep learning

frameworks, it can be easily adopted in practical settings.

2. Definitions

The problem we address in this paper is supervised multi-

class classification with neural networks. The input X ∈ X
and label Y ∈ Y = {1, . . . ,K} are random variables

that follow a ground truth joint distribution π(X,Y) =
π(Y |X)π(X). Let h be a neural network with h(X) =
(Ŷ , P̂), where Ŷ is a class prediction and P̂ is its associ-

ated confidence, i.e. probability of correctness. We would

like the confidence estimate P̂ to be calibrated, which in-

tuitively means that P̂ represents a true probability. For

example, given 100 predictions, each with confidence of

0.8, we expect that 80 should be correctly classified. More

formally, we define perfect calibration as

P

(

Ŷ = Y | P̂ = p
)

= p, ∀p ∈ [0, 1] (1)

where the probability is over the joint distribution. In all

practical settings, achieving perfect calibration is impos-

sible. Additionally, the probability in (1) cannot be com-

puted using finitely many samples since P̂ is a continuous

random variable. This motivates the need for empirical ap-

proximations that capture the essence of (1).

Reliability Diagrams (e.g. Figure 1 bottom) are a visual

representation of model calibration (DeGroot & Fienberg,

1983; Niculescu-Mizil & Caruana, 2005). These diagrams

plot expected sample accuracy as a function of confidence.

If the model is perfectly calibrated – i.e. if (1) holds – then

the diagram should plot the identity function. Any devia-

tion from a perfect diagonal represents miscalibration.

To estimate the expected accuracy from finite samples, we

group predictions into M interval bins (each of size 1/M)

and calculate the accuracy of each bin. Let Bm be the set

of indices of samples whose prediction confidence falls into

the interval Im = (m−1
M

, m
M
]. The accuracy of Bm is

acc(Bm) =
1

|Bm|

∑

i∈Bm

1(ŷi = yi),

where ŷi and yi are the predicted and true class labels for

sample i. Basic probability tells us that acc(Bm) is an un-

biased and consistent estimator of P(Ŷ = Y | P̂ ∈ Im).
We define the average confidence within bin Bm as

conf(Bm) =
1

|Bm|

∑

i∈Bm

p̂i,

where p̂i is the confidence for sample i. acc(Bm) and

conf(Bm) approximate the left-hand and right-hand sides

of (1) respectively for bin Bm. Therefore, a perfectly cal-

ibrated model will have acc(Bm) = conf(Bm) for all

m ∈ {1, . . . ,M}. Note that reliability diagrams do not dis-

play the proportion of samples in a given bin, and thus can-

not be used to estimate how many samples are calibrated.

Expected Calibration Error (ECE). While reliability

diagrams are useful visual tools, it is more convenient to

have a scalar summary statistic of calibration. Since statis-

tics comparing two distributions cannot be comprehensive,

previous works have proposed variants, each with a unique

emphasis. One notion of miscalibration is the difference in

expectation between confidence and accuracy, i.e.

E
P̂

[
∣

∣

∣P

(

Ŷ = Y | P̂ = p
)

− p
∣

∣

∣

]

(2)

Expected Calibration Error (Naeini et al., 2015) – or ECE

– approximates (2) by partitioning predictions into M
equally-spaced bins (similar to the reliability diagrams) and

0 20 40 60 80 100 120

Depth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr

o
r/

E
C

E

Varying Depth
ResNet - CIFAR-100

Error

ECE

0 50 100 150 200 250 300

Filters per layer

Varying Width
ResNet-14 - CIFAR-100

Error

ECE

Without With

Batch Normalization

Using Normalization
ConvNet - CIFAR-100

Error

ECE

10
−5

10
−4

10
−3

10
−2

Weight decay

Varying Weight Decay
ResNet-110 - CIFAR-100

Error

ECE

Figure 2. The effect of network depth (far left), width (middle left), Batch Normalization (middle right), and weight decay (far right) on

miscalibration, as measured by ECE (lower is better).

taking a weighted average of the bins’ accuracy/confidence

difference. More precisely,

ECE =

M
∑

m=1

|Bm|

n

∣

∣

∣

∣

acc(Bm)− conf(Bm)

∣

∣

∣

∣

, (3)

where n is the number of samples. The difference between

acc and conf for a given bin represents the calibration gap

(red bars in reliability diagrams – e.g. Figure 1). We use

ECE as the primary empirical metric to measure calibra-

tion. See Section S1 for more analysis of this metric.

Maximum Calibration Error (MCE). In high-risk ap-

plications where reliable confidence measures are abso-

lutely necessary, we may wish to minimize the worst-case

deviation between confidence and accuracy:

max
p∈[0,1]

∣

∣

∣P

(

Ŷ = Y | P̂ = p
)

− p
∣

∣

∣
. (4)

The Maximum Calibration Error (Naeini et al., 2015) – or

MCE – estimates an upper bound of this deviation. Simi-

larly to ECE, this approximation involves binning:

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)| . (5)

In reliability diagrams, MCE measures the largest calibra-

tion gap (red bars) across all bins, whereas ECE measures a

weighted average of all gaps. For perfectly calibrated clas-

sifiers, MCE and ECE both equal 0.

