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Chapter I

Int roduc t ion

Formula manipulation is the process of carrying out

operations and transformations on mathematical expressions or

formulae. An expression is a string of symbols such as

2 e3+2
(i) x +e .x+l.

(This is not actually a string but a two-dimensional figure.

We shall not make a distinction between strings and figures

except when necessary, and hence we will use such figures to

represent strings.) With each expression is associated a

function in a natural way, Thus by expression we mean such a

string of symbols and by function, the natural function asso-

ciated with such an expression.

_S!mpl ification

In formula manipulation process expressions with unnec-

essarily complicated structures are invariably generated.

For example, most differentiation algorithms, when applied

to the expression (i), will produce an expression similar to

3 3
" 1 3 e

(2) 2 * x + (O. e + O) . (e + 2) * x + (ee + 2)* 1 + O

instead of the functionally equivalent and structurally simpler

expre s sion

3
e +2

(3) 2 * x + e .
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Such behavior seems to be characteristic of most formula mani-

pulation algorithms. The process of reducing expressions like

(2) to a simpler equivalent form like (3) is called simplifi-

cation. Simplification is also taken to embrace other kinds

of transformations such as finding common denominators for

rational expressions, factoring, lexicographical ordering of

subexpressions appearing in sums and products, etc.

The importance of keeping expressions in simplified form

is threefold. First of all, simplified expressions require

less memory space. For example, expression (2) typically

requires about thirty storage cells whereas (3) only takes

nine. Secondly, the processing of simplified formulae is

faster and simpler. The processing is simpler in the sense

that simplified formulae usually possess nice features which

allow for cleaner and more precise algorithm design. Thirdly,

functionally equivalent expressions are easier to identify

when they are in simplified form. Indeed, simplification is

of such a nature that almost no formula manipulation program

can do without simplification capabilities.

Given the central role of simplification, it is hardly

. surprising to find that many algorithms for performing simpli-

fication have been reported in the literature. See Sammet,s

bibliography ([19] and [20])for an extension listing of these. The

usual form of attack of these algorithms has been to take a

set of simplifying transformations that apply in obvious local

cases and to try to weld these _nto a stable and coherent
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global schema for simplifying a class of expressions. The

need for simplification and the kind of simplification trans-

forms needed seem obvious in simple cases. However, as the

expressions and algorithms increase in complexity the answers

are no longer so obvious.

. Fenichel [8] and Tobey, Bobrow, and Zilles [21] discuss

the problems of the simplification algorithms in some detail.

The main conclusion to be drawn from their discussion is that

simplification only has meaning in a local context. For

instance Fenichel points out that

2
csc (x) - cot(x) csc(x)

is easier to integrate than its structurally simpler equi-

valent

1

l+cos(x) "

Thus in the context of integration the former expression is

the simpler whereas in other cases the latter is more appro-

priate.

Recently, Richardson ([16] and [17])provided some theoretical

. evidence of simplification problems when he proved that for

sufficiently rich classes of expressions it is impossible to

always detezmine when expressions are identically zero. Hence

such simplification transforms as

x+O_x
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cannot always be applied since the O cannot always be identi-

fied.

Motivation and overview

The motivation for this work comes from these two sources.

First of all we wanted to study the problems of simplification.

m

But in order to guide our work on simplification it seemed

desirable to study further the unsolvability angle. Thus in

Chapter II we study Richardson,s theorem and proof in detail.

From Richardson,s proof and from studies on the unsolvability

of Hilbert's tenth problem, we draw some conclusions about

sharpenings of Richardson,s theorem.

With the limitations of these negative results in mind,

we study in Chapter III the structure of some classes of

expressions and prove the existence of canonical forms fox:

these classes. The concepts of canonical and normal forms

as developed in Chapter III preserve most of the important:

concepts of simplification. On the other hand, these concepts

are global concepts that can be formalized and hence are

. appropriate for a careful study whereas the concept of simpli-

fication lacks these properties.

Then in Chapter IV, we discuss the implementation of

the algorithms developed in Chapter III. The algorithms are

implemented using Formula Algol ([iO], [14], and [15]) . The

Formula Algol programs are included as appendix II with some

output from actual runs.
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Literature review

Other than the simplification algorithms mentioned pre-

viously, there is only a small literature that has any relevance

to this study. First are the papers on simplification programs.

Our approach is quite different from the approach of the these

, papers. Their approach is completely programmatic. Our

primary aim is to study the structure of the classes of expres-

sions in a formal way and only secondly to produce programs.

Otherwise there are two papers that have a particular

relevance here. The first is the work of Richardson. The

other is by W. S. Brown [3] and is very similar to some of our

work in Chapter III. Both of these papers will be discussed

later.

Then there are two other papers that should be mentioned

here. P. J. Brown [ 2 ] has written an interesting paper in

which he studies the existence of canonical forms in a more

general setting than we have. Given a syntax for a set of

expressions (or language) and a set of equivalence preserving

transformations on the language, he investigates the properties

that the set of transformations must have in order that unique

- canonical forms exist. The main purpose of the canonical form

is to prove equivalence between expressions.

Since a number of unsolvable equivalence problems such

as the word problems for semi-groups and groups, and the

equivalence problem for mathematical expressions can be phrased
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as particular examples of the general kinds of calculi with

which Brown works, one suspects that his methods cannot be

too powerful. Even when his results are applicable, their

application requires considerable ingenuity as he points out.

" As an appl_cation of his results he outlines a proof procedure

. for elementary trigonometric identities.

A paper by G. Rousseau [18] attacks some similar problems

in a somewhat different realm. He proves the existence of an

effective procedure for deciding whether or not functions con-

tained in a subclass of the primitive recursive functions are

identically zero. (This problem is recursively undecidable

for the'class of all primitive recursive functions.) Speci-

fically let £ be the set of functions obtainable from the

initial functions Z (zero function) , S (successor function) ,

x + y, x • y, xy, max(xjy), min(x,y), c z x, x - c(c = 1,2,...)

and the projection functions un(xl'''"xn)l ' i = l,...,n_

n = 1,2,... by substitution and the formation of bounded

sums and products. There exists an effective procedure for

deciding whether or not a given element of _ is identically

zero. This result does not seem relevant to our work since

- _ does not contain the kinds of expressions with which for-

mula manipulation is concerned.

Notation

Theorems and lemmas are numbered by chapter. Capital

script letters are used to denote classes of expressions,

capital printed letters to denote expressions within a class,
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small letters from the end of the alphabet are used as variables

in expressions. The well-formed expressions of a particular

class are indicated by Backus-Naur Form [i ] grammars. F is

the field of rational numbers, _ the field of complex numbers.

" _'s are used to represent extension fields of F. J denotes

. the ring of integers.
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Chapter II

Limitations on the Existence of Canonical Forms

by Undecidability Results

In this chapter we study the negative side of the problem

in order tO obtain some guidance in the search for classes of

expressions that possess canonical forms. First we give some

definitions.

To be given a class of expressions _ means to be given

rules, such as a Backus-Naur Form (BNF) grammar, for deter-

mining the well-formed expressions in the class. The expressions

must be formed from a finite set of atomic symbols, a subset

of which must be designated as variables. Any member of

not containing a variable is called an £-constant or constant

_-expression. The constants will usually form some well-

known structure such as the ring of integers or field of

rationals. Expressions are interpreted as functions over the

domain _ of constants.

If E 1 and E 2 are members of an expression class _,

E 1 is said to be identical to E 2 if E 1 and E 2 are the

same string of atomic symbols. This relation is denoted by

E 1 = E 2. E 1 and E 2 are said to be functionally equivalent ,

or simply equivalent, if for all assignments of values in

to their variables for which they are defined, they are equal.

This realtion is denoted by E 1 = E 2. Of course E 1 = E 2

implies E 1 - E 2.
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Examples: Let J be the ring of integers and F the

field of rationals. Let E 1 = x + 3 and E 2 = (x - x + l)*(x + 3).

Then E 1 = E 2 over both J and F but E 1 _ E 2. Similarly

if E l = sin(x * _) and E 2 = O then E 1 - E 2 over J,

E 1 _ E 2 over 1_ and E 1 _ E 2.

Richardson' s Theorem

Let _ consist of the class of expressions generated by

(i) the rational numbers and the real numbers _ and log 2,

(ii) the variable x,

(iii) the operations of addition, multiplication, and

composition,

(iv) the sin, exp, and absolute value function.

(In the text we use informal definitions such as the above

for expression classes. BNF definitions for most classes can

be found in Appendix I.)

Theorem i: If E is an expression in _ the pzedicate

'E = O'

is recursively undecidable. This decision problem will be

referred to as Richardson's decision problem.

In order to derive some further results that follow

from the proof of this theorem, the proof is included here.

For the proof, a variation of the class _ is needed. Let

_I be the class of expressions generated by
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(i) the rational numbers and the real numbers _ and

log 2,

(ii) the variables x l,x2,...,xn,

(iii) the operations of addition, multiplication and com-

position,

(iv) the sin and exp functions.

R1 differs from _ in that is contains an arbitrary number

of variables and does not contain the absolute value function.

We shall show that for G(x I) in R1 (G(x) is a member of

since it is an expression of only one variable) that the

predicate 'there exist a real number a such that G(a) < O'

is recursively undeciable. This predicate will be referred to

as the decision problem for _i" Now suppose Richardson' s

decision problem is decidable and G(Xl) in _i" Consider

F(x) = IG(x) I - G(x) . F(x) is in R and F(x) / O if and

only if there exists a constant b in _ such that G(b) < O.

But as we shall show we cannot decide if a real b exists

such that G(b) < O. But since the constants of _ (and _i )

are dense in the reals and all expressions are continuous

functions, there exist a real b if and only if there exist

a b in _ such that G(b) < O. Thus if we can decide if

F(x) -O, then we can decide if there exist such a real b,

i.e., solve the decision problem for _i" Except for the

proof of the undecidability of the decision problem for _%1'

the proof is complete.
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The proof of the undecidability of the decision problem

for R1 will be presented as a series of lemmas. The starting

point is a result from a paper by Davis, Putnam, and Robinson

[7].

Theorem 2: There exists a set of polynomials with integer

coefficients

= [Pi(Yl,Y2,...,yn,Zl,Z2,...,Zn),i = 1,2,...]

such that the predicate

'there exist integers al,a2,...,a such thatn

a I a a

Pi(al,a2,...,a ,2 2 2 nn , ,...,2 ) = O'

is recursively undecidable.

Now consider

Lemma I: For every F(x l,...,xn) in R1 there exists a

G(x l,x2,...,xn) in R1 such that

_i) G(x l,x2,...,xn) > 1 for all x l,x2,...,x n.

(ii) G(Xl,X2,...,Xn) > F(x I + _Xl,X 2 + ^x2,...,Xn + Z%Xn)

for all x. and for l_xil < i, i = 1,2,...,n

G is called a dominatinq function for F.

Proof: The proof is by induction on the number of operators

and primitive functions making up F.

If F = c, a constant, choose G = Icl + 2.
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2 i = 1,2,...,n.

