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Abstract—In recent work, Özgür, Lévêque, and Tse (2007) ob-
tained a complete scaling characterization of throughput scaling
for random extended wireless networks (i.e., � nodes are placed
uniformly at random in a square region of area �). They showed
that for small path-loss exponents � � ��� ��, cooperative commu-
nication is order optimal, and for large path-loss exponents � �

�, multihop communication is order optimal. However, their re-
sults (both the communication scheme and the proof technique)
are strongly dependent on the regularity induced with high prob-
ability by the random node placement. In this paper, we consider
the problem of characterizing the throughput scaling in extended
wireless networks with arbitrary node placement. As a main re-
sult, we propose a more general novel cooperative communication
scheme that works for arbitrarily placed nodes. For small path-loss
exponents � � ��� ��, we show that our scheme is order optimal
for all node placements, and achieves exactly the same throughput
scaling as in Özgür et al. This shows that the regularity of the node
placement does not affect the scaling of the achievable rates for
� � ��� ��. The situation is, however, markedly different for large
path-loss exponents � � �. We show that in this regime the scaling
of the achievable per-node rates depends crucially on the regularity
of the node placement. We then present a family of schemes that
smoothly “interpolate” between multihop and cooperative commu-
nication, depending upon the level of regularity in the node place-
ment. We establish order optimality of these schemes under adver-
sarial node placement for � � �.

Index Terms—Arbitrary node placement, capacity scaling, coop-
erative communication, hierarchical relaying, multihop communi-
cation, wireless networks.

I. INTRODUCTION

C ONSIDER a wireless network with nodes placed on
(usually referred to as an extended network),

with each node being the source for one of source–destination
pairs and the destination for another pair. The performance of
this network is captured by , the largest uniformly achiev-
able rate of communication between these source–destination
pairs. While the scaling behavior of as the number of
nodes goes to infinity is by now well understood for random
node placement, little is known for the case of arbitrary node
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placements. In this paper, we are interested in analyzing the
impact of such arbitrary node placement on the scaling of

.

A. Related Work

The problem of determining the scaling of was first an-
alyzed by Gupta and Kumar [1]. They show that, under random
placement of nodes in the region, certain models of communica-
tion motivated by current technology, and random source–des-
tination pairing, the maximum achievable per-node rate
can scale at most as . Moreover, it was shown that
multihop communication can achieve essentially the same order
of scaling.

Since [1], the problem has received a considerable amount of
attention. One stream of work [2]–[8] has progressively broad-
ened the conditions on the channel model and the communica-
tion model, under which multihop communication is order op-
timal. Specifically, with a power loss of for signals sent
over distance , it has been established that under high signal
attenuation and random node placement, the best achiev-
able per-node rate for random source–destination pairing
scales essentially like and that this scaling is achiev-
able with multihop communication.

Another stream of work [8]–[12] has proposed progressively
refined multiuser cooperative schemes, which have been shown
to significantly outperform multihop communication in certain
environments. In an exciting recent work, Özgür et al. [8] have
shown that with nodes placed uniformly at random, and with
low signal attenuation , a cooperative communication
scheme can perform significantly better than multihop commu-
nication. More precisely, they show that for , the best
achievable per-node rate for random source–destination pairing
scales as and cooperative communica-
tion achieves a per-node rate of (here, is
an arbitrary but fixed constant). That is, cooperative commu-
nication is essentially order optimal in the attenuation regime

.
In summary, for random extended networks with random

source–destination pairing, the optimal communication scheme
exhibits the following threshold behavior: for , the
cooperative communication scheme is order optimal, while for

, the multihop communication scheme is order optimal.

B. Our Contributions

The characterization of the scaling of as a function of
the path-loss exponent mentioned in the last paragraph de-
pends critically on the regularity induced with high probability
by placing the nodes uniformly at random. However, a wireless
network encountered in practice might not exhibit this amount
of regularity. Our interest is therefore in understanding the im-
pact of the node placement on the scaling of . To this end,

0018-9448/$26.00 © 2009 IEEE
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we consider wireless networks with arbitrary (i.e., determin-
istic) node placement (with minimum-separation constraint).