Negative log likelihood is a standard measure of a prob-

abilistic model’s quality (Friedman et al., 2001). It is also

referred to as the cross entropy loss in the context of deep

learning (Bengio et al., 2015). Given a probabilistic model

π̂(Y |X) and n samples, NLL is defined as:

L = −
n
∑

i=1

log(π̂(yi|xi)) (6)

It is a standard result (Friedman et al., 2001) that, in expec-

tation, NLL is minimized if and only if π̂(Y |X) recovers

the ground truth conditional distribution π(Y |X).

3. Observing Miscalibration

The architecture and training procedures of neural net-

works have rapidly evolved in recent years. In this sec-

tion we identify some recent changes that are responsible

for the miscalibration phenomenon observed in Figure 1.

Though we cannot claim causality, we find that model

capacity and lack of regularization are closely related to

model (mis)calibration.

Model capacity. The model capacity of neural networks

has increased at a dramatic pace over the past few years.

It is now common to see networks with hundreds, if not

thousands of layers (He et al., 2016; Huang et al., 2016)

and hundreds of convolutional filters per layer (Zagoruyko

& Komodakis, 2016). Recent work shows that very deep

or wide models are able to generalize better than smaller

ones, while exhibiting the capacity to easily fit the training

set (Zhang et al., 2017).

Although increasing depth and width may reduce classi-

fication error, we observe that these increases negatively

affect model calibration. Figure 2 displays error and ECE

as a function of depth and width on a ResNet trained on

CIFAR-100. The far left figure varies depth for a network

with 64 convolutional filters per layer, while the middle left

figure fixes the depth at 14 layers and varies the number

of convolutional filters per layer. Though even the small-

est models in the graph exhibit some degree of miscalibra-

tion, the ECE metric grows substantially with model ca-

pacity. During training, after the model is able to correctly

classify (almost) all training samples, NLL can be further

minimized by increasing the confidence of predictions. In-

creased model capacity will lower training NLL, and thus

the model will be more (over)confident on average.

Batch Normalization (Ioffe & Szegedy, 2015) improves

the optimization of neural networks by minimizing distri-

bution shifts in activations within the neural network’s hid-

0 100 200 300 400 500
20

25

30

35

40

45

Epoch

E
rr

o
r

(%
)

/
N

L
L

 (
sc

al
ed

)
NLL Overfitting on CIFAR−100

Test error

Test NLL

Figure 3. Test error and NLL of a 110-layer ResNet with stochas-

tic depth on CIFAR-100 during training. NLL is scaled by a con-

stant to fit in the figure. Learning rate drops by 10x at epochs 250

and 375. The shaded area marks between epochs at which the best

validation loss and best validation error are produced.

den layers. Recent research suggests that these normal-

ization techniques have enabled the development of very

deep architectures, such as ResNets (He et al., 2016) and

DenseNets (Huang et al., 2017). It has been shown that

Batch Normalization improves training time, reduces the

need for additional regularization, and can in some cases

improve the accuracy of networks.

While it is difficult to pinpoint exactly how Batch Normal-

ization affects the final predictions of a model, we do ob-

serve that models trained with Batch Normalization tend to

be more miscalibrated. In the middle right plot of Figure 2,

we see that a 6-layer ConvNet obtains worse calibration

when Batch Normalization is applied, even though classi-

fication accuracy improves slightly. We find that this result

holds regardless of the hyperparameters used on the Batch

Normalization model (i.e. low or high learning rate, etc.).

Weight decay, which used to be the predominant regu-

larization mechanism for neural networks, is decreasingly

utilized when training modern neural networks. Learning

theory suggests that regularization is necessary to prevent

overfitting, especially as model capacity increases (Vapnik,

1998). However, due to the apparent regularization effects

of Batch Normalization, recent research seems to suggest

that models with less L2 regularization tend to generalize

better (Ioffe & Szegedy, 2015). As a result, it is now com-

mon to train models with little weight decay, if any at all.

The top performing ImageNet models of 2015 all use an or-

der of magnitude less weight decay than models of previous

years (He et al., 2016; Simonyan & Zisserman, 2015).

We find that training with less weight decay has a negative

impact on calibration. The far right plot in Figure 2 dis-

plays training error and ECE for a 110-layer ResNet with

varying amounts of weight decay. The only other forms

of regularization are data augmentation and Batch Normal-

ization. We observe that calibration and accuracy are not

optimized by the same parameter setting. While the model

exhibits both over-regularization and under-regularization

with respect to classification error, it does not appear that

calibration is negatively impacted by having too much

weight decay. Model calibration continues to improve

when more regularization is added, well after the point of

achieving optimal accuracy. The slight uptick at the end of

the graph may be an artifact of using a weight decay factor

that impedes optimization.