If F = x i, choose G = x i + 2,

and G dominate F 1 and F 2

If F = F 1 + F 2 and G 1 2

respectively choose G = G 1 + G 2"

If F = F 1 _ F 2, choose G = G 1 _ G 2"

If F = exp(F l) , choose G = exp(Gl) •

- If F = sin(F I) , choose G = 2.

In all cases G dominates F.

Q.E.D.

Using theorem 2 and lemma 1 we prove

Lemma 2: For each Pi(Yl 'y2'''''yn'zl'z2'''" 'zn) in _ there

exists Fi(Xl,X2 ,...,xn) in _l such that

a a such that

(i) there exist integers a l, 2''''' na

al 2a2 if and only if, ,...,2 n) =O

Pi(al 'a2' " ""'an'2

(ii) there exist real numbers bl,b2,''''bn such that

Fi(bl'b2 ,...,bn ) = -i if and on'ly if

(iii) there exist real numbers bl,b2,...,bn such that

Fi(bl'b2 ' . ..,bn) < O.

Pr__oof: observe that

Xl x2 2Xn) is in _i for each

p2 2 ,2 , ••.,

Dxj i(Xl,X2,''''Xn ' 2 ,Xn) is the partial deri-

j = 1,2,...,n, where DxjPj(Xl,X 2,''"

•. -_X n)

vative of p2 with respect to xj. Let Kj(Xl,X 2,i

p2 Define F i by

be the dominating function for Dxj i"
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n

Fi(Xl,X2,...,x n) = (n + 1) 2[ _ (sin27rx) _ K2(Xl,X2,...,x ) +
j-i j j n

2 (x . .. x I 2x2 x
+ Pi l'X2 ' ,Xn,2 , ,...,2 n)] - i.

Obviously (i) implies (ii) implies (iii) . It is only nec-

essary to show that (iii) implies (i) . Choose a. to be
1

1

the smallest integer such that lai -bil < _. We shall show

2 (a a 2 an nthat Pi i' ''''' ) < 1 which implies that Pi(al,a2,...,a ) = O

since Pi maps integers into integers. From Fi(bl,b2,...,b n) < O

we have

n

sin_Trb 2b i 2h 2 b n)
( ) w K2(bl b ,bn) + p2(bl,b 2 b , , ,...,2

j-i J 3 ' 2'''" l ''''' n

1
<

2 "
(n+l)

Hence Isin vbjl • Kj (bl,b2, ....,bn) < 1 < l_!-
(n+l) 2 n+l 'j = 1,2,...,n,

bl 2b2 bn) 1
and p2 (bl,b2 ' . bn,2 . <1 .., , ,.. ,2 By the n-

(n+l) 2 "

dimensional mean value theorem

a a 2 a 2
p2(alJa2 '''''a ,2 1 2 2 n (bl, b ,bn)n ' ''''' ) --<Pl 2''''

n

Ib - ajl _ Dx p2(c c 2 c n)
j=l J j 1 l' '''''

where cj is between aj and bj. From the definition of Kj
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a I a 2 a 2
2(el,a2 2 a 2 n (b b 2 ,b n) +Pi ' "" "'an' ' ' "" "' ) < Pl i' ' "" "

n

= _ Ib -a I _ K (bl,b ,b n)
j=l J J j 2' ....

The proof will be finished if we show that

a I a an)
Ibj - ajl _< Isin _bjl for then p21(al,a2,...,a n,2 ,2 2,...,2

will be less than a sum of n + 1 terms each of which is less

1
than

n+l "

We may assume without loss of generality that bj is

in [O,2 ] . Then aj = O. On [0,2 ], f(x) = sin vx - x has

a non-positive second derivative and hence is concave. Thus

it takes its minimum at one of the end points. But f(0) = 0

and f (i) =
!
2"

Q.E .D.

Corollary: For F in R' the predicate 'there exist real

numbers bl'b2 '''''bn such that F(bl,b2,...,b n) < O' is

recursively undecidable.

The next lemma will enable us to obtain the above corollary

for expressions with only one variable. Note that we have not

yet composed the primitive functions of _i"

3
Lemma 3: Let h(x) = x sin x and g(x) = x sin x . Then for

any real numbers al,a2,...,a n and any 0 < 6 < 1 there
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_xist b > 0 such that

lh (b) - a I I < e

lh(g(b)) - a21 < e

Jh(g(...g(b) ...)) - anl < 6.

Proof: The proof is by induction on n. Richardson first

shows that for any two real numbers aI and a 2 there

exists b > 0 such that lh(b) - XlJ < 6 and g(b) = x 2.

Let c = la II + la2 I + 2___6+ 6 + i. Pick b 2 in (c,c + 27)

such that h(b2) = a I. Now pick b I so that

(i) (b 2 -bl)(b 2 + i) < 6 and

3 3> 2v
(2) b 2 - b I .

This will be possible if

6

< _b 3 - 2_2
(3) b 2 - b2+l

(3) can be proved by using the fact that if f(x) is a monic

o polynomial and a > h + i, where h is £he absolute value

of the negative coefficient of largest absolute value, then

f(a) > O. Applying this fact to the following polynomial

in b 2 we obtain

4 2_ 3 2v_ 2 2v_ 2 2v

b 2 + (2 -_)b 2 + (l - 6 - e 'b 2 - (6 +--6 "b2 + 6 _ m_ > O.

This implies
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3 . Thus3b • 6(b 2 + i) 2 _ 3b 2 . 62(b2 + i) + E > 2_(b 2 + i) 3

3 _ 3b2( ¢ _ (b_+i) < b2b2 2+i ) + 3b 2(b_+1) 2 3 3 _ 2_

for whence (3) follows• (2) implies that there exists b in

(b l,bE) such that g(b) = a 2. Now

lh(b) _ h(b2) I < Ib2 sin b 2 - b 2 sin b I + Ib2 sin b - b sin b I

< b21sin b 2 - sin b I + b 2 - b

< b2(b2- b) + b2 - b

< e by (i).

Hence b has the desized properties and the lemma is true

for n = I. Now suppose that it is true for n = k. Then

there exists b' such that

lh(b,) - a21 < e

lh(g(b,)) - a31 < e

lhCgC...CgCb,))...)) - ak+ll < 6.

By the preceding analysis there exists b > O such that

lh(b) - a lj < e and g(b) = b, .

Q.E .D.

Corollary: For G(x I) in _i the predicate ,there exist

a real number a such that G(a) < O' is recursively unde-

cidable. (Note that G(x) is in _.)
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Proof: Consider Gi(x I) = Fi(h(x I) ,h(g(xl)),...,h(g(...(g(xl))...)) ) .

If there exists an a such that G(a) < O then there exist

bl,b2,...,b n such that F i(bl,b2,...,b n) < O. Conversely if

there exist bl,b2,...,b n such that F(bl,b2,...,bn) < 0.

then by lemma 2 there exist bl,b2,...,b such thatn

F(bl,b2,...,b n) = -i. From the continuity of G(x I) and

lemma 3 it follows that there exists an a such that G(a) < O.

Q.E .D.

This corollary gives the undecidability of the decision

problem for _i and hence completes the proof of theorem i.

As a result of theorem I, any class of expressions

•

contalnlng R will not possess a canonical form.

Implications of the undecidability of Hilbert,s tenth problem

Now we show that if Hilbert's tenth problem is undecidable

then Richardson,s result holds for a proper subset of R.

Hilbert,s tenth problem refers to one of the problems that

David Hilbert [9] listed in a famous presentation in 1900. The

problem is the one of deciding if an arbitrary polynomial

(arbitrary with respect to degree an0 number of variables)

with integral coefficients has integral roots. The problem

is still unresolved but the evidence to date suggests that

the problem is recursively undecidable. For this evidence

see [ 4 ], [ 5 ], [ 6 ], and [ 7 ] .

Let _2 be the class of expressions generated by
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(i) the rational numbers and the real numbe_ V,

(ii) the variable x,

(iii) the operations of addition, multiplication and com-

position,

(iv) the sin and absolute value functions.

Note that R2 is a proper subclass of R since it does

not contain log 2 and the exp function.

Theorem 3: If Hilbert,s tenth problem is recursively unde-

cidable then for E (x) in R 2 the predicate

'E(x) = O,

is recursively undecidable.

The proof is almost identical to the proof of theorem I.

Corresponding to the Davis, Putnam, Robinson theorem is the

unsolvability of Hilbert, s tenth problem. Thus we have by

assumption that if P (Xl,X2, . ..,x n) is a polynomial with

integral coefficients the predicate 'there exist integers

al,a2,...,a n such that P(al,a2,...,a ) = O' is recursivelyn

undecidable. Then we have

Lemma 2, : For each polynomial P(x l,x 2,...,x n) with integral

coefficients there exists F(x l,x2,...,xn) in R3 (where R3

is to R2 as R1 is to R) such that

(i) there exist integers al,a2,...,a such thatn
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P(al,a2,...,a n ) = 0 if and only if

(ii) there exist real numbers bl,b2,...,b n such that

F(b l,b2,...,bn) = -i if and only if

(iii) there exist real numbers bl,b2,...,b n such that

(b I b 2 ) <O.F , , .. .,b n

The proof is exactly like the proof of lemma 2 except that

n

F(Xl,X2,...,x n) = (n + 1) 2[ _ (sin2vxj) _ K 2
j=l J (xl'x2' "" "'xn) +

+ p2(x l,x2,...,xn)] - i

and hence does not involve the constant log 2 and the exp

function as does the F of lemma 2. The remainder of the

proof of theorem 3 is exactly like the proof of theorem i.

Now consider the class of expressions R4 generated by

(i) the rationals and _,

(ii) the variables x IJx2,...,xn,

(iii) the operations of addition, multiplication and restricted

_ composition,

(iv) the functions sin and absolute value.

By restricted composition we mean that the primitive functions

may not be rested. See appendix I for the BNF definition of

R4" Then we have

Theorem 4: If Hilbert,s tenth problem is recursively undecid-

able, then for E(Xl,X2,...,x n) in _4 the predicate ,E_l,X_..._- O'
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is recursively undecidable.

Proof: Note that F(Xl,X2,...,Xn) in lemma 2' is a member

of R4 and hence lemma 2' holds for F in R4" Thus for

F(Xl,X2,...,Xn) in R4 we cannot decide if there exist real

numbers bl,b2,...,b such that F(bl,b2,...,b ) < O Thusn n "

consider E(XlJX 2,''-,x n) = IF(Xl,X 2,...Jx n) I - F(Xl,X 2,-..,x n)

which is a member of _4" E(Xl,X2_...,x n) _ O if and only

if there exist real bl_b2,...jb such that F(Xl_X2,...,x ) < On n "

Q.E.D.

This ends our discussion of undecidability results. These

results will be used as a guide in the next chapter.
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Chapter III

Canonical and Normal Forms

In this chapter more precise definitions of normal and

canonical forms are given. Canonical forms are shown to

exist for classes of exponential expressions that include

most of R3 and _4" The existence of canonical forms

implies, among other things, that functional equivalence is

decidable. These results are then compared with some similar

work of W. S. Brown and Richardson. Then we turn our atten-

tion to the radical expressions, i.e., rational roots of

polynomials, and discuss the representation problem for these

expressions. Some problems of algorithmic efficiency are

also considered. The chapter concludes with a section that

relates the work on exponential and radical expressions.