The impact of this arbitrary node placement depends crucially
on the path-loss exponent . For small path-loss exponents

, we show that for random source–destination pairing, the
rate of the best communication scheme is upper bounded as

. We then present a novel coopera-
tive communication scheme that achieves for any path-loss ex-
ponent a per-node rate of . Thus,
our cooperative communication scheme is essentially order op-
timal for any such arbitrary network with . In other
words, in the small path-loss regime, the scaling of is the
same irrespective of the regularity of the node placement.

The situation is, however, quite different for large path-loss
exponents . We show that in this regime the scaling of

depends crucially on the regularity of the node place-
ment, and multihop communication may not be order optimal
for any value of . In fact, for less regular networks, we need
more complicated cooperative communication schemes to
achieve optimal network performance. Towards that end, we
present a family of communication schemes that smoothly “in-
terpolate” between cooperative communication and multihop
communication, and in which nodes communicate at scales that
vary smoothly from local to global. The amount of “interpola-
tion” between the cooperative and multihop schemes depends
on the level of regularity of the underlying node placement. We
establish the optimality of this family of schemes for all
under adversarial node placement.

In summary, for , the regularity of the node place-
ment has no impact on the scaling of . Cooperative com-
munication is order optimal in this regime and achieves the same
scaling as in the case of random node placement. For , the
regularity of the node placement strongly impacts the scaling of

, and a communication scheme “interpolating” between
multihop and cooperative communication depending on the reg-
ularity of the node placement is order optimal (under adversarial
node placement). In particular, simple multihop communication
may not be order optimal for any . This contrasts with the
case of random node placement where multihop communication
is order optimal for all .

C. Organization

The remainder of this paper is organized as follows. Section II
describes in detail the communication model. Section III pro-
vides formal statements of our results. Sections IV and V
describe our new cooperative communication scheme (for the

regime) and “interpolation” scheme (for the
regime) for arbitrary wireless networks. Sections VI–XI contain
proofs. Finally, Sections XII and XIII contain discussions and
concluding remarks.

II. MODEL

In this section, we introduce some notational conventions and
describe in detail the network and channel models.

We use the following conventions: for different denote
strictly positive finite constants independent of . Vectors and
matrices are denoted by boldface whenever the vector or matrix

structure is of importance. We denote by and trans-
pose and conjugate transpose, respectively. To simplify nota-
tion, we assume, when necessary, that fractions are integers and
omit and operators.

Consider the square

of area , and let be a set of nodes
on .1 We say that has minimum-separation if

for all , where is the Euclidean
distance between nodes and . We use the same channel model
as in [8]. Namely, the (sampled) received signal at node is

(1)

for all , and where are the (sampled) signals
sent by the nodes in . Here are independent and
identically distributed (i.i.d.) with distribution (i.e.,
circularly symmetric complex Gaussian with mean 0 and vari-
ance 1), and

for path-loss exponent . We assume that for each
, the phases are i.i.d.2 with uniform distribution

on . We either assume that for each the
random process is stationary ergodic in , which is
called fast fading in the following, or that for each
the random process is constant in , which is called
slow fading in the following. In either case, we assume that full
channel state information (CSI) is available at all the nodes, i.e.,
each node knows all at time . While the full CSI
assumption is quite strong, it can be shown that availability of a
2-bit quantized version of at all nodes is sufficient
for the achievable schemes presented here (see Section XII-A
for the details). We also impose an average power constraint of
1 on the signal for every node .

Each node wants to transmit information at
uniform rate to some other node . We call
the source and the destination node of this communication
pair. The set of all communication pairs can be described by
a traffic matrix , where the entry in
corresponding to is equal to 1 if node is a source for
node . We say that is a permutation traffic matrix if it
is a permutation matrix (i.e., every node is a source for exactly
one communication pair and a destination for exactly one

1The setting considered here with � nodes placed on a square of area � is
called an extended network. If the � nodes are placed on a square of unit area,
we speak of a dense network. While dense networks are not treated in detail in
this paper, we briefly discuss implications of the results for the dense setting in
Section XII-C.