NLL can be used to indirectly measure model calibra-

tion. In practice, we observe a disconnect between NLL

and accuracy, which may explain the miscalibration in Fig-

ure 2. This disconnect occurs because neural networks can

overfit to NLL without overfitting to the 0/1 loss. We ob-

serve this trend in the training curves of some miscalibrated

models. Figure 3 shows test error and NLL (rescaled to

match error) on CIFAR-100 as training progresses. Both

error and NLL immediately drop at epoch 250, when the

learning rate is dropped; however, NLL overfits during the

remainder of training. Surprisingly, overfitting to NLL is

beneficial to classification accuracy. On CIFAR-100, test

error drops from 29% to 27% in the region where NLL

overfits. This phenomenon renders a concrete explanation

of miscalibration: the network learns better classification

accuracy at the expense of well-modeled probabilities.

We can connect this finding to recent work examining the

generalization of large neural networks. Zhang et al. (2017)

observe that deep neural networks seemingly violate the

common understanding of learning theory that large mod-

els with little regularization will not generalize well. The

observed disconnect between NLL and 0/1 loss suggests

that these high capacity models are not necessarily immune

from overfitting, but rather, overfitting manifests in proba-

bilistic error rather than classification error.

4. Calibration Methods

In this section, we first review existing calibration meth-

ods, and introduce new variants of our own. All methods

are post-processing steps that produce (calibrated) proba-

bilities. Each method requires a hold-out validation set,

which in practice can be the same set used for hyperparam-

eter tuning. We assume that the training, validation, and

test sets are drawn from the same distribution.

4.1. Calibrating Binary Models

We first introduce calibration in the binary setting, i.e.

Y = {0, 1}. For simplicity, throughout this subsection,

we assume the model outputs only the confidence for the

positive class.1 Given a sample xi, we have access to p̂i –

the network’s predicted probability of yi = 1, as well as

zi ∈ R – which is the network’s non-probabilistic output,

or logit. The predicted probability p̂i is derived from zi us-

ing a sigmoid function σ; i.e. p̂i = σ(zi). Our goal is to

produce a calibrated probability q̂i based on yi, p̂i, and zi.

Histogram binning (Zadrozny & Elkan, 2001) is a sim-

ple non-parametric calibration method. In a nutshell, all

uncalibrated predictions p̂i are divided into mutually ex-

clusive bins B1, . . . , BM . Each bin is assigned a calibrated

score θm; i.e. if p̂i is assigned to bin Bm, then q̂i = θm. At

test time, if prediction p̂te falls into bin Bm, then the cali-

brated prediction q̂te is θm. More precisely, for a suitably

chosen M (usually small), we first define bin boundaries

0 = a1 ≤ a2 ≤ . . . ≤ aM+1 = 1, where the bin Bm

is defined by the interval (am, am+1]. Typically the bin

boundaries are either chosen to be equal length intervals or

to equalize the number of samples in each bin. The predic-

tions θi are chosen to minimize the bin-wise squared loss:

min
θ1,...,θM

M
∑

m=1

n
∑

i=1

1(am ≤ p̂i < am+1) (θm − yi)
2
, (7)

where 1 is the indicator function. Given fixed bins bound-

aries, the solution to (7) results in θm that correspond to the

average number of positive-class samples in bin Bm.

Isotonic regression (Zadrozny & Elkan, 2002), arguably

the most common non-parametric calibration method,

learns a piecewise constant function f to transform un-

calibrated outputs; i.e. q̂i = f(p̂i). Specifically, iso-

tonic regression produces f to minimize the square loss
∑n

i=1(f(p̂i) − yi)
2. Because f is constrained to be piece-

wise constant, we can write the optimization problem as:

min
M

θ1,...,θM
a1,...,aM+1

M
∑

m=1

n
∑

i=1

1(am ≤ p̂i < am+1) (θm − yi)
2

subject to 0 = a1 ≤ a2 ≤ . . . ≤ aM+1 = 1,

θ1 ≤ θ2 ≤ . . . ≤ θM .

where M is the number of intervals; a1, . . . , aM+1 are the

interval boundaries; and θ1, . . . , θM are the function val-

ues. Under this parameterization, isotonic regression is a

strict generalization of histogram binning in which the bin

boundaries and bin predictions are jointly optimized.

Bayesian Binning into Quantiles (BBQ) (Naeini et al.,

2015) is a extension of histogram binning using Bayesian

1 This is in contrast with the setting in Section 2, in which the
model produces both a class prediction and confidence.

model averaging. Essentially, BBQ marginalizes out all

possible binning schemes to produce q̂i. More formally, a

binning scheme s is a pair (M, I) where M is the number

of bins, and I is a corresponding partitioning of [0, 1] into

disjoint intervals (0 = a1 ≤ a2 ≤ . . . ≤ aM+1 = 1). The

parameters of a binning scheme are θ1, . . . , θM . Under this

framework, histogram binning and isotonic regression both

produce a single binning scheme, whereas BBQ considers

a space S of all possible binning schemes for the valida-

tion dataset D. BBQ performs Bayesian averaging of the

probabilities produced by each scheme:2

P(q̂te | p̂te, D) =
∑

s∈S

P(q̂te, S = s | p̂te, D)

=
∑

s∈S

P(q̂te | p̂te, S=s,D)P(S=s | D).

where P(q̂te | p̂te, S = s,D) is the calibrated probability

using binning scheme s. Using a uniform prior, the weight

P(S=s | D) can be derived using Bayes’ rule:

P(S=s | D) =
P(D | S=s)

∑

s′∈S P(D | S=s′)
.