A form is a generalized expression. For example

n where the r's are rational
r I _ x , .r° + _ x +...+ rn l

numbers, is a generalized polynomial expression, i.e., a

polynomial form. A particular expression E is said to be in

the form F or an instance of F if E matches F.

2

This relation is denoted by E == F. Thus x and 1 + 3 w x

match the above polynomial form but (2 + 5 _ x) _ (x 2 + x 3)

does not. An f-normal form for a class of expressions

is a mapping f from g into g that satisfies for all

E in g the following two p;oper£ies:
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(i) f (E) - E

and

(ii) there exists a form F such that f(E) == F.

An f-canon'ical form is an f-normal form with the addi-

tional uniqueness property that for all EI,E 2 in 8 such

that E 1 = E2, f(E I) = f(E2). If the particular f is clear

from context or if we are speaking of an arbitrary f we

shall frequently drop the prefix and simply use canonical

(normal) form. If E is an expression such that f(E) = E

then E is said to be in (f-) canonical (normal) form. A

class of expressions is called a canonical (normal) class

or is said to possess a canonical (normal) form if there

exists a canonical form for it. Further we adopt, without loss

of generality, the convention that for all canonical forms

f, if E = O then f(E) = O.

Frequently it is necessary to know that a total ordering

can be imposed on a class of expressions. Usually this can

be done in several different ways, but note that it can always

be done by a lexicographical ordering scheme. In fact a

well-ordering may be imposed on a class in this manner.

One further preliminary matter--a canonical (normal)

form is not necessarily a computable function. For our

purposes we need computable canonical (normal) forms. Rigorous

proofs of the computability of the canonical (normal) forms
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will not be presented, but algorithms will be described for

computing the canonical (normal) forms. Further Formula

Algol programs that carry out these tasks are given in the

appendices.

Examples

Let _ be the c_ss of polynomials generated by

(i) the rationals, the real number 7r, and the complex

number i,

(ii) the variables Xl,X2,...,x n,

(iii) the operations of addition, substraction and multi-

plication.

A rational number is in canonical form if it is an integer

or if it is in the form p/q when p and q are integers,

q > i, and qcd(p,q) = i. A polynomial constant is in

canonical form if it is an instance of the form

k

Co + Cl _ _ +...+ Ck _ _ '

where the c i are instances of rI + i _ r 2, r I and r 2

being non-zero canonical rationals. A polynomial is in

canonical form if it is an instance of the form

k

I) + Pl(x1'''"x i) x +...+ 1) xF = Po(Xl,...,Xn_ n- n - n

where the Pi (Xl' "" "'Xn-l) are non-zero canonical polynomials

containing at most the variables x l,x 2, ...,Xn_ I.
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It is well-known that there exists a function f mapping

into @ such that f(P) == F for all P in _ and

furthermore that f satisfies the uniqueness condition.

There are other canonical forms for the class of polynomials_

for example, the function that maps each polynomial into

factored form.

Sufficient conditions for the existence of a canonical form

Given a class £, closed under multiplication, a sub-

class £2 is linearly independent over a subclass £i if

• £i' £2 A 1 X 1 _ Xn- 0for A l in X i in , i = 1,2,...,n, _ +...+A n

= - 0 The following theorem
implies that A 1 =- A 2 =...- An

establishes sufficient conditions for a class of expressions

to have a canonical form.

Theorem I: Let £ be a class of expressions closed under

multiplication. Suppose £I and £2 are subclasses of £

with the following two properties:

(i) £i and £2 possess canonical forms fl and f2

respectively.

(ii) All canonical members of £2 are linearly inde-

pendent over _i"

Let £2: £i denote the set of all expressions A 1 _ X 1 +

A 2 _ X 2 +...+ A _ Xn, n = 1,2,..., wheren
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(i) Ai,X i are in fl-and f2-canonical form respectively.

(ii) A i / O for all i = 1,2,...,n.

< X. if i < j where < is any total ordering
(iii) X i 3

on g2"

If f is a mapping from g into g2: gl U [0} such that

f(E) m E, then f is canonical.

1 2 1 2

Proof: The form for f is obviously F1 _ F 1 + F 2 w F 2 +...

+ F 1 w F 2 where F 1 and F 2
n n are the forms for fl and

f2 respectively. To finish the proof it is Only necessary

to show that E 1 = E 2 implies that f(E I) = f(E2) . Suppose

f(E 1) = A 1 _ X 1 + A 2 _ X 2 +...+ A _ X and f(E ) =n n 2

B1 _ Y1 + B2 _ Y2 +'''+ Bm _ Ym" Let [Zl,Z2,...,_} be

the distinct members of 82 occurring among the X i and

's are in ascending order
Yi" Also assume that the Z i

Then

f(E I) - f(E 2) = C 1 _ Z1 + C 2 _ Z 2 +...+ Ck _ _ _ 0

P

(i) A i - Bj for some i and j if Zl

appears in both f (El) and f (E2) .

where C_ = , (ii) A i if Z6 appears in f (El) but not

in f(E2) .

(iii) -B . otherwise.
3
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f(E1) - f(E 2) -= O if and only if Cl = O, 6 = 1,2,...,k.

Thus C6 / A. and C6 / -B. since A. _ O f B.. Hencel 3 i 3

C 6 = A i - B 3. -= O which implies that Ai = B.3 Since A.I

• • ---" Z •

and B3 are in canonical form. Thus n = m = k_ X i = Y1 1

and AI' = _i' i = 1,2,...,n. Hence f(El) = f(E 2) and f

is canonical.

Q .E .D.

This theorem is almost self evident. Its main purpose

is to point out the main technique that is used to obtain new

canonical forms, i.e., mapping classes of expressions into

subclasses which are linear manifolds whose coefficient and

basis sets are already known to possess canonical forms.

Now we are ready to find canonical forms for particular

classes of expressions. We start by considering subclasses

of R4 and R2 since our undecidabilility results of the

last chapter imply that canonical forms cannot exist for the

entire classes.

Canonical form for first order exponential expressions

" In this section canonical forms for variations of the

. class _4 are presented. First we need some preliminary

definitions and results. Let C = [ (al,a2,...,a n ) I be a

set of n-tuples. For n = I, C is called a cascade set

if it contains infinitely many points. Now suppose cascade sets

have been defined for n < k and let n = k. Then the set
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C of k-tuples is a cascade set if the set C' =

[ (Xl,X2,...,Xk_l) : there exist xk such that (Xl,X2,...,x k)

in C] is a cascade set and for each point (Xl, ...,Xk_l) in

C' there exist infinitely many xk such that (Xl,...,Xk_l,Xk)

is in C.

Lemma i" Let P(x l,x 2, ...,x n) be a polynomial in n vari-

ables over _ and C = [ (al,a 2, ...,a n) ] be a cascade subset

of _. If P(Xl,X2,...,Xn) = 0 on C then P(Xl,X2,...,Xn)

-=0 on _.

Proof: The proof is by induction on n. For n = i, P(x I)

is a polynomial of one variable which has infinitely many

zeros. Hence it must be the 0 polynomial. Now suppose

the lemma holds for n < k and p(x l,x2,...,x k) is zero on

the cascade set C = [ (al,a2,...,a k) ]. Consider

P(Xl,X2,...,Xk) as a polynomial in the variable Xk, i.e.,

P(Xl'X2'''"Xk)= Po(Xl'''''Xk-l)+ PI(Xl'''''Xk-l) xk +

+ Pj(Xl,...,Xk_l) _ _ Let (al a2,
... . , ..., _]) be an arbit-

o

of C'. P(a?,_ a°o,...,=ak_l,X k) is a polynomial ofrary point

one variable which is zero at infinitely many points and is

o o o

hence identically zero. Thus Po (al' " ""' ak-l) = P1 (al' " ""' ak-l)

o o

= pj (al,...,ak_l) = O. Thus each Pi(Xl'X2'''''Xk-l) '

i = O,l,...,j, is zero on the cascade set C' and hence by

the induction hypothesis is identically zero on f_. Hence

P(Xl,X2,...,x k) is identically zero on f_.

Q .E .D.
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We also need a number theoretic result known as Lindemann' s

theorem (cf. [13], p. 117).

Theorem 2: Suppose al,a2,...,a k are distinct algebraic

a I a 2 ak
o numbers. Then the set [e ,e , . ..,e ] is linearly independent

over the algebraic numbers.

Now consider the class FOE of first-order exponentials

generated by

(i) the rationals and the complex constant i,

(ii) the variables Xl,X2,...,Xn,

(iii) the operations of addition, multiplication, and

restricted composition,

(iv) the exp function.

The class FOE contains as a subclass the class

of n variable polynomials over the field of complex rationals.

These polynomials have a canonical form.

Theorem _3: Let Sl(Xl,X2,...,x n) ,S2(XlJX2,...,x n) ,...,

Sk(Xl,X2,...,x n) be distinct canonical members of _ . Then

the set [exp(Sl) ,exp(S 2) ,...,exp(S k) I is linearly independent

over _ .

Proof: Suppose

E(Xl'X2"''''Xn) = Pl(Xl'X2"''''Xn) _ exp(Sl) +''"

+ Pk(XlJX2,...,Xn) _ exp(S k) = O
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where Pi(Xl,X2,...,Xn) is in _ , i = 1,2,...,k. Suppose

(al,a2,...,a n) is an arbitrary n-tuple of FOE constants.

Then E(a l,a2,...,a n ) - O implies by Lindemann,s theorem

•that either

(i) Pi(al'a2'''''an ) =- O for all i = 1,2,...,k

or

(ii) there exist 1 < i < j < k such that

S i(al,a2,...,a n) = Sj(al,a2,...,an ) "

As an ranges over all the FOE constants either (i) or

(ii) holds for infinitely many values of a . But this holds
n

for arbitrary values of an_l, and hence as an_ 1 ranges

over the FOE constants there exist infinitely many values

of an_ 1 such that for each such value there exist infil,itely

many values of an such that for each such value either (i)

or (ii) holds• Continuing in this fashion we see that there

exist infinitely many values of a I such that for each value

there exist infinitely many values of a 2 such that for each value

there exist infinitely many values of an such that for each value

either (i) or (ii) holds. The set of all such n-tuples is a

cascade set C. (ii) cannot hold on C for if it did then

by lemma 1 S. = S. for all FOE constants, and hence
l 3

S. = S. since they are canonical. But by hypothesis S.
l 3 l
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S. are distinct. Thus (i) must hold on C which implies
3

by lemma 1 that the Pi,i = 1,2,...,k, are functionally

equivalent to O.

Q.E .D.

Corollary i: There exists a canonical form f for the

first-order exponentials that maps each FOE into the

form Pl _ exp(Sl) + P2 _ exp(S2) +'''+ Pk _ exp(Sk) where

the Pi are non-zero canonical members of _ and the S i

are canonical members of _ with the property that, S i < S j

if i < j. Of course, if E = O, f (E) = O.