2It is worth pointing out that recent work [13] suggests that, under certain
assumptions on scattering elements, for � � ��� ��, and for very large values
of �, the i.i.d. phase assumption as a function of �� � � � ��� used here is
too optimistic. However, subsequent work by the same authors [14] shows that
under different assumptions on the scatterers, the channel model used here is
still valid even for � � �����, and for very large values of �. This indicates that
the question of channel modeling for very large networks in the low path-loss
regime is somewhat delicate and requires further investigation. We point out that
for � � � this issue does not arise.
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communication pair). For a traffic matrix , let be the
highest rate of communication that is uniformly achievable for
each source–destination pair. For a permutation traffic matrix

can also be understood as the maximal achievable
per-node rate.

III. MAIN RESULTS

This section presents the formal statement of our results. The
results are divided into two parts. In Section III-A, we con-
sider low path-loss exponents, i.e., . We present a
cooperative communication scheme for arbitrary node place-
ment and for either fast or slow fading. We show that this com-
munication scheme is order optimal for all node placements
when . In Section III-B, we consider high path-loss
exponents, i.e., . We present a communication scheme
that “interpolates” between the cooperative and multihop com-
munication schemes, depending on the regularity of the node
placement. We show that this communication scheme is order
optimal under adversarial node placement with regularity con-
straint when .

A. Low Path-Loss Regime

The first result proposes a novel communication scheme,
called hierarchical relaying in the following, and bounds the
per-node rate that it achieves. This provides a lower
bound to , the largest achievable per-node rate. The hier-
archical relaying scheme enables cooperative communication
on the scale of the network size. In the random node placement
case, this cooperation could be enabled in a cluster around
the source node (cooperatively transmitting) and in a cluster
around its destination node (cooperatively receiving). With
arbitrary node placement, such an approach does no longer
work, as both the source as well as the destination nodes may
be isolated. The hierarchical relaying scheme circumvents this
issue by relaying data between each source–destination pair
over a densely populated region in the network. A detailed
description of this scheme is provided in Section IV, and the
proof of Theorem 1 is contained in Section VII.

Theorem 1: Under fast fading, for any ,
and , there exists

such that for any , node placement with minimum sepa-
ration , and permutation traffic matrix , we have

The same conclusion holds for slow fading with probability at
least

as .

Theorem 1 shows that the per-node rate achievable by
the hierarchical relaying scheme is at least , where
the “loss” term converges to zero as at a rate
arbitrarily close to (by choosing small). The

performance of the hierarchical relaying scheme can intuitively
be understood as follows. As mentioned before, the scheme
achieves cooperation on a global scale. This leads to a multi-
antenna gain of order . On the other hand, communication is
over a distance of order , leading to a power loss of order

. Combining these two factors results in a per-node rate
of .

We note that Theorem 1 remains valid under some-
what weaker conditions than having minimum separation

. Specifically, we show that the result of Özgür et

al. [8] can be recovered through Theorem 1 as the random node
placement satisfies these weaker conditions. We discuss this in
more detail in Section XII-D.

The next theorem establishes optimality of the hierarchical
relaying scheme in the range of for arbitrary
node placement. The proof of the theorem is presented in
Section VIII.

Theorem 2: Under either fast or slow fading, for any
, there exists such that

for any , node placement with minimum separation ,
and for chosen uniformly at random from the set of all
permutation traffic matrices, we have

with probability as .

Note that Theorem 2 holds only with probability
for different reasons for the slow- and fast-fading case. For fast
fading, this is due to the randomness in the selection of the
permutation traffic matrix. In other words, for fast fading, with
high probability, we select a traffic matrix for which the theorem
holds. For the slow-fading case, there is additional randomness
due to the fading realization. Here, with high probability, we se-
lect a traffic matrix and we experience a fading for which the
theorem hold.

Comparing Theorems 1 and 2, we see that for , the
proposed hierarchical relaying scheme is order optimal, in the
sense that

Moreover, the rate it achieves is the same order as is achiev-
able in the case of randomly placed nodes. Hence, in the low
path-loss regime , the heterogeneity caused by the
arbitrary node placement has no effect on achievable communi-
cation rates.

B. High Path-Loss Regime

We now turn to the high path-loss regime . In the case
of randomly placed nodes, multihop communication achieves a
per-node rate of with probability
and is order optimal for . For arbitrarily placed nodes,
the situation is quite different as Theorem 3 shows. The proof
of Theorem 3 is contained in Section IX.