The parameters θ1, . . . , θM can be viewed as parameters of

M independent binomial distributions. Hence, by placing

a Beta prior on θ1, . . . , θM , we can obtain a closed form

expression for the marginal likelihood P(D | S= s). This

allows us to compute P(q̂te | p̂te, D) for any test input.

Platt scaling (Platt et al., 1999) is a parametric approach

to calibration, unlike the other approaches. The non-

probabilistic predictions of a classifier are used as features

for a logistic regression model, which is trained on the val-

idation set to return probabilities. More specifically, in the

context of neural networks (Niculescu-Mizil & Caruana,

2005), Platt scaling learns scalar parameters a, b ∈ R and

outputs q̂i = σ(azi + b) as the calibrated probability. Pa-

rameters a and b can be optimized using the NLL loss over

the validation set. It is important to note that the neural

network’s parameters are fixed during this stage.

4.2. Extension to Multiclass Models

For classification problems involving K > 2 classes, we

return to the original problem formulation. The network

outputs a class prediction ŷi and confidence score p̂i for

each input xi. In this case, the network logits zi are vectors,

where ŷi = argmaxk z
(k)
i , and p̂i is typically derived using

the softmax function σSM:

σSM(zi)
(k) =

exp(z
(k)
i)

∑K

j=1 exp(z
(j)
i)

, p̂i = max
k

σSM(zi)
(k).

The goal is to produce a calibrated confidence q̂i and (pos-

sibly new) class prediction ŷ′i based on yi, ŷi, p̂i, and zi.

2 Because the validation dataset is finite, S is as well.

Dataset Model Uncalibrated Hist. Binning Isotonic BBQ Temp. Scaling Vector Scaling Matrix Scaling

Birds ResNet 50 9.19% 4.34% 5.22% 4.12% 1.85% 3.0% 21.13%

Cars ResNet 50 4.3% 1.74% 4.29% 1.84% 2.35% 2.37% 10.5%

CIFAR-10 ResNet 110 4.6% 0.58% 0.81% 0.54% 0.83% 0.88% 1.0%

CIFAR-10 ResNet 110 (SD) 4.12% 0.67% 1.11% 0.9% 0.6% 0.64% 0.72%

CIFAR-10 Wide ResNet 32 4.52% 0.72% 1.08% 0.74% 0.54% 0.6% 0.72%

CIFAR-10 DenseNet 40 3.28% 0.44% 0.61% 0.81% 0.33% 0.41% 0.41%

CIFAR-10 LeNet 5 3.02% 1.56% 1.85% 1.59% 0.93% 1.15% 1.16%

CIFAR-100 ResNet 110 16.53% 2.66% 4.99% 5.46% 1.26% 1.32% 25.49%

CIFAR-100 ResNet 110 (SD) 12.67% 2.46% 4.16% 3.58% 0.96% 0.9% 20.09%

CIFAR-100 Wide ResNet 32 15.0% 3.01% 5.85% 5.77% 2.32% 2.57% 24.44%

CIFAR-100 DenseNet 40 10.37% 2.68% 4.51% 3.59% 1.18% 1.09% 21.87%

CIFAR-100 LeNet 5 4.85% 6.48% 2.35% 3.77% 2.02% 2.09% 13.24%

ImageNet DenseNet 161 6.28% 4.52% 5.18% 3.51% 1.99% 2.24% -

ImageNet ResNet 152 5.48% 4.36% 4.77% 3.56% 1.86% 2.23% -

SVHN ResNet 152 (SD) 0.44% 0.14% 0.28% 0.22% 0.17% 0.27% 0.17%

20 News DAN 3 8.02% 3.6% 5.52% 4.98% 4.11% 4.61% 9.1%

Reuters DAN 3 0.85% 1.75% 1.15% 0.97% 0.91% 0.66% 1.58%

SST Binary TreeLSTM 6.63% 1.93% 1.65% 2.27% 1.84% 1.84% 1.84%

SST Fine Grained TreeLSTM 6.71% 2.09% 1.65% 2.61% 2.56% 2.98% 2.39%

Table 1. ECE (%) (with M = 15 bins) on standard vision and NLP datasets before calibration and with various calibration methods.

The number following a model’s name denotes the network depth.