Proof: Each FOE can be straight forwardly mapped into such

an equivalent form by applications of the transformations

exp(El) _ exp(E2) -_exp(E 1 + E2) and exp(O) _ i. The

fact that such a mapping is canonical follows from theorems

1 and 3.

Corollary 2: There exists a normal form for the class gener-

ated by

(i) the rationals and i,

(ii) the variables x l,x2,...,xn,

(iii) the operations of addition_ substraction, multi-

plication, and restricted composition,

(iv) the exp, sin, cos, and tan functions.
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Proof" By applying the following transformations

exp(i_+x) - exp(-i_X) '
sin (x) -_ 2i

exp(i_x) + exp(-i_x)

cos (x) -_ 2

and

sin(x)
tan (x) -_ ....

cos(x)

each expression can be transformed into an equivalent expression

which is a quotient of FOE,s. Thus the normal form f maps

each expression into an instance of the form P/Q where

P and Q are the canonical form for the FOE,s.

Q.E.D.

f is not canonical because PI/QI and P2/Q2 may

be instances of P/Q such that PI/QI = P2/Q2 but PI/QI

P2/Q2. However there J s a straight forward test for

functional equivalence since pI/QI = P2/Q2 if and only if

P1 _ Q2 = P2 _ QI' Q1 _ 0 _ Q2" P1 _ Q2 and P2 _ Q1 are

FOE, s and hence are equivalent if and only if their canonical

forms are the same_, f would be canonical if the division

operator were not included in the class.

This class of expressions contains all the primitives of

R4 except the constant 7r and the absolute value function.

Hence we have a canonical form for a large subclass of _4"
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This shows, in a certain sense, that our results are fairly

sharp.

Exponential expressions

In the FOE expressions composition is limited, i.e.,

the exp function cannot be nested. In this section a

generalization of Lindemann's theorem is conjectured and the

conjecture is used to obtain a canonical form for the class

of exponential expressions. The exponential expressions are

generated by

(i) the rationals and i,

(ii_ the variable x,

(iii) the operations of addition, multiplication and

composition,

(iv) the exp function.

The order of an exponential expression is the maximum

number of nestings of the exp function. For example,

all polynomials are of order O, all FOE,s are of order

< i, and

2 IO
exp(exp(exp(x + 2) + 3 _ i)) + exp(x + 5) + x + 1

is of order 3.

For the exponentials of order <_ i, theorem 3 gives a

canonical form. Each order 1 expression is mapped into an

expression of the form
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(i) PI(X) e exp(S l(x)) + P2(x) _ exp(S 2(x)) +...

+ Pk(X) _ exp(S k(_))

where the P. are non-zero canonical polynomials and the S.
l l

- are distinc't canonical polynomials, in ascending order.

Now define the mapping f on the exponential expressions

as follows. If E has order <_ i, then f(E) is the equi-

valent expression of the form (i) . If f has been defined

for expressions of order < n - 1 and E has order n,

f(E) is the equivalent expression of the form

(2) Pl(X) _ exp(E l(x)) + P2(x) _ exp(E 2(x)) +...

+ Pk(X) _ exp(E k(x))

where the Pi are non-zero canonical polynomials and the

E i (x) are f-form exponentials of order at most n - 1 with

the property that E. < E. if i < j.
i 3

Conjecture- Suppose EI,E2,...,E k are distinct f-form

exponential constants. Then the set of constants [exp(El),

exp (E 2) , . ..,exp (Ek) } is linearly independent over the rationals.

E 2 EkIf El, ,..., are O order constants then the

conjecture is a special case of Lindemann,s theorem. However,

the proof of the conjecture, if true, appears to be _eyond

current boundaries of number theoretic research since little

seems to be known about such specific nun_3ers as e e. The
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e

conjecture implies that e is transcendental.

Assuming this conjecture, we can show that f is a

canonical form for the exponential functions.

Theorem 4: If the above conjecture is true, then f is

a canonical form for the exponential expressions.

Proof: It is only necessary to show that f(E I) / f(E 2)

implies that E1 _ E 2. We do this by showing that f(E I) -

f(E 2) _ O. It is clear from the definition of f that

f(f(El) - f(E2)) / 0 if f(El) / f(E2) . So it is suffi-

cient to show that if E is of the form (2) and E / O,

then E _ O. The proof is by induction on n, the order of

E. By theorem 3 the result holds when n = I. Assume the

resu.lt holds for all expressions of form (2) with order less

than n. Let

E(x) -- Pl(X) :× exp(E l(x)) + P2(x) _ exp(E 2(x)) +...

+ Pk(X) _ exp(E k(x))

be an expression of order n. Assume E(x) = O. Consider

any finite closed real interval I. _or each rational r

in I, E(r) -= O. By the conjecture this implies that either

(i) Pi(r) -0 for all i = 1,2,...,k

or

(ii) there exist 1 <_ i < j < k such that E i(r) - Ej (r).
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Since (i) or (ii) holds for every r in I then either (i)

or (ii) holds for infinitely many r in I. Since each

exponential expression is an entire analytic function and an

analytic function is completely determined by its values at

an infinite number of points on a closed interval, we have

that either

(i) Pi(x) = O for all i = 1,2,...,k

or

(ii) Si (x) = Sj (x) .

But (i) does not hold by the definition of E(x) and (ii)

does not hold by the induction hypothesis. Thus we must

conclude that E (x) f O.

Q .E .D.

Corollary 3 is an analogue of corollary 2.

Corollary 3: If the generalization of Lindemann's theorem is

true then there exists a canonical form for the class gen-

erated by

(i) the rationals and i,

(ii) the variable x,

(iii) the operations of addition, subtraction, multipli-

cation, division, and composition,

(iv) the exp, sin, cos, and tan functions.
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Proof: The proof is the same as the proof for corollary 2

except that the canonical form for the exponential expressions

is used instead of the canonical form for FOE. This corol-

lary is very similar to a normal form theorem proved by W. S.

Brown. Brown considers the class 8 of expressions generated

by

(i) the rationals, _ and i,

(ii) the variables Xl,X2,...,x n (denoted collectively

by x) ,

(iii) the operations of addition, subtraction, multipli-

cation, division and composition,

(iv) the exponential function.

He conjectures that if E1,...,E k are non-zero expressions

in 8 such that the set [E 1,...,E k,iT} is linearly indepen-

dent over the rationals, then the set [exp(E I) ,...,exp(E k) ,x,_]

is algebraically independent over the rationals. Then using

this conjecture, he shows that there exists a normal form f

for the class _ that maps each expression into an equi-

valent expression of the form

g (exp(El) , ... ,exp(E n) ,x,_, 0_m)

h(exp(El) ,...,exp(E n) ,x,_)

where

(i) g and h are relatively prime polynomials over the

rationals,
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(ii) the degree of g in co = exp(i • v/2m) is less thanm

the degree of the minimal polynomial for the root of

unity _m'

(iii) EI,E2,...,En are distinct normalized expressions,

(iv) the set [EI,E2,...,E ,i_ is linearly independentn

over the rationals.

Further f is shown to have the property that E = O if

and only if f(E) = O.

This is a very nice result in that the class 8 contains

1

all the primitives of R2 except the absolute value function.

Richardson has also proved a theorem that is somewhat

similar to theorem 4 and Brown's result. He considers the

class of expressions _ generated by

(i) the rationals and _,

(ii) the variables x l,x2J...,xn,

(iii) the operations of addition, subtraction, multi-

plication, division and composition,

(iv) the functions exp, sin, cos, and log Ixl •

He shows that if one assumes a decision procedure for deciding

whether or not R constants are equivalent to O and a

procedure for deciding if R functions are completely defined

on an arbitrary interval, then a decision procedure can be

Iour results and Brown Is results were obtained independently.
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given to decide if an arbitrary _ expression is functionally

equivalent to O. He does not use a canonical form approach

but by differentiation, multiplication and division finds a

set of expressions E1,...,E k for which the predicates

'E. = O' are decidable and such that the original expression
l

E -0 if and only if E. =-O for all i = 1,2,...,k.
l

Radical expressions

Now we turn our attention to a somewhat different class

of expressions, the radical expressions. Radical expressions

are rational roots of polynomials and rational expressions.

The radical expressions are formed from

(i) the rationals,

(ii) the variable x,

(iii) the operations of addition, subtraction, multi-

plication, division, and rational exponentiation.

Rational exponentiation is the operation of raising expressions

to rational powers. This operation may not be nested, i.e.,

expressions like ((x 2 + 2x)1/2 + 5)2/3 are not radical

expressions as the expressions are defined here.

The radical expressions are to be interpreted as alge-

braic functions. In particular, this means that for each
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expression E(X) there must exist an irreducible polynomial

P(y,x) such that P(E(x) ,x) -O. Thus expressions such as

(x 2) 1/2 are to be interpreted as being functionally equi-

valent to either x or -x depending on the branch of the

square root function that is used. (x 2) 1/2 _ ix I for Ixl

does not satisfy an irreducible polynomial and hence is

not an algebraic function. In general, the single-valued

branches are not analytic on the whole real line, and hence

their domains must be restricted in a suitable manner.

If R(x) is a rational expression, i.e., a member of the

field l_(x) then [R(x) ]I/m, m a positive integer, is taken

m

to be any fixed root of the polynomial equation y - R(x)

= O. In order to obtain a representation for a radical

expression we shall determine from the expression a normal

algebraic extension field of F(x) to which the expression

belongs. Given such a field we shall employ standard repre-

sentations for the elements of such fields. For example,

21/4 + 31/2 . [_(X 2 + ]% ]1/3

(i) [x 2 + 111/2

is a member of the field r(x) ({12,2 I/4
ix2 1/6), + 1 ] where

_12 is a primitive 12-th root of unity. Each element of this

field may be uniquely represented in the form

(2) _o + _i [x2 + 111/6 + _2 [x2 + 112/6 + _3[x2 + 113/6

+ e4 [x2 + 114/6 + _5 [x2 + I] 5/6
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where _i(i = O,1,...,5) is in r(x) (_12,21/4). Each element

of this field may be uniquely represented in the form _o +

_112] I/4 + _212] 2/4 + B312] 3/4 where _i(i = O,1,2,3) is in

r(_12) in which field each element may be uniquely repre-

2 3

sented in the form Yo + Yl_12 + 72_12 + Y3_12 with Yi(i =

O,1,2,3) in F(x) where expressions have unique representa-

tions. In particular (i) may be written in the form (2)

and is thus

1

(_ 2 1 ) (21/4 ) [X2 + i]3/6 + [ (, 2 ')_12 +
x + 1 x + 1

l 3 2 s/6
( 2 ') _12] [x + i]
x + 1

Note that in a radical expression, a root such as

[R(x) ]i/m must be interpreted consistently wherever it

appears in the expression. In the above expression [R(x) ]1/6

6 = i.is taken to be the root of y - R(x) such that [1] 1/6

Thus to be consistent [-111/6 = _12 if _12 is the primi-

tive 12-th root of unity exp(_ • i/6).
o

In general we shall be able to f_nd, given any finite

number of radical expressions, a common field to which they

belong. This field will have the property that it can be

constructed in a finite number of steps from the field F(x)

of rational expressions and the elements of the f_eld will
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have unique representations. The basic procedure is based

on the following well-known facts. A field is explicitly given

if its elements can be uniquely represented with a finite

alphabet and if the operations of addition, subtraction,

multiplication, and division can be carried out in a finite

number of steps. The field of rational numbers can be given

explicitly. If the field 4 is given explicitly, then

every simple transcendental extension 4(x) and every simple

algebraic extension 4(@), with given irreducible defining

equation P(@) = 0, is explicitly given.