Theorem 3: Under either fast or slow fading, for any ,
for any , there exists a node placement with minimum
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separation such that for chosen uniformly at random
from the set of all permutation traffic matrices, we have

as with probability .

Comparing Theorem 3 with Theorem 1 shows that under ad-
versarial node placement with minimum-separation constraint
the hierarchical relaying scheme is order optimal even when

. Moreover, Theorem 3 shows that there exist node place-
ments satisfying a minimum separation constraint for which hi-
erarchical relaying achieves a rate of at least a factor of order
higher than multihop communication for any . In other
words, for those node placements, cooperative communication
is necessary for order optimality also for any , in stark
contrast to the situation with random node placement, where
multihop communication is order optimal for all .

Theorem 3 suggests that it is the level of regularity of the node
placement that decides what scheme to choose for path-loss ex-
ponent . So far, we have seen two extreme cases. For
random node placement, resulting in very regular node place-
ments with high probability, only local cooperation is necessary
and multihop is an order-optimal communication scheme. For
adversarial arbitrary node placement, resulting in a very irreg-
ular node placement, global cooperation is necessary and hierar-
chical relaying is an order-optimal communication scheme. We
now make this notion of regularity precise, and show that, de-
pending on the regularity of the node placement, an appropriate
“interpolation” between multihop and hierarchical relaying is
required for to achieve the optimal performance. We refer
to this “interpolation” scheme as cooperative multihop commu-
nication in the following.

Before we state the result, we need to introduce some no-
tation. Consider again a node placement with
minimum separation . Divide into squares
of sidelength , and fix a constant . We say
that is -regular at resolution if every such square
contains at least nodes. Note that every node placement
is trivially 1-regular at resolution ; a random node placement
can be shown to be -regular at resolution with proba-
bility as for any ; and nodes that are
placed on each point in the integer lattice inside are -reg-
ular at resolution 1.

The cooperative multihop scheme enables cooperative com-
munication on the scale of regularity . Neighboring squares
of sidelength cooperatively communicate with each other.
To transmit between a source and its destination, we use mul-
tihop communication over those squares. In other words, we use
cooperative communication at small scale , and multihop
communication at large scale . For regular node placements,
i.e., , the cooperative multihop scheme becomes the
classical multihop scheme. For very irregular node placement,
i.e., , the cooperative multihop scheme becomes
the hierarchical relaying scheme discussed in the last section.

The next theorem provides a lower bound on the per-node rate
achievable with the cooperative multihop scheme. The

proof of the theorem can be found in Section X.

Theorem 4: Under fast fading, for any
, and , there exists

such that for any , node placement with minimum sepa-
ration , and permutation traffic matrix , we have

where

is regular at resolution

The same conclusion holds for slow fading with probability
as .

Theorem 4 shows that if is regular at resolu-
tion , then a per-node rate of at least

is achievable, where, as before, the
“loss” term converges to zero as at a rate
arbitrarily close to . The performance of the
cooperative multihop scheme can intuitively be understood as
follows. The scheme achieves cooperation on a scale of .
This leads to a multiantenna gain of order . On the other
hand, communication is over a distance of order , leading
to a power loss of order . Moreover, each source–des-
tination pair at a distance of order must transmit their
data over order many hops, leading to a multihop
loss of . Combining these three factors results in a
per-node rate of .

The next theorem shows that Theorem 4 is tight under adver-
sarial node placement under a constraint on the regularity. The
proof of the theorem is presented in Section XI.

Theorem 5: Under either fast or slow fading, for any ,
there exists , such that for any , and

, there exists a node placement with minimum sep-
aration and -regular at resolution such that for

chosen uniformly at random from the set of all permuta-
tion traffic matrices, we have

with probability as .

As an example, assume that

for some . Then, Theorem 4 shows that for any node
placement of regularity and

where converges to zero as at a rate arbitrarily
close to . In other words
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Fig. 1. Sketch of one level of the hierarchical relaying scheme. Here
��� �� �� are three source–destination pairs. Groups of source–destina-
tion pairs relay their traffic over dense squarelets, which contain a number of
nodes proportional to their area (shaded). We time share between the different
dense squarelets used as relays. Within all these relay squarelets, the scheme is
used recursively to enable joint decoding and encoding at each relay.