Extension of binning methods. One common way of ex-

tending binary calibration methods to the multiclass setting

is by treating the problem as K one-versus-all problems

(Zadrozny & Elkan, 2002). For k = 1, . . . ,K, we form a

binary calibration problem where the label is 1(yi = k)
and the predicted probability is σSM(zi)

(k). This gives

us K calibration models, each for a particular class. At

test time, we obtain an unnormalized probability vector

[q̂
(1)
i , . . . , q̂

(K)
i], where q̂

(k)
i is the calibrated probability for

class k. The new class prediction ŷ′i is the argmax of the

vector, and the new confidence q̂′i is the max of the vector

normalized by
∑K

k=1 q̂
(k)
i . This extension can be applied

to histogram binning, isotonic regression, and BBQ.

Matrix and vector scaling are two multi-class exten-

sions of Platt scaling. Let zi be the logits vector produced

before the softmax layer for input xi. Matrix scaling ap-

plies a linear transformation Wzi + b to the logits:

q̂i = max
k

σSM(Wzi + b)(k),

ŷ′i = argmax
k

(Wzi + b)(k).
(8)

The parameters W and b are optimized with respect to

NLL on the validation set. As the number of parameters

for matrix scaling grows quadratically with the number of

classes K, we define vector scaling as a variant where W

is restricted to be a diagonal matrix.

Temperature scaling, the simplest extension of Platt

scaling, uses a single scalar parameter T > 0 for all classes.

Given the logit vector zi, the new confidence prediction is

q̂i = max
k

σSM(zi/T)
(k). (9)

T is called the temperature, and it “softens” the softmax

(i.e. raises the output entropy) with T > 1. As T → ∞,

the probability q̂i approaches 1/K, which represents max-

imum uncertainty. With T = 1, we recover the original

probability p̂i. As T → 0, the probability collapses to a

point mass (i.e. q̂i = 1). T is optimized with respect to

NLL on the validation set. Because the parameter T does

not change the maximum of the softmax function, the class

prediction ŷ′i remains unchanged. In other words, temper-

ature scaling does not affect the model’s accuracy.

Temperature scaling is commonly used in settings such as

knowledge distillation (Hinton et al., 2015) and statistical

mechanics (Jaynes, 1957). To the best of our knowledge,

we are not aware of any prior use in the context of calibrat-

ing probabilistic models.3 The model is equivalent to max-

imizing the entropy of the output probability distribution

subject to certain constraints on the logits (see Section S2).

4.3. Other Related Works

Calibration and confidence scores have been studied in var-

ious contexts in recent years. Kuleshov & Ermon (2016)

study the problem of calibration in the online setting, where

the inputs can come from a potentially adversarial source.

Kuleshov & Liang (2015) investigate how to produce cal-

ibrated probabilities when the output space is a structured

object. Lakshminarayanan et al. (2016) use ensembles of

networks to obtain uncertainty estimates. Pereyra et al.

(2017) penalize overconfident predictions as a form of reg-

ularization. Hendrycks & Gimpel (2017) use confidence

3To highlight the connection with prior works we define tem-
perature scaling in terms of 1

T
instead of a multiplicative scalar.

scores to determine if samples are out-of-distribution.

Bayesian neural networks (Denker & Lecun, 1990;

MacKay, 1992) return a probability distribution over out-

puts as an alternative way to represent model uncertainty.

Gal & Ghahramani (2016) draw a connection between

Dropout (Srivastava et al., 2014) and model uncertainty,

claiming that sampling models with dropped nodes is a

way to estimate the probability distribution over all pos-

sible models for a given sample. Kendall & Gal (2017)

combine this approach with a model that outputs a predic-

tive mean and variance for each data point. This notion

of uncertainty is not restricted to classification problems.

In contrast, our framework, which does not require model

sampling, returns a confidence for a given output rather

than returning a distribution of possible outputs.

5. Results

We apply the calibration methods in Section 4 to image

classification and document classification neural networks.

For image classification we use 6 datasets:

1. Caltech-UCSD Birds (Welinder et al., 2010):

200 bird species. 5994/2897/2897 images for

train/validation/test sets.

2. Stanford Cars (Krause et al., 2013): 196 classes of

cars by make, model, and year. 8041/4020/4020 im-

ages for train/validation/test.

3. ImageNet 2012 (Deng et al., 2009): Natural scene im-

ages from 1000 classes. 1.3 million/25,000/25,000

images for train/validation/test.

4. CIFAR-10/CIFAR-100 (Krizhevsky & Hinton, 2009):

Color images (32 × 32) from 10/100 classes.

45,000/5,000/10,000 images for train/validation/test.

5. Street View House Numbers (SVHN) (Netzer et al.,

2011): 32 × 32 colored images of cropped

out house numbers from Google Street View.

604,388/6,000/26,032 images for train/validation/test.

We train state-of-the-art convolutional networks: ResNets

(He et al., 2016), ResNets with stochastic depth (SD)

(Huang et al., 2016), Wide ResNets (Zagoruyko & Ko-

modakis, 2016), and DenseNets (Huang et al., 2017). We

use the data preprocessing, training procedures, and hyper-

parameters as described in each paper. For Birds and Cars,

we fine-tune networks pretrained on ImageNet.

For document classification we experiment with 4 datasets:

1. 20 News: News articles, partitioned into 20 cate-

gories by content. 9034/2259/7528 documents for

train/validation/test.