In the algebraic case the field elements may be uniquely

represented in the form

a + al . 0 + a 2 . 0 2 +...+ _n-1 " 0n-iO

where n is the degree of the defining equation for 0.

The operations are carried out as with polynomials over 4

with the exception that the final result is reduced modulo

p(8). In the transcendental case the elements of 4(x) are

simply rational expressions over 4 in x and they have

a unique reF_esentation as we have seen. Furthermore, if

polynomials can be factored in 4 in a finite nu_er of

steps then they can be factored in _(x) and 4(8) in a

finite number of steps. Polynomials over F, the field of

rational numbers, can be factored in a finite number of steps.
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For further discussion along these lines see section 42

of van der Waerden [23] and Johnson [ii].

Any radical expression can be straight-forwardly trans-

formed into an equivalent expression which is a quotient of

radical polynomials where each member of F appearing in the

polynomials is an integer. A radical polynomial is a radical

expression in which all powers are positive and which does

not contain the division operator. For example the radi-

cal expression

3/2 ["2/5x3 + x] 9/5 13 11/3+ [-x + 17/4X 9]

2x 4 + 9/2

is equivalent to

3_[4x 3+lOx]9/5_[4111/3+[-4x 13,+17x 9],11/3 2_[20x4+4519/5

2_ [20x4+4 5 ]9/5._ [4 ]11/3

which is a quotient of radical polynomials. Radical poly-

nomials are sums of products of polynomials and roots of

polynomials in J[x] where J is the ring of rational

s

integers. A polynomial P(x) = an • x n + a • x n-In-i +''"

+ a I • x + aO in J[x] is said _ be primitive if p_) is izreduc_le and

(i) a > 0
n

and

(ii) gcd(a ,...,a aO on i' ) = 1 if n > 0 or else a is

a prime in J.
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Given any quotient of radical polynomials suppose Pl(X),

P2 (x) "''"Pn(X) are the elements of J[x] which appear under

a radical. In our example above n = 4 and 4, 4x 3 + lOx,

2Ox 4 + 45, and -4x 13 + 17x 9 are the elements of J[x]

appearing under a radical. Each of the polynomials may be

" factored in a finite number of steps into products of -i

and powers of primitive polynomials.

The polynomials of our example factor into the products

of primitive polynomials and -i as follows-

2
4=2

4x 3 + lOx = 2 _ x _ (2x 2 + 5)

2Ox 4 + 45 = 5 _ (4x 4 + 9)

9
-4x 13 + 17x = (-I) _ x _ (4x4 + 17).

Now we want to determine the radical degree of each primitive

polynomial. If P(x) is a primitive polynomial appearing in

a radical expression E(x) and P(x) appears in the expression

raised to the rational powers pl/ql,P2/q2,...,ps/qs where

. pi,qi are relatively prime integers, then m = icm(ql,

q2,...,qs ) is the radical degree of p(x) in E(x) . Now let

Pl (x)'p2 (x) '''''Pn(X) be the primitive polynomials appearing

in a quotient E(x) of radical polynomials. If the Pi(x)

have the radical degrees ml,m2_...,m respectively and ifn

mO is the radical degree of (-i) in E(x) _ then we claim that
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i/m I i/mn)
E(x) belongs to r(x) (_m' [Pl(X) ] ''''' [Pn(X) ]

where m = icm(2mo,ml,...,mn). This is obviously so because

i/m I i/mn)
l_(x) (_m' [Pl (x)] ' """' [Pn (x) ] consists by definition

i/m

of rational" combinations of _m' [Pi (x)] l(i = 1,2,...,n)

i/mo
o over r(x) and E(x) is a rational combination of (-i)

i/m. i/m

and [Pi(x)] 1. But (-i) o is an m-th root of unity since

i/m1
We assert that r(x) (_m, [Pl(X)]m is a multiple of 2m O.

i/m

can be explicitly given This is so because
"''' [Pn (x) ] n)

F can be explicitly given and hence F(x) since it is a

simple transcendental extension of F. The cyclotomic poly-

nomial %(x) can always be explicitly constructed. For this

construction see, for instance, Section 36 of van der Waerden.

Hence F(x) (_m) can be given explicitly. For any i(i =

i/ml i/mi-l) is
1,2,...,n) if F(x) ({m' [Pl(X) ] ''''' [Pi-l(X) ]

i/m I I/mi)
given explicit]y then F(x) ({m' [Pl(X) ] ''''' [Pi(x) ]

can be given explicitly. In order that _. (let _. denote

I/m I i/m. 1 1

F(x) (_m' [Pl(X) ] ' ' [Pi(x)] l) i = 0 1 n) be given

explicitly it is only necessary to determine the minimal

i/m

polynomial of [Pi (X) ] 1 over _'l-l" But the minimal
m.

polynomial is a factor of Y I _ Pi(x) . Since _.l_l is
m.

given explicitly we can factor y I _ Pi(x ) into irreducible

factors and hence determine the minimal polynomial for

I/m.

[Pi (x) ] I.
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With this knowledge we can now say

Theorem 5: Let E(x) be any radical expression. The

predicate 'E(x) = O' is solvable.

Proof: It "is only necessary to explicitly construct an

extension field _ of 1_ to which E(x) belongs and thenn

to find the unique representation of E(x) in • . We have
n

already indicated how to construct • . It is only neces-
n

sary to indicate how the representation for E(x) in
n

can be found. E(x) can be written as a quotient of radical

polynomials. The radical polynomials can be considered as

i/m 1

polynomials in the n + 1 variables _m' [Pl (x)] ,

i/m

"''' [Pn(X)] n over l_(x) and can be put in the canonical

form for such polynomials. Now using the defining equation

for _i over _o all the coefficients involving only _m

can be reduced to their unique representation in 41 . Now

i/m1
if all the coefficients involving only _m' [Pl(X) ] ,...,

1/mi_1
[Pi (x)] have been put in their unique form in %-1'

i/re.

then the coefficients involving [Pi (x)] i may be put in

unique form in 4. by using the defining equation for
1

i/m.

[Pi(x) ] I over 4. Continuing in this fasilion, wel-l"

eventually obtain a representation for E(x) as a quotient

of two elements of • . If the denominator is not 0 then
n
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the division can be carried out (see section 19 of van der

Waerden) to obtain a unique representation for E (x) in _ .n

If the denominator is 0 then the expression is undefined.

Then E(x) = 0 if and only if the representation of E(x)

in • is O.
n

Q.E .D.

Theoretically speaking we have already said all that

needs to be said. However, the above described algorithms

are highly impractical. One of the primary reasons is that

the factorization algorithms for polynomials over algebraic

extensions of the rationals are not practical. The algorithms

usually generate a large set of possible factors and then

divide the original polynomial by each member of the set to

see if any one is a factor. Only after trying all members

of the generated set does one ascertain that an irreducible

polynomial is in fact irreducible. Thus, the algorithms are

particularly inefficient when dealing with irreducible poly-
m.

1 (x) are
nomials. In many cases the polynomials y - Pi

o irreducible and if we could determine this a priori without

calling on the factorization algorithm, one of the main

sources of inefficiency in the algorithm could be eliminated.

It is the purpose of the next section to investigate this

problem.
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Irreducibility Considerations

The results of this section draw heavily on the material

on pure equations as given in Tschebotar_w [22]. So let us

begin by quoting the results from Tschebotar_w that we shall

need. If m is an integer _m denotes a primitive m-th

root of unity, • is a number field, i.e., a subfield of

the complex numbers.

Theorem 6 (Tschebotarowj p. 291)" Let a be an element of

and m = 2_°ql_l

_s
'''''qs be the prime decomposition of the

positive integer m. The polynomial ym _ a is irreducible

over • if and only if the polynomials

_o _i _s
2 ql qs

x - a, x - a,...,x - a

are irreducible over q,.

Theorem 7 (Tschebosarow, p. 291): Let q be an odd prime,

a natural number, and a an element of the field _.

The pure polynomial xq_ - a is reducible over • if and

only if xq - a is reducible over _, i.e., if and only if

a is the q-th power of an element in q_.

Theorem 8 (Tschebotar_w, p. 293): Let a be an element of

2_

and _ an integer >__2. The polynomial x - a is

4
reducible over • if and only if the polynomial x - a
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is reducible over _, i.e., if there is a b in • such that

either b 2 -4b 4= a or = a.

Lemma 2 (Tschebotar6w, p. 310, problem 6): Let re,m, be

two positive integers such that gcd(m,m') = 1. Then the

cyclotomic polynomial • (x) is irreducible over F(_m, )m

Proof- _m _m' is a primitive (m • m')-th root of unity•

Hence F(_m ,) (_m) must have degree at least _(m • m,) =

_(m,) • _(m)(_ is Euler,s _-function), which is true if

and only if • (x) is irreducible over F(_m ')m

Q.E.D.

Following Tschebotar_w we say that a field • has the

E property if the cyc]otomic polynomial • (x) is irreducible
--m m

over _. F has the Em property for every positive integer

m. Now we prove the following:

m
Lemma 3- Let m be an odd positive integer_ x - a an

irreducible polynomial over F. If m' is a positive

m
integer such that gcd(m,m') = I, then x - a is irreducible

over F(_m, ) "

Proof: By contradiction. Suppose xm - a is reducible over

F(_m,) . If m = ql '''''qs s is the prime decomposition of m,

then by the above theorems from Tschebotar_w F(_m ,) must

qi
contain a root of x - a for at least one integer i in
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[l,s]. Since F(_m ,) is a normal extension of F, if it

qi
contains one root of x - a, it must contain them all. The

qi
quofiient of any two different roots of x - a is a primi-

tive qi-th root of unity. Thus F(_m, ) contains a qi-th

root of unity which contradicts the previous lemma which

states that %(x). is irreducible over F(_m,) .

Q.E.D.

In order to prove the next lenana we need the following

theorem from Tschebotar_w, p. 299.

Theorem _: Let q be an odd prime, k a natural number and

k

let • have the property E k. If the polynomial xq - a
q

is irreducible over _, then it is still irreducible over

• (_qk) .

Now we prove a generalization of TschebotarSw, s remark

following the theorem.

Lemma 4. Let m be an odd positive integer, n any positive

integer. If x m - a is ir_-educible over F then it is

irreducible over F(_n) .

_i _s

Proof: Let m = Pl '''''Ps (_i > O, i = 1,2,...,s) be the

v vI v vo s s+l

prime decomposition of m and n = 2 Pl """ Ps " Ps+l '

v
s+t

"'''Ps+t where v. > 0 for i = O,l,...,s and _. > O

v v v

for i s + I, ,s + t Let n, 2 o s+l s+t and
= .... = Ps+l "'" Ps+t
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+_
_l+Ul _s s m

m, = Pl "'" Ps , x - a is •irreducible over r if

Pi
and only if x - a is irreducible for i = 1,2,...,s.