Moreover, by Theorem 5, there exist node placements with the
same regularity such that for random permutation traffic with
high probability is (essentially) of the same order, in the
sense that

In particular, for (i.e., regular node placement), and for
(i.e., random node placement), we ob-

tain the order scaling as expected. For (i.e., com-
pletely irregular node placement), we obtain the order
scaling as in Theorems 1 and 3.

IV. HIERARCHICAL RELAYING SCHEME

This section describes the architecture of our hierarchical re-
laying scheme. On a high level, the construction of this scheme
is as follows. Consider nodes placed arbitrarily on the
square region with a minimum separation . Divide

into squarelets of equal size. Call a squarelet dense, if it
contains a number of nodes proportional to its area. For each
source–destination pair, choose such a dense squarelet as a
relay, over which it will transmit information (see Fig. 1).

Consider now one such relay squarelet and the nodes that are
transmitting information over it. If we assume for the moment
that all the nodes within the same relay squarelet could coop-
erate, then we would have a multiple-access channel (MAC)
between the source nodes and the relay squarelet, where each
of the source nodes has one transmit antenna, and the relay
squarelet (acting as one node) has many receive antennas. Be-
tween the relay squarelet and the destination nodes, we would
have a broadcast channel (BC), where each destination node has
one receive antenna, and the relay squarelet (acting again as one
node) has many transmit antennas. The cooperation gain from
using this kind of scheme arises from the use of multiple an-
tennas for these multiple access and broadcast channels.

To actually enable this kind of cooperation at the relay
squarelet, local communication within the relay squarelets

is necessary. It can be shown that this local communication
problem is actually the same as the original problem, but at a
smaller scale. Hence, we can use the same scheme recursively
to solve this subproblem. We terminate the recursion after
several iterations, at which point we use simple time-division
multiple access (TDMA) to bootstrap the scheme.

The construction of the hierarchical relaying scheme is
presented in detail in Section IV-A. A back-of-the-envelope
calculation of the per-node rate it achieves is presented in
Section IV-B. A detailed analysis of the hierarchical relaying
scheme is presented in Sections VI and VII.

A. Construction

Recall that

is the square region of area . The scheme described here as-
sumes that nodes are placed arbitrarily in with minimum
separation . We want to find some rate, say , that
can be supported for all source–destination pairs of a given
permutation traffic matrix . The scheme that is described
below is “recursive” (and hence hierarchical) in the following
sense. In order to achieve rate for nodes in , it will
use as a building block a scheme for supporting rate for a
network of

nodes over (square of area ) with

for any permutation traffic matrix of nodes. Here the
branching factor is a function such that as

. We will optimize over the choice of later. The
same construction is used for the scheme over , and so
on. In general, our scheme does the following at level of
the hierarchy (or recursion). In order to achieve rate for any
permutation traffic matrix over

nodes in , with

use a scheme achieving rate over nodes in
for any permutation traffic matrix . The recursion is ter-
minated at some level to be chosen later.

We now describe how the hierarchy is constructed between
levels and for . Each source–destina-
tion pair chooses some squarelet as a relay over which it trans-
mits its message. This relaying of messages takes place in two
phases—a multiple-access phase and a broadcast phase. We first
describe the selection of relay squarelets, then the operation of
the network during the multiple-access and broadcast phases,
and finally, the termination of the hierarchical construction.
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Fig. 2. Description of the multiple access phase at level � in the hierarchy with � � . The first system block represents the wireless channel, connecting
source nodes �� � with relay nodes �� � . The second system block represents quantizers �� � used at the relay nodes. The third system block
represents using � times the communication scheme at level ��� (organized as � permutation traffic matrices �� �� �� ) to “transpose” the matrix
of quantized observations ��� � . In other words, before the third system block, node � has access to ��� � , and after the third system block, node �
has access to ��� � . The fourth system block represents matched filters used at the relay nodes.

1) Setting up Relays: Given nodes in , divide the
square region into equal sized squarelets. Denote
them by . Call a squarelet dense if it contains
at least nodes. In other words, a dense
squarelet contains a number of nodes of at least a
fraction of its area. We show that since the nodes in have
constant minimum separation , a squarelet can contain at
most nodes, and hence, that there are
at least dense squarelets. Each source–destination
pair chooses a dense squarelet such that both the source and
the destination are at a distance from it. We call this
dense squarelet the relay of this source–destination pair. We
show that the relays can be chosen such that each relay squarelet
has at most communication pairs that use it as relay, and
we assume this worst case in the following discussion.