2. Reuters: News articles, partitioned into 8 cate-

gories by topic. 4388/1097/2189 documents for

train/validation/test.

3. Stanford Sentiment Treebank (SST) (Socher et al.,

2013): Movie reviews, represented as sentence parse

trees that are annotated by sentiment. Each sample in-

cludes a coarse binary label and a fine grained 5-class

label. As described in (Tai et al., 2015), the train-

ing/validation/test sets contain 6920/872/1821 docu-

ments for binary, and 544/1101/2210 for fine-grained.

On 20 News and Reuters, we train Deep Averaging Net-

works (DANs) (Iyyer et al., 2015) with 3 feed-forward

layers and Batch Normalization. These networks obtain

competitive accuracy using the optimization hyperparam-

eters suggested by the original paper. On SST, we train

TreeLSTMs (Long Short Term Memory) (Tai et al., 2015)

using the default settings in the authors’ code.

Calibration Results. Table 1 displays model calibration,

as measured by ECE (with M = 15 bins), before and af-

ter applying the various methods (see Section S3 for MCE,

NLL, and error tables). It is worth noting that most datasets

and models experience some degree of miscalibration, with

ECE typically between 4 to 10%. This is not architecture

specific: we observe miscalibration on convolutional net-

works (with and without skip connections), recurrent net-

works, and deep averaging networks. The two notable ex-

ceptions are SVHN and Reuters, both of which experience

ECE values below 1%. Both of these datasets have very

low error (1.98% and 2.97%, respectively); and therefore

the ratio of ECE to error is comparable to other datasets.

Our most important discovery is the surprising effective-

ness of temperature scaling despite its remarkable simplic-

ity. Temperature scaling outperforms all other methods on

the vision tasks, and performs comparably to other methods

on the NLP datasets. What is perhaps even more surpris-

ing is that temperature scaling outperforms the vector and

matrix Platt scaling variants, which are strictly more gen-

eral methods. In fact, vector scaling recovers essentially

the same solution as temperature scaling – the learned vec-

tor has nearly constant entries, and therefore is no different

than a scalar transformation. In other words, network mis-

calibration is intrinsically low dimensional.

The only dataset that temperature scaling does not calibrate

is the Reuters dataset. In this instance, only one of the

above methods is able to improve calibration. Because this

dataset is well-calibrated to begin with (ECE ≤ 1%), there

is not much room for improvement with any method, and

post-processing may not even be necessary to begin with.

It is also possible that our measurements are affected by

dataset split or by the particular binning scheme.

Matrix scaling performs poorly on datasets with hundreds

of classes (i.e. Birds, Cars, and CIFAR-100), and fails

to converge on the 1000-class ImageNet dataset. This is

expected, since the number of parameters scales quadrat-

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

ECE=12.67

Uncal. - CIFAR-100
ResNet-110 (SD)

Outputs

Gap

0.0 0.2 0.4 0.6 0.8 1.0

ECE=0.96

Temp. Scale - CIFAR-100
ResNet-110 (SD)

Outputs

Gap

0.0 0.2 0.4 0.6 0.8 1.0

ECE=2.46

Hist. Bin. - CIFAR-100
ResNet-110 (SD)

Outputs

Gap

0.0 0.2 0.4 0.6 0.8 1.0

ECE=4.16

Iso. Reg. - CIFAR-100
ResNet-110 (SD)

Outputs

Gap

Confidence

Figure 4. Reliability diagrams for CIFAR-100 before (far left) and after calibration (middle left, middle right, far right).

ically with the number of classes. Any calibration model

with tens of thousands (or more) parameters will overfit to

a small validation set, even when applying regularization.

Binning methods improve calibration on most datasets, but

do not outperform temperature scaling. Additionally, bin-

ning methods tend to change class predictions which hurts

accuracy (see Section S3). Histogram binning, the simplest

binning method, typically outperforms isotonic regression

and BBQ, despite the fact that both methods are strictly

more general. This further supports our finding that cali-

bration is best corrected by simple models.

Reliability diagrams. Figure 4 contains reliability dia-

grams for 110-layer ResNets on CIFAR-100 before and af-

ter calibration. From the far left diagram, we see that the

uncalibrated ResNet tends to be overconfident in its pre-

dictions. We then can observe the effects of temperature

scaling (middle left), histogram binning (middle right), and

isotonic regression (far right) on calibration. All three dis-

played methods produce much better confidence estimates.

Of the three methods, temperature scaling most closely re-

covers the desired diagonal function. Each of the bins are

well calibrated, which is remarkable given that all the prob-

abilities were modified by only a single parameter. We in-

clude reliability diagrams for other datasets in Section S4.