1

Pi

x -a is irreducible over r(_n ') by the previous lemma

since gcd(Pi ,n') = i. Now let m,' be the positive integer

#. +u.

such that m' = pi x i • m,'. Then the previous lemma implies

#
1

Pi

that x - a is irreducible over l_(_n' '_m' ') since

gcd(Pi ,m'') = I. Further r({n,,_m,, ) has the E6 property

_i+ui

where t = Pi . Hence by the immediately preceeding theorem

1

t Pi
from Tschebotar_w x - a, and hence x -a, are irreducible

m

over l_(_n,,_m, ,,_)= F(_n). Thus x - a must be irreducible

over l_({n) .

Q.E.D.

Now we give our first general irreducibility result.

Theorem i__O0:Let _ be a positive integer, m an odd positive

integer and Pl'P2 J''''pn distinct positive prime integers•
m

Then x - Pn is irreducible over i_(_, [pl]I/m,..., [pn_] ]l/m) .

Proof: We shall assume mlt and then show at the end of the

proof that this assumption is not actually necessary. The

proof is by induction on n. For n = 1 the theorem follows

from the preceeding len%_a. Let %' i = O,l,...,n denote

the field i_(_, [pl] i/m [pi] l/m), • • • , •
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Suppose the theorem is true for all k < n. Let m = ql

S

"'" qs be the prime decomposition of m. By Tschebotar_w

m

x - Pn is reducible if and only if for some integer i in

qi

[l,s], x - Pn is reducible. This is true if and only if

qi

there exist in _n-i a root of the equation x = Pn" So

qi

suppose there exist 7 in %-1 such that 7 = Pn" Then

by the induction hypothesis each element of • and in
n-i

particular _ may be represented uniquely in the form

(I) _ = _ + _l[Pn ]i/mo -1 +'" "+ _m-l[Pn-i ] (m-1)/m

where _i is in • i = 0 1 m - 1 Now consider ann-2' ' ''''' "

element an_l of the Galois group of _n_l: %-2 that has

the property

([Pn 1 ]i/m) i/mn-i - = _m[Pn-i ] "

There exists such an element since ym _ Pn-i is by the

induction hypohhesis irreducible over • and hence the
n 2'

Galois _roup of _n-l: qn 2 is transitive. Applyin_ a- n-i

to (i) we obtain

Jn-l_ 2
(2) _m = _ + _l_m[Pn ]i/m 2/mo -1 + _2_m[Pn-i ] +''"

__m-i (m-l)/m
+ _ra-i =m [Pn-i ]

where Jn-i = kn-I " (m/q i), 0 < kn_ 1 < qi"
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This implies that

-Jn 1 l-Jn-i i/m

(3) 7 = _ _m - + [Pn-i ] +o _l_m " ""

m-l-Jn-i (m-l)/m

+ _ _m [Pn- 1]m-i

Thus from (I) and (3) and the linear independence of the

[Pn_l]J/m(j = O,l,...,m - i) over • we have thatn-2'

= _ _m 3n-Io o

l-Jn_ 1

_i = _l_m

• • •

k-j

n-1

m-i -j

_m-i = _m-l_m n-i

This implies that _ = O unless k _,_Jn-l" Thus

(Jn_l) /]a

(5] _ = _. [Pn_l ]
3n_l

(_. may be written uniquely in the form

3n_l

_. = 8o + El[Pn_2]i/m +...+ _m-l[Pn-2 ] (m-1)/m
3n_l
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where _i (i = O,i, ...,m) is in • Thusn-3"

(6) _, = (80 + /3l[pn_2]I/m +...

(Jn_l)/m

+ /_m-i [Pn-2 ] (m-l)/m) [Pn_l]

Consider an_2 the element of the Galois group of %-2: %-3

property that _ ([Pn ]l/m)

I/mwith the
n-2 -2 = _m[Pn-2 ] "

can be extended in the usual way to an element of then-2

Galois group of • : %-3 Applying a to (6) wen-i " • n-2

obtain

J

(7) _m n-2_' = (/_o + /31_m[Pn-2 ]I/m +...

(J _i)/m
m-I (m-l) ] n

+ _m-l_m [Pn-2 ] /m) " [Pn-i

where Jn-2 = kn 2(m/qi) 0 < k < qi By analysis similar

- ' -- n-2 " (Jn_2)/m (Jn-I)/m

to the above we can see that y = _j [Pn_2] • ___]_ .
n-2

Continuing in this fashion we obtain, after n - 1 steps,

Jl/m J2/m (Jn_l )/m

(8) _ = 0J[pl] [p2] ... [Pn_l]

where 0J is in r(_ m) and jt = k_(m/qi) (t = 1,2,...,n - I)

where k6 is an integer in [O,qi). Thus
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k I k 2 k qin-i

(9) Pl " P2 "'" Pn-I • co -Pn = O.

By Eisenstein's criterion this polynomial in 0_ is irreducible

over 1_ and hence by lemma 4 is irreducible over r(_6).

But this is a contradiction since 0_, an element of r(_6),

is a root of the equation. Thus we must conclude that

qi

x - Pn is irreducible over I_(_). Now if m _ _, then

by the above analysis ym _ Pn is irreducible over

r(_.m ' [pl]i/m,..., [Pn_l]l/m) and hence is irreducible over

% since l_(_.m' [Pl ]I/m''''' [Pn-i ]l/m) __ %.

Q.E.D.

Now for the second general irreducibility theorem.

Theorem Ii- Let m be a positive integer, Pl(X),P2(x),

• ""'Pn(X) be distinct, irreducible, primitive polynomials

over J[x] with degree Pi(x) > 0 (i = 1,2,...,n) . Then

P (y) = ym Pn (x) is irreducible over _(x) ([Pl (x) ]i/m
--

• ''' [Pn-l(X) ]l/m) where [Pi(x) ]i/m is any fixed root of

m (x) = 0
Y - Pi

_o _i

Proof" The proof is by induction on n. Let m - 2 ql

_s

"'" qs be the prime decomposition of m. Consider the case
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when n = 1 Then by Tschebotarow 1• , P(y) is irreducible if

and only if

2

(i) Y - P1 (x) and

4

(2) y - Pl(X) and

(3) yqi _ Pl(X ) (i = 1,2_...,s)

are irreducible. Suppose at least one of (i), (2), and (3)

is reducible• Then by Tschebotarow there must exist B(x)

in _(x) such that either

B 2(x) = Pn(X) or

(4) J_4B 4 (x) = Pn (x) or
I

qi

[B (x) = Pn(X) .

p

Clearly we may assume B(x) is in _[x]. Since degree

Pl(X) > O, degree B(x) > O. But then Pl(X) must have

multiple zeroes in _. But since Pl(X) is irreducible over

m

F this is not possible. Thus we must conclude that y -

Pl(X) is irreducible over _(x) . Let _'l denote the field

_(x) ([Pl(X) ]l/m_..., [Pi(x) ]I/m) j i = O,ij...,n, and assume

m (x)
that the theorem is true for all k < n. For y - Pn

to be reducible over • there must exist B(x) in
n-i

_ such that at least one of the equations in (4) holds•
n-i

iStrictly speaking_ Tschebotar_w's theorems do not apply to

_(x) since _(x) is not a number field. But almost certainly

it is sufficient in Tschebotar_w to know only that the char-
0_

acteristic of the field is O. So we shall use Tschebotarow's

theorems with such an assumption.
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Again we will show that this assumption leads to a contradic-

qi
tion. First assume that B (x) = P (x) . By the induction

n

hypothesis each element of _ and in particular B(x),n-l'

may be uniquely represented in the following way.

(5) B(x) = _ + _l[Pn (x) ]I/mo -i +'" "+ [Bn-l(X)] (m-1)/m

where _. (i = O,l,...,m - i) is in • Consider the
l n-2"

element _ of the Galois group of .._-i: ___ 2 thatn-i

maps [P (x) ]i/m . There is such an
n-I onto _m [Pn-i (x) ]1/m

#

element in the group since by the induction hypothesis

m (x) is irreducible over • and hence the Galois
Y - Pn-i n-2'

group of • " %-2 is transitive. Applying a to (5)n-i n-i

we obtain

Jn-i m-I

_m • B(x) = _ + (x) ]i/m (m-1)/mo _l_m[Pn-i + + _ [Pn (x) ]• "" m-l_m -i

where Jn-i = kn-I " (m/qi) , O <__kn_ 1 < qi" Thus

-J l-Jn-i (x) ]I/m
(6) B(x) = _o " _m n-i + _.]._m [Pn-I +''"

m-l-j

+ _ _m n-i (x)] (m-1)/mm-i [Pn-i "

From the linear independence of the [Pn-l(X)]i/m' j =

O,I, ....,m - i, and from equations (5) and (6) we obtain
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-j
/0_ = O_ $ n-i

o o m

l-j
i

_i = _l_m

n

k-j n-i

_k - _k_m

m-l-j
n-i

_m-i = _ _mm-i

Thus _ = O unless k = _in_I. Hence

(Jn_l) /m

(7) B(x) = _. [Pn-l(X) ]
3n_l

_4nJ-i may be expressed as follows-

_" = _o + El[Pn-2(x) ]I/m +. + _ [Pn (x) ] (m-1)/m
3n_l "" m-i -2

where _i (i = O, ...,m - i) is in _n-3 . Consider the element

of the Galois group of • : • that maps
n-2 n-2 n-3

i/m i/m

[Pn-2 (x) ] onto _m [Pn-2 (x) ] . an_2 may be
extended

in the usual way to an element of the Galois group of _ •
n-i

Applyin_ _ to (7) we obtain
n-3 " - n-2

Jn-2

_m • B(x) = (_o + _l_m[Pn-2(x)]!/m +''"

(j )/m

m-i (m-l) (x) ] n-!
+ _m-l_m [Pn-2 (x) ] /m) [Pn_l

where Jn-2 = kn_2(m/qi) , O _< kn_2 < qi" By the independence
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of the [Pn_2(x) ]i/m (j = 0,i ... m- i) over _n_3 we obtain

(Jn_2)/m (Jn_l)/m

B(x) = _Jn-2[Pn-2(x) ] [Pn_l(X) ] .