2) Multiple-Access Phase: Source nodes that are assigned to
the same (dense) relay squarelet send their messages simultane-
ously to that relay. We time share between the dif-
ferent relay squarelets. If the nodes in the relay squarelet could
cooperate, we would be dealing with a MAC with at most
transmitters, each with one antenna, and one receiver with at
least antennas. In order to achieve this cooperation, we
use a hierarchical (i.e., recursive) construction. For this recur-
sive construction, assume that we have access to a communica-
tion scheme to transmit data according to a permutation traffic
matrix between nodes located in a square of area

. We now show how this scheme at scale can be used
to construct a scheme for scale (see Fig. 2).

Suppose there are source nodes [located
anywhere in ] that relay their message over the relay
nodes (located in the same dense squarelet of area

). Each source node divides its message bits into
parts of equal length. Denote by the encoded part of the
message bits of node ( is really a large sequence of channel
symbols; to simplify the exposition, we will, however, assume
it is only a single symbol). The message parts corresponding to

will be relayed over node , as will become clear
in the following. Sources transmit at time
for .

Let be the observed channel output at relay at time
. Note that depends only on channel inputs . In

order to decode the message parts corresponding to at
relay node , it needs to obtain the observations from
all other relay nodes. In other words, all relays need to exchange

information. For this, each relay quantizes its observation
at an appropriate rate independent of to obtain

. Quantized observation is to be sent from relay
to relay . Thus, each of the relay nodes now has a

message of size for every other relay node.
This communication demand within the relay squarelet

can be organized as permutation traffic matrices
between the relay nodes. Note that

these relay nodes are located in the same square of area .
In other words, we are now faced with the original problem,
but at smaller scale . Therefore, using times the
assumed scheme for transmitting according to a permutation
traffic matrix for nodes in , relay can obtain all
quantized observations . Now uses matched
filters on to obtain estimates of .
In other words, each node computes3

for every . Using these estimates it then de-
codes the messages corresponding to .

3) Broadcast Phase: Nodes in the same relay squarelet then
send their decoded messages simultaneously to the destination
nodes corresponding to this relay. We time share between the
different relay squarelets. If the nodes in the relay squarelet
could cooperate, we would be dealing with a BC with one trans-
mitter with at least antennas and with at most re-
ceivers, each with one antenna. In order to achieve this cooper-
ation, a similar hierarchical construction as for the MAC phase
is used. As in the MAC phase, assume that we have access to a
scheme to transmit data according to a permutation traffic ma-
trix between nodes located in a square of area

. We again use this scheme at scale in the construc-
tion of the scheme for scale (see Fig. 3).

Suppose there are relay nodes (located in
the same dense squarelet of area ) that relay traffic for
destination nodes [located anywhere in ].
Recall that at the end of the MAC phase, each relay node
has (assuming decoding was successful) access to parts of the
message bits of all source nodes . Node re-encodes

3Note that, since we assume full CSI, node � has access to the channel gains
�	 �
�� at any time � � 
 . In particular, this is the case at the time the
matched filtering is performed.
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Fig. 3. Description of the broadcast phase at level � in the hierarchy with � � . The first system block represents transmit beamforming at each of the
relay nodes �� � . The second system block represents quantizers �� � used at the relay nodes. The third system block represents using � times
the communication scheme at level �� � (organized as � permutation traffic matrices �� �� �� ) to “transpose” the matrix of quantized beamformed
channel symbols ��� � . In other words, before the third system block, node � has access to ��� � , and after the third system block, node � has access
to ��� � . The fourth system block is the wireless channel, connecting relay nodes �� � with destination nodes �� � .

these parts independently; call the encoded channel
symbols (as before, we assume is only a single symbol
to simplify exposition). Relay node then performs transmit
beamforming on for the transmit antennas of

to be sent at time (for some appropriately chosen
not depending on ). Call the resulting channel

symbol to be sent from relay node . Then4

In order to actually send this channel symbol, relay node
needs to obtain from node . Thus, again all relay nodes
need to exchange information.