Computation time. All methods scale linearly with the

number of validation set samples. Temperature scaling

is by far the fastest method, as it amounts to a one-

dimensional convex optimization problem. Using a conju-

gate gradient solver, the optimal temperature can be found

in 10 iterations, or a fraction of a second on most modern

hardware. In fact, even a naive line-search for the optimal

temperature is faster than any of the other methods. The

computational complexity of vector and matrix scaling are

linear and quadratic respectively in the number of classes,

reflecting the number of parameters in each method. For

CIFAR-100 (K = 100), finding a near-optimal vector scal-

ing solution with conjugate gradient descent requires at

least 2 orders of magnitude more time. Histogram binning

and isotonic regression take an order of magnitude longer

than temperature scaling, and BBQ takes roughly 3 orders

of magnitude more time.

Ease of implementation. BBQ is arguably the most dif-

ficult to implement, as it requires implementing a model

averaging scheme. While all other methods are relatively

easy to implement, temperature scaling may arguably be

the most straightforward to incorporate into a neural net-

work pipeline. In Torch7 (Collobert et al., 2011), for ex-

ample, we implement temperature scaling by inserting a

nn.MulConstant between the logits and the softmax,

whose parameter is 1/T . We set T =1 during training, and

subsequently find its optimal value on the validation set.

6. Conclusion

Modern neural networks exhibit a strange phenomenon:

probabilistic error and miscalibration worsen even as clas-

sification error is reduced. We have demonstrated that

recent advances in neural network architecture and train-

ing – model capacity, normalization, and regularization

– have strong effects on network calibration. It remains

future work to understand why these trends affect cali-

bration while improving accuracy. Nevertheless, simple

techniques can effectively remedy the miscalibration phe-

nomenon in neural networks. Temperature scaling is the

simplest, fastest, and most straightforward of the methods,

and surprisingly is often the most effective.

Acknowledgments

The authors are supported in part by the III-1618134, III-

1526012, and IIS-1149882 grants from the National Sci-

ence Foundation, as well as the Bill and Melinda Gates

Foundation and the Office of Naval Research.

References

Bengio, Yoshua, Goodfellow, Ian J, and Courville, Aaron.

Deep learning. Nature, 521:436–444, 2015.

Bojarski, Mariusz, Del Testa, Davide, Dworakowski,

Daniel, Firner, Bernhard, Flepp, Beat, Goyal, Prasoon,

Jackel, Lawrence D, Monfort, Mathew, Muller, Urs,

Zhang, Jiakai, et al. End to end learning for self-driving

cars. arXiv preprint arXiv:1604.07316, 2016.

Caruana, Rich, Lou, Yin, Gehrke, Johannes, Koch, Paul,

Sturm, Marc, and Elhadad, Noemie. Intelligible models

for healthcare: Predicting pneumonia risk and hospital

30-day readmission. In KDD, 2015.

Collobert, Ronan, Kavukcuoglu, Koray, and Farabet,

Clément. Torch7: A matlab-like environment for ma-

chine learning. In BigLearn Workshop, NIPS, 2011.

Cosmides, Leda and Tooby, John. Are humans good intu-

itive statisticians after all? rethinking some conclusions

from the literature on judgment under uncertainty. cog-

nition, 58(1):1–73, 1996.

DeGroot, Morris H and Fienberg, Stephen E. The compar-

ison and evaluation of forecasters. The statistician, pp.

12–22, 1983.

Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai,

and Fei-Fei, Li. Imagenet: A large-scale hierarchical

image database. In CVPR, pp. 248–255, 2009.

Denker, John S and Lecun, Yann. Transforming neural-net

output levels to probability distributions. In NIPS, pp.

853–859, 1990.

Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert.

The elements of statistical learning, volume 1. Springer

series in statistics Springer, Berlin, 2001.

Gal, Yarin and Ghahramani, Zoubin. Dropout as a bayesian

approximation: Representing model uncertainty in deep

learning. In ICML, 2016.

Girshick, Ross. Fast r-cnn. In ICCV, pp. 1440–1448, 2015.

Hannun, Awni, Case, Carl, Casper, Jared, Catanzaro,

Bryan, Diamos, Greg, Elsen, Erich, Prenger, Ryan,

Satheesh, Sanjeev, Sengupta, Shubho, Coates, Adam,

et al. Deep speech: Scaling up end-to-end speech recog-

nition. arXiv preprint arXiv:1412.5567, 2014.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,

Jian. Deep residual learning for image recognition. In

CVPR, pp. 770–778, 2016.

Hendrycks, Dan and Gimpel, Kevin. A baseline for de-

tecting misclassified and out-of-distribution examples in

neural networks. In ICLR, 2017.

Hinton, Geoffrey, Vinyals, Oriol, and Dean, Jeff. Distilling

the knowledge in a neural network. 2015.

Huang, Gao, Sun, Yu, Liu, Zhuang, Sedra, Daniel, and

Weinberger, Kilian. Deep networks with stochastic

depth. In ECCV, 2016.

Huang, Gao, Liu, Zhuang, Weinberger, Kilian Q, and

van der Maaten, Laurens. Densely connected convolu-

tional networks. In CVPR, 2017.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:

Accelerating deep network training by reducing internal

covariate shift. 2015.

Iyyer, Mohit, Manjunatha, Varun, Boyd-Graber, Jordan,

and Daumé III, Hal. Deep unordered composition rivals

syntactic methods for text classification. In ACL, 2015.