Continuing in this fashion we eventually obtain

Jl/m J2/m (Jn_l)/m

(8) B(x) = Y[PI(X) ] [P2(x) ] "'" [Pn-l(X) ]

where j6 = k6(m/q i) , 0 < k_ < qi and 7 is in _(x). Hence

kl qi
.. Pkn-l(x) y - P (x) = O

(9) P1 (x) " n-i n "

We want to show that this is a contradiction by showing

that no element 7 of f_(x) can satisfy (9). Suppose there

exist relatively prime _l(X) and _2(x) in _[x] such that

_qi qi k pkn_ 1(x)/_2 (x) = P (x)/ l(x) {x))n (Pl "" " n-i "

Then

k I k qi qi

Pn(X) = (Pl (x) p n 1"'" n-I (x) " _i (x))/_ 2 (x)

which implies that _l(X) must have degree O for other-

wise P (x) would have multiple roots. Letting _3(x) =n

_qi(x)/_li we have8.

kl knn{l_3(X) Pn(X) = P1 (x) ... P _ (x)
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which implies that _3(x) is in r(x) . But this implies that

P1 (x) '''''Pn(X) are not distinct irreducible elements of

F(x) which is contrary to the hypothesis. Thus, there is

qi (x) is
no _(x) in f_(x) satisfying (9) and hence y -Pn

4

irreducible over • Now consider y - Pn(X) We cann-l"

prove exactly as above that there does not exist B(x) in

such that B 2(x) = P (x) . This also demonstrates that
n-I n

2
y - P (x) must be irreducible. Now suppose there existsn

such that -4B 4(x) = P (x) . Once again
B (x) in %-1 n

suppose B(x) is represented by (5). This time applying

we obtain
n-i

J

_m n-I B(x) = _ + _i _m [ (x) ]i/m• o " Pn-i +" ""

+ _ m-i (x) ] (m-l)/m
m-l_m [Pn-i

where Jn-I = kn-l(m/4)j 0 _< kn_l < 4. In fact, we may

carry out corresponding analysis to obtain (8) where qi

= 4. Then we obtain

k 1 k

(iO) 4P 1 (x),...,Pnn_ I_-_ (x) 74 + Pn
(x) 0

where 7 is in f_(x) . But the same argument that shows

that no element of f_(x) can satisfy (9) also shows that no

element of O(x) can satisfy (iO) . Thus we must conclude

4 x _
that such a B(x) does not exist and that y - pn(-, is

irreducible cver
n-l"

Q .E .D.
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Corollary i0: Let ml,m2,...,m n be positive integers,

Pl(X) 'P2(x) ,...,Pn(X) be distance, irreducible, primitive

polynomials over J[x] with degree Pi(x) > 0 (i = 1,2,...,n).

m ]i/m1Then p(y) = Y n _ Pn(X) is irreducible over @ = _(x) ([Pl(X) ,

i/mn-z)."''' [Pn-l(X) ]

Proof: Let m = icm(ml,m2,...,mn). Then ym _ Pn(X ) is

irreducible over _' = _(x) ([Pl(X) ]i/m,..., [Pn-l(X) ]l/m)

by the preceeding theorem. Thus ym _ p (x) is irreduciblen

over • since _, D _. Let m = 2U°qll"

Us

'''''qs be the

prime decomposition of m. The irreducibility of ym _

Pn (x) implies that

2 (x)Y - Pn

4

Y - Pn (x)

and

qi

Y - Pn(X)' i = 1,2,...,s,

are irreducible over _. But since m is a multiple of m n

this implies that ymn - Pn(X) is irreducible over _.

Q .E .D.

Theorems iO and II establish conditions under which

irreducibility can be determined a priori. The exact role

of these theorems in the normal form algorithm will be dis-

cussed in the next chapter.
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Combinations o_ffexponential and radical expressions

The proof of theorem 5 actually establishes a normal

form for the radical expressions, i.e., every radical

expression E can be mapped into an equivalent expression

of the form

° i/m I i/m
..., (x) ] n)

G(_m' [PI (x) ] , [Pn

where G is a polynomial over F(x) and Pl(X)'''''Pn(X) are

the primitive polynomials appearing in E. This repre-

sentation is unique within the particular extension field

determined by E. But we may have _ = E2, and E1 and

E 2 determine different extension fields of F(x) and hence

have different representations. For example consider

E 1 (2) 1/2 and E 2 (-i) 1/2 _ (2) 1/4 _ (2) 1/4= _ = _ _ . E1

determines the field 41 = r(x)(21/2 ) and E 2 determines

= . = E but the representation of E 142 r(x) wow E1 2

in 41 is -(2)1/2 whereas the representation of E 2 _n

3

42 is _8- _8 where _8 is taken to be the particular

root exp(i _ _/4) . On the other hand, given any finite

subset _ of the radical expressions, an extension field

° 4 may be determined such that for all E in _, E in 4.

E then the representations of E 1 and E 2Hence i f E 1 2

in 4 will be identical. 4 is determined as follows. For

each E in £ determine the primitive polynomials appearing
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in E. Let Pl(X) ,P2(x) ,...,Pn(X) be a listing of the

distinct primitive polynomials appearing in the expressions

of _. Determine the radical degree of each Pi(x) as

follows. Let pl/ql,P2/q2,...,pn/qn be the radical powers

to which Pi(x) occurs in the expressions of £. Then

° m i = icm(ql,...,qn) is the radical degree of Pi(x) in _.

Then each E in _ will belong to the field • =

I/m I i/mn) ,
F(x) (_n_[Pl(X) ] ''''' [Pn(X) ] where m = icm(2mo,m 1

...,mn), m O = radical degree of (-i) in £. Thus for each

finite subset of the radical expressions we have a canonical

form. With these observations a normal form f can be obtained

for certain combinations of exponential and radical expressions.

'l'he normal form will have the property that E -0 if and

only if f(E) = O. The form will be analogous to the form

of corollary 1 with the polynomials replaced by radical

expressions.

Consider the class C generated by

(i) the rationals,

" (ii) the radical expressions,

(iii) the operations of additionj substraction, multi-

plication, and restricted composition,

(iv) the exp function.

Theorem i__22: Let £ be a finite subset of the radical

expressions and Rl(x) ,R 2(x) , ...,R n(x) be distinct canonical
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members of _. The set [exp(R l(x)),...,exp(R n(x)) ] is linearly

independent over £.

Proof: Let Pl(X)'''''Pk(X) be the primitive polynomials

appearing in _. Let a be the largest real zero of

Pl(X)'''''Pk(X). Then all the members of _ are analytic

for real x > a. Let I be a closed interval in this half

line. Then consider

(i) El(x) _ exp(R l(x)) +...+ En(x) _ exp(R n(x))

where the E. are members of £. Suppose (I) is functionally
l

equivalent to O. Then by Lindemann's theorem, for infinitely

many rationals r in I either

(i) Ei(r) = 0 for all i = 1,2,...,n,

or

(ii) there exist 1 <_ i < j < n such that R i(r) =

Rj (r) .

(ii) implies that Ri (x) - Rj (x) which is not possible since

R. and R. are distinct canonical members of _. Thus

(i) must hold which implies that El(x) -... = En(x) = O.

Q .E .D.

Corollary 5: There exists a normal form f for the class

C that maps each expression into the form
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(i) E l(x) _ exp(R l(x)) +...+ E n(x) _ exp(R n(x))

where the E i (x),R i (x) belong to a canonical subclass £

of the radical expressions. The E i(x) are non-zero and

Ri (x) < R. (x) if i < j. Further f (E) = O if E - O.3

o

Proof: Each member of C can be straight forwardly mapped

into an expression of the form

(2) Ei(x) _ exp(Ri(x)) +...+ E_(x) _ exp(_(x)) .

Let _ = [E i(x),...,E_(x),R i(x) ,...,_(x) ] . Replace each

I (x) in (2) by its canonical form in _. ThenEl (x) and R1

if necessary, rearrange (2) by combining equal exponentials

deleting 0 coefficients, and ordering the Ri(x) 's. Then

(2) will be transformed from the form (2) into the form

(i) or o.

Q.E .D.

This concludes chapter III.



65

Chapter IV

Implementat ions

In order to complete our study of canonical forms two

of the algorithms of chapter III have been implemented in

Formula Algol (FA) . EXPCAN is an implementation of the

canonical form for exponential expressions that was given

in theorem 4 of chapter III. RADCAN is a routine that trans-

forms radical expressions into normal form. The actual programs

and some sample runs are given in appendix II.

SuDportinq Routines

A number of basic supporting routines are necessary for

EXPCAN and RADCAN. The more important ones are mentioned

here. Since one of the primary purposes of the canonical

form routines is to reduce the test for functional equi-

valence to a test for string identity, all arithmetic

calculations must be exact. Hence, a set of routines for

performing arbitrary precision integer arithmetic is provided.

In addition routines for transforming polynomials into

canonical form and for carrying out polynomial arithmetic

are provided.

RADCAN requires additional supporting routines of a

more special nature. NEWTON is a procedure that computes

interpolation polynomials by Newton's method of finite
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differences. Routines are also provided for carrying out

arithmetic in F(_n) and for inverting matrices over l_(_n).

EXPCAN

EXPCAN takes any exponential expression E and trans-

forms it into canonical form. The organization of EXPCAN

is particularly simple in that it is a generalization of

a routine for transforming polynomials in several variables

into canonical forms. EXPCAN works as follows. If E does

not involve the exp function, then E is a polynomial and is

transformed into canonical form. Otherwise E is written

as a polynomial in the ,variable' expj i.e., E is trans-

formed into the form

(i) Po(X) _ exp(E O(x)) +'''+ Pn(X) _ exp(E n(x))

where the Pi(x) 's are canonical polynomials not involving

exp. Then EXPCAN is called recursively to canonicalize

EO(x),...,E n(x) . (I) is then rearranged so that the canoni-

calized EO(x),...jE n(x) are in ascending order, exponentials

with identical arguments are combined, and terms with 0

coefficients are deleted.

RADCAN

RADCAN, the routine for transforming radical expressions

into normal form, is much more interesting than EXPCAN. The

main difficulty posed by RADCAN is that the classical con-
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structive methods for factoring polynomials over r and

extensions of F are strangled by combinatorial problems.

By considering the special cases with which RADCAN is concerned,

many of the problems can be eliminated. But even so the

remaining combinatorial problems are of such a magnitude that

RADCAN is feasible for only a few expressions.

An overview of the organization of RADCAN is given in

figure i. To facilitate the explanation, let us consider

the particular problem of transforming the radical expression

4_r-_ + i0 _ 3_ into normal form. In the initiali-

zation step i, RADX_-_-_ + iO _ 3_. In step 2 the

2
polynomials 8, 6 and x + 1 are put on the list of expres-

sions that appear under a radical. In step 3 each of the

expressions must be factored into irreducible factors over

F and their radical degrees determined. For the constants

this is just a matter of finding their prime decomposition.

To factor the polynomials_ Kronecker's method is used. Given

a polynomial P(x), Kronecker' s algorithm successively looks

for factors of degree 1,2,..., [n/2] where n is the degree

of P(x). To search for i-th degree factors P(x) is evalu-

ated at i + 1 integers ao,al,...,a i. For each (i + l)-

tuple (bo,bl,...,bi) of integers such that bilP(ai) , an

interpolation polynomial Q(x) is generated such that

Q(ai) = b i. Then if Q(x) IP(x) , Q(x) is a factor. The

rationale here is that P(x) = Q(x) _ S(x) if and only if

P(a i) = Q(a i) , S(a i) .
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ENTER

RADX _- Radical expression I.

under consideration.

!_

I Place each distinct canonical subexpressi°n _I II"

of RADX that appears under a radical on

unfactored polynomial list (UFP) .

i,
Factor each expression on UPP into primitive| III.

polynomials and determine the radical degree

of each primitive polynomial.