To enable local cooperation within the relay squarelet, each
relay node quantizes its beamformed channel symbols

at an appropriate rate with independent
of to obtain . Now, quantized value is sent
from relay to relay . Thus, each of the relay nodes
now has a message of size for every other relay node.

This communication demand within the relay squarelet
can be organized as permutation traffic matrices

between the relay nodes. Note that
these relay nodes are located in the same square of area .
Hence, we are again faced with the original problem, but at
smaller scale . Using times the assumed scheme
for transmitting according to a permutation traffic matrix for

nodes in , relay can obtain all quantized
beamformed channel symbols . Now each sends

over the wireless channel at time instance (with
chosen to account for the preceding MAC phase and the local
cooperation in the BC phase). Call the received channel
output at destination node at time instance . Using ,
destination node can now decode part of the message bits
of its source node .

4) Spatial Reuse and Termination of Recursion: The scheme
does appropriately weighted time-division among different
levels . Within any level , multiple regions
of the original square of area are being operated in par-
allel. The details related to the effects of interference between

4Note that, since we only assume causal CSI, relay node � does not actually
have access to �	 �
 � ��� at the time the beamforming is performed.
This problem can, however, be circumvented. The details are provided in the
proofs (see Lemma 10).

different regions operating at the same level of hierarchy are
discussed in the proofs.

The recursive construction terminates at some large enough
level (to be chosen later). At this scale, we have
nodes in area . A permutation traffic matrix at this level
comprises source–destination pairs. These transmissions are
performed using TDMA. Again, multiple regions in the original
square of area at level are active simultaneously.

B. Achievable Rates

Here we present a back-of-the-envelope calculation of the
per-node rate achievable with the hierarchical relaying
scheme described in the previous section. The complete proof
is stated in Section VII. We assume throughout that long block
codes and corresponding optimal decoders are used for trans-
mission.

Instead of computing the rate achieved by hierarchical re-
laying, it will be convenient to instead analyze its inverse, i.e.,
the time utilized for transmission of a single message bit from
each source to its destination under a permutation traffic ma-
trix . Using the hierarchical relaying scheme, each message
travels through levels of the hierarchy. Call the amount
of time spent for the transmission of one message bit between
each of the source–destination pairs at level in the hier-
archy. We compute recursively.

At any level , there are multiple regions of area op-
erating at the same time. Due to the spatial reuse, each of these
regions gets to transmit a constant fraction of time. It can be
shown that the addition of interference due to this spatial reuse
leads only to a constant loss in achievable rate. Hence, the time
required to send one message bit is only a constant factor higher
than the one needed if region is considered separately.
Consider now one such region . By the time-sharing con-
struction, only one of its dense relay squarelets of
area is active at any given moment. Hence, the time re-
quired to operate all relay squarelets is a factor
higher than for just one relay squarelet separately. Consider
now one such relay squarelet, and assume source nodes in

communicate each message bits to their respective
destination nodes through a MAC phase and BC phase with the
help of the relay nodes in this relay squarelet of area .

In the MAC phase, each of the sources simultaneously
sends one bit to each of the relay nodes. The total time for
this transmission is composed of two terms.



3966 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 9, SEPTEMBER 2009

i) Transmission of message bits from each of the
source nodes to those many relay nodes. Since

we time share between relay squarelets,
we can transmit with an average power constraint of

during the time a relay squarelet is active,
and still satisfies the overall average power constraint of
1. With this “bursty” transmission strategy, we require a
total of

(2)

channel uses to transmit bits per source node. The
terms on the left-hand side of (2) can be understood as fol-
lows: is the number of bits to be transmitted;
is the power loss since most nodes communicate over
a distance of is the average transmit
power; is the multiple-antenna gain, since we have
that many transmit and receive antennas.

ii) We show that constant rate quantization of the received
observations at the relays is sufficient. Hence, the
bits for all sources generate transmissions at
level of the hierarchy. Therefore

(3)

channel uses are needed to communicate all quantized
observations to their respective relay nodes.