Jaynes, Edwin T. Information theory and statistical me-

chanics. Physical review, 106(4):620, 1957.

Jiang, Xiaoqian, Osl, Melanie, Kim, Jihoon, and Ohno-

Machado, Lucila. Calibrating predictive model estimates

to support personalized medicine. Journal of the Amer-

ican Medical Informatics Association, 19(2):263–274,

2012.

Kendall, Alex and Cipolla, Roberto. Modelling uncertainty

in deep learning for camera relocalization. 2016.

Kendall, Alex and Gal, Yarin. What uncertainties do we

need in bayesian deep learning for computer vision?

arXiv preprint arXiv:1703.04977, 2017.

Krause, Jonathan, Stark, Michael, Deng, Jia, and Fei-Fei,

Li. 3d object representations for fine-grained catego-

rization. In IEEE Workshop on 3D Representation and

Recognition (3dRR), Sydney, Australia, 2013.

Krizhevsky, Alex and Hinton, Geoffrey. Learning multiple

layers of features from tiny images, 2009.

Kuleshov, Volodymyr and Ermon, Stefano. Reliable con-

fidence estimation via online learning. arXiv preprint

arXiv:1607.03594, 2016.

Kuleshov, Volodymyr and Liang, Percy. Calibrated struc-

tured prediction. In NIPS, pp. 3474–3482, 2015.

Lakshminarayanan, Balaji, Pritzel, Alexander, and Blun-

dell, Charles. Simple and scalable predictive uncer-

tainty estimation using deep ensembles. arXiv preprint

arXiv:1612.01474, 2016.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner,

Patrick. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

Supplementary Materials: On Calibration of Modern Neural Networks

MacKay, David JC. A practical bayesian framework for

backpropagation networks. Neural computation, 4(3):

448–472, 1992.

Naeini, Mahdi Pakdaman, Cooper, Gregory F, and

Hauskrecht, Milos. Obtaining well calibrated probabili-

ties using bayesian binning. In AAAI, pp. 2901, 2015.

Netzer, Yuval, Wang, Tao, Coates, Adam, Bissacco,

Alessandro, Wu, Bo, and Ng, Andrew Y. Reading dig-

its in natural images with unsupervised feature learning.

In Deep Learning and Unsupervised Feature Learning

Workshop, NIPS, 2011.

Niculescu-Mizil, Alexandru and Caruana, Rich. Predicting

good probabilities with supervised learning. In ICML,

pp. 625–632, 2005.

Pereyra, Gabriel, Tucker, George, Chorowski, Jan, Kaiser,

Łukasz, and Hinton, Geoffrey. Regularizing neural

networks by penalizing confident output distributions.

arXiv preprint arXiv:1701.06548, 2017.

Platt, John et al. Probabilistic outputs for support vec-

tor machines and comparisons to regularized likelihood

methods. Advances in large margin classifiers, 10(3):

61–74, 1999.

Simonyan, Karen and Zisserman, Andrew. Very deep con-

volutional networks for large-scale image recognition. In

ICLR, 2015.

Socher, Richard, Perelygin, Alex, Wu, Jean, Chuang, Ja-

son, Manning, Christopher D., Ng, Andrew, and Potts,

Christopher. Recursive deep models for semantic com-

positionality over a sentiment treebank. In EMNLP, pp.

1631–1642, 2013.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,

Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: A

simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15:1929–1958,

2014.

Srivastava, Rupesh Kumar, Greff, Klaus, and Schmid-

huber, Jürgen. Highway networks. arXiv preprint

arXiv:1505.00387, 2015.

Tai, Kai Sheng, Socher, Richard, and Manning, Christo-

pher D. Improved semantic representations from tree-

structured long short-term memory networks. 2015.

Vapnik, Vladimir N. Statistical Learning Theory. Wiley-

Interscience, 1998.

Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F.,

Belongie, S., and Perona, P. Caltech-UCSD Birds 200.

Technical Report CNS-TR-2010-001, California Insti-

tute of Technology, 2010.

Xiong, Wayne, Droppo, Jasha, Huang, Xuedong, Seide,

Frank, Seltzer, Mike, Stolcke, Andreas, Yu, Dong,

and Zweig, Geoffrey. Achieving human parity in

conversational speech recognition. arXiv preprint

arXiv:1610.05256, 2016.

Zadrozny, Bianca and Elkan, Charles. Obtaining cal-

ibrated probability estimates from decision trees and

naive bayesian classifiers. In ICML, pp. 609–616, 2001.

Zadrozny, Bianca and Elkan, Charles. Transforming classi-

fier scores into accurate multiclass probability estimates.

In KDD, pp. 694–699, 2002.

Zagoruyko, Sergey and Komodakis, Nikos. Wide residual

networks. In BMVC, 2016.

Zhang, Chiyuan, Bengio, Samy, Hardt, Moritz, Recht, Ben-

jamin, and Vinyals, Oriol. Understanding deep learning

requires rethinking generalization. In ICLR, 2017.