Determine m from the radical degrees of (-I) and IV.

the primitive polynomials. Replace roots of (-i)

by m-th roots of unity. Replace radical subexpres-

sions by products of radical roots of primitive

polynomials.

" Order primitive polynomials and for k = 1,2,...,N, V.

determine the factors.ofl/m]. Y -(x)Pk(X)]i/mk-l)°ver
F(x) (_m ' [PI (x) ] ' " ' [Pk-i where Pk (x)

is the k-th primitive polynomial with radical degree

Consider RADX as a polynomial in the N + 2 variables x, VI.

_m and roots of the primitive polynomials. Transform

this polynomial into canonical form and then reduce expres-

sions in _m and roots of the primitive polynomials modulo

their corresponding defining equations.

4
END

FIGURE l: FLOW DIAGRAM FOR RADCAN
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Kronecker's method is guaranteed to find all the factors

of P(x) but it generates a large number of Q(x) 's which are

not divisors. The number of Q(x)'s generated is usually

i
much larger that 4 . Johnson [12] has given some methods

for eliminating some of the Q(x)'s. We have used only a couple

of Johnson's simplest tricks because of severe code space

limitations in the current FA system. Hence our current

factorization program, KRONECKER, cannot reasonably handle

polynomials of degree > 5.

In our example, the primitive polynomials are 2, 3

and x 2 + 1 with radical degrees 4, 2 and 3 respectively. Seven

Q(x) 's are generated by Kronecker to determine that x 2 + 1

is irreducible.

In step 4 we compute m = icm(2 _ mo,ml,...,mn) where

m O = radical degree of -i and mk = radical degree of the

primitive polynomial Pk(X) . For our example m = 12. Now

we replace the original subexpressions occurring under

radicals by the corresponding products of radical roots of

primitive polynomials. Thus PADX _-[21/4] 3 + [21/4] 2

31/2 _ (x2 + I)1/3.

4 2 3 2
In step V we must factor y - 2, y - 3 and y - (x + I)

over various extensions of r(x) (_12) . Corollary 4 of chapter

III tells us a priori that y3 _ (x2 + I) will be irreduci-

ble. In general, we know that all polynomials P(y) whose

constant term in y is of degree > 0 in x will be irre-
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ducible. So we only have to consider P(y) 's with constant

terms which are prime integers. However, the combinatorial

problems involved in factoring over algebraic extensions of

the rationals are considerably more staggering than those

of factoring over the rationals only. For example, van der

Waerden (section 42) gives a method for factoring over

extensions of the rationals. When this method is applied to

the simple case of factoring y2 _ 2 over r(_12 ), it leads

to a polynomial of degree 72 that must be factored over r:

Kronecker' s algorithm, even with all of Johnson's improve-

ments, is not practical for polynomials of such a large

degree. However, some further improvements are possible.

From theorem iO, chapter III, it follows that if the radical

degrees of Pk and PI'''''Pk-I are odd then y - Pk

i/mi
is irreducible over _ = F(_m_p l] ''''' [Pk-i ]

Hence the factorization algorithm does not have to be used

in these cases. B1]t we are still not able to handle simple

cases such as the one above.

However, with some additional assumptions about the

reducibility of our particular pure equations and by using an

algorithm developed by Johnson [Ii] for factoring polynomials

over extensions of r, the problem can be made more tract-

able. First of all we assume a generalization of theorem

I0. Let m ,ml,...,mk_ 1 be any positive integers, m k an

odd positive integer. Then we assume that y - Pk is
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i/m I
i/mk-l) Note that

irreducible over F(_m ' [Pl ] ' """' [Pk-i ] "

lemma 4 establishes this result for k = i. Thus we only

consider constants whose radical degrees are even. In this

event we assume that y - Pk factors over _ only if it

factors over F(_m ) and furthermore that it factors in the

same way over both fields. With these assumptions we only

need consider the reducibility of equations of the form

ymk- Pk over F(_ m ) where m is even. From Tschebotar_w,s

theorems and the above assumptions, such polynomials are

reducible if and only (i) if there exists bI in F (_m) such

2

that bl = Pk or (ii) if 41m and if there exists b 2 in

r(_ m ) such that -4b4 = Pk"

In order to dete_nine the existence of such b I and

b 2 we use a special case of Johnson's algorithm for factoring

over normal extensions of the rationals. There are two

combinatorial difficulties with this algorithm. First of all

since the algorithm is a generalization of Kronecker's method

for factoring polynomials over F, the bi's are generated

from i-tuples of integers in a fashion similar to the way

the Q(x) 's are generated in Kronecker,s original algorithm.

As in the original algorithm, a large number of spurious

i-tuples are generated, but here no methods are known for

reducing this number. Secondly, for each radical expression

two matrices over F(_ m ) of dimension 2n × 2n and 3n x 3n,

n = _(m ), must be inverted. Since the elements of the
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matrices belong to F(_ m ) the inversions must be carried

out symbolically which is significantly slower than numeri-

cal inversion. Because of time considerations we probably

cannot handle expressions where _(m ) > 4. In our actual

programs we cannot handle expressions with @9(m ) > 3 because

of storage limitiations.

For our example matrices of dimension 16 x 16 and

81 x 81 must be inverted. Over F(_I2 ) y2 _ 2 is irre-

3 3

ducible and y2 _ 3 = [y - (-_12 + 2_12) ] * [y + (-_12 +

2_12) ] •

3 i/3
In step VI RADX _-(-_12 + 2_12) * [21/412 * (x2 + i) +

[21/4] 3"

Thus we have considered two algorithms. EXPCAN is very

simple and practical. Of, the other hand, RADCAN is so encum-

bered by combinatorial difficulties that it cannot be considered

as a practical routine.
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Chapter V

Conclus ion

The purpose of this dissertation has been to study the

representations of formula expressions in a way that would

give meaning to the so-called simplification problem. As

a step toward this goal we have defined the concepts of

canonical and normal forms as alternatives to the con-

troversial and ill-defined concept of simplified form.

Then in this sense we have shown, following Richardson,

that canonical forms do not exist for some very simple classes

of expressions. On the other hand, we have shown that rather

large subclasses of these classes possess canonical forms.

This implies a certain sharpness to both our undecidability

and canonical form results. However, to obtain desirable

canonical form results, strong number theoretic conjectures

had to be assumed both by us and by Brown. This fact lends

a certain importance to theorem 3 of chapter III. For theorem

3 obtains a canonical form for a subclass of R4 without

resorting to any conjectures.

Then the class of radical expressions has been studied

and a normal form algorithm derived for this class. With

the observation that this foza_ is canonical for finite

subclasses, a normal form is obtained for a class that

allows limited kinds of combinations of exponential and

radical expressions.
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In chapter IV the implementation difficulties for the

algorithms are discussed. EXPCAN, the canonical routine

for exponential expressions, was seen to be simple and

hence is a practical tool. RADCAN, on the other hand,

is seen to be a completely impractical algorithm. This

fact makes the results on radical expressions of theoretical

interest only. RADCAN does raise some interesting questions

about the reducibility of certain kinds of pure equations.

Some of these questions have been answered by theorems

iO and ii of chapter III.

On the other hand, we have not been able to find any

results concerning the exponential constants that would

allow us to circumvent the assumption of a n-th erder

for_a of Lindemann's theorem in obtaining theorem 4 of

chapter III. This problem is perhaps the hardest one raised

by this thesis. A proof of our conjecture would certainly

be an excellent result and a difficult task. But there

may be other wavs of considering the problem that would

not require sL1ch strong number theoretic results. Further

we have said nothing about many interesting classes of
o

expressions--particularly ones containing the log function.
g

Such results would probably not be too difficult to obtain,

although they do not seem to have an immediate correspon-

dence to results concerning exponentials as one might expect.

Also, we have not considered classes containing special



75

operations of interest such as integration and limits.

Richardson has obtained an undecidability result for inte-

gration but it would be interesting to study the positive

side of the picture.

Further results about the reducibility of the pure

equations that arise from the radical expressions would be

desirable. It might be possible to completely characterize

the ways in which the equations reduce and hence to do away

with the need for factoring algorithms in RADCAN. This

would then make RADCAN a practical algorithm. Such results

are not_only interesting for their applications to RADCAN

but would be interesting number theoretic results in their

own right.

This thesis has probably raised more questions than it

has answered. But hopefully the questions raised are the

correct ones, the answers provided are useful ones and

the approach a fruitful one.
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Appendix I

Backus-Naur Form Definitions for Classes of Expressions

General Definitions

. <non-zero digit>::= 11213141516171819

<digit>: := <non-zero digit> I O

<non-zero integer>: := <non-zero digit> I <non-zero integer><digit>

<integer>: := <non-zero integer> I O

<rational>::= <integer> I <non-zero integer>/<non-zero integer>

<single variable>: := x

<multiple variable>: := x llx21... Ix n

Definition of the class R

<R primary>: := <rational>ITllog 21<single variable> I(<R>)

<R term>: := <R primary> I <R term>_<R primary>

<simple _>: := <R term> I <simple R>+<R term>

<R>::= <simple R> I sin(<R>) I exp(<_>) I abs(<R>)

Note: abs(<_>) is also denoted l<_>I where "I" is an

absolute value bar.

Definition o__fthe class R 4

<argument primary>: := <rationaL_ 17rl<multiple variable> I (<argument>)

<argument term>: := <argument primary> I <argument term>_

<argument primary>

<argument>: := <argument term> I <argument>+<argument term>

<R 4 primary> : := <argument primary> 1 (<R4>)

<_4 term>: := <R 4 primary> I <R 4 tern_<R 4 primary>
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<simple R4>: := <R4 term> I <simple _4>+<_ 4 term>

<R4 >: := <simple R4> I sin (<argument>) I abs(<argument>)

Definition of the FOE class

<FOE a.p.>:: = <rational> lil <multiple variable> I (<FOE a.>)

<FOE a.t.>: := <FOE a.p.> I <FOE a.t.>_<FOE a.p.>

<FOE a.>: := <FOE a.t.> <FOE a.>+<FOE a.t.>

<FOE primary> : := <FOE a.p.> I (<FOE>)

<FOE term>: := <FOE primary> I <FOE term>_<FOE primary>

<simple FOE>: := <FOE term> I <simple FOE>+<FOE term>

<FOE> : := <simple FOE> I exp(<FOE a.>)

Definition o_ffradical expressions

<base primary>: := <rational> I <single variable> I (<base>)

<base term>: := <base primary> I <base term>e<base primar}_l

<base term>/<base primary>

<base>: := <base term> I <base>+<base term> I <base>-<base term>

<radical primary>: := <base primary> I (<radical>)

<radical factor>: := <radical primary> I <base>_<rationa]>

<radical term>: := <radical factor> I <radical term>w

, <radical factor> I <radical term>/<radical factor>

<radical>: := <radical term> I <simple radical>+<radical term> I

<simple radical>-<radical term>

Definition of the class C

<C primary> ::= <radical> I (<C>)

<C term>::= <C primary> I <C term>_<C primary> I <C term>/<C primary>

<simple C>::= <C term> I <simple C>+<C term> I <simple C>-<C term>

<C>- .= <simple C> I exp(<radical>)
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