Combining (2) and (3), accounting for the factor loss
due to time division between relay squarelets, we obtain that the
transmission time for one message bit from each source to the
relay squarelet in the MAC phase at level is

(4)

Next, we compute the number of channel uses per message
bit received by the destination nodes in the BC phase. Similar to
the MAC phase, each of the relay nodes has message
bits out of which one bit is to be transmitted to each of the
destination nodes. Since there are relay nodes, each desti-
nation node receives message bits. As before the required
transmission time has two components.

i) Transmission of the encoded and quantized message bits
from each of the relay nodes to all other relay nodes
at level of the hierarchy. We show that each message
bit results in quantized bits. Therefore,

bits need to be transmitted from
each relay node. This requires

(5)

channel uses.
ii) Transmission of message bits from the relay

nodes to each destination node. As before, we use
bursty transmission with an average power constraint of

during the fraction of time
each relay squarelet is active (this satisfies the overall

average power constraint of ). Using this bursty strategy
requires

(6)

channel uses for transmission of bits per destina-
tion node. As in the MAC phase, on the left-hand
side of (6) can be understood as the number of bits to be
transmitted, as the power loss for communicating

over distance as the average transmit
power, and as the multiple-antenna gain.

Combining (5) and (6), accounting for a factor loss due
to time division between relay squarelets, the transmission time
for one message bit from the relays to each destination node in
the BC phase at level is

(7)

From (4) and (7), we obtain the following recursion:

(8)

where we have used . This recursion holds for all
. At level , we use TDMA among nodes in re-

gion with a permutation traffic matrix . Each of the
source–destination pairs uses the wireless channel for

fraction of the time at power , satisfying the average
power constraint. Assuming the received power is less than for
all (so that we operate in the power limited regime), we can
achieve a rate of at least between any source–desti-
nation pair. Equivalently

(9)

Combining (8) and (9), we have

(10)

The term

is the “loss” factor over the desired order scaling, and we
now choose the branching factor and the hierarchy depth

to make it small. Fix a and set
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With this

Since , the term dominates in (10), and we
obtain

where

Hence, the per-node rate of the hierarchical relaying scheme is
lower bounded as

with

Note that to minimize the loss term, we should choose to
be small.

V. COOPERATIVE MULTIHOP SCHEME

In this section, we provide a brief description of the cooper-
ative multihop scheme. The details of the construction and the
analysis of its performance can be found in Section X.

Recall that a node placement is -regular at resolution
if every square

for some contains at least nodes. Given such a
node placement , divide it into squares of sidelength .
Consider four adjacent squares, combined into a bigger square
of sidelength . By the regularity assumption on ,
this bigger square contains at least nodes. Hence, we
can apply the hierarchical relaying scheme introduced in the
last section to support any permutation traffic within this bigger
square at a per-node rate of

where is essentially of order . By properly
choosing the permutation traffic matrices within every possible
such bigger square of sidelength , this creates an equiv-
alent communication graph with nodes each corre-
sponding to a square of sidelength in , and with edges
between nodes corresponding to neighboring squares. With the
above communication procedure and appropriate spatial reuse,
each such edge has a capacity of

The resulting communication graph is depicted in Fig. 4.
Now, to send a message from a source node in to its des-

tination node, we first locate the squares of sidelength they
are located in. We then route the message over the edges of the
communication graph constructed above in a multihop fashion.

Fig. 4. Communication graph (in bold) resulting from the construction of the
cooperative multihop scheme. The entire square has sidelength

�
�, and the

dashed squares have sidelength ����. Each (bold) edge in the communication
graph corresponds to using the hierarchical relaying scheme between the nodes
in the adjacent squares of sidelength ����.

By the construction of the communication graph, each such edge
is implemented using the hierarchical relaying scheme. In other
words, we perform multihop communication over distance
with hop length , and each such hop is implemented using
hierarchical relaying over distance . Since each edge in the
communication graph has a capacity of and has to
support roughly source–destination pairs, we obtain a
per-node rate of

per source–destination pair.

VI. ANALYSIS OF THE HIERARCHICAL RELAYING SCHEME

In this section, we analyze in detail the hierarchical relaying
scheme. Throughout Sections VI-A–VI-C, we consider commu-
nication at level , of the hierarchy. All
constants are independent of .

Recall that at level , we have a square region of area

containing

nodes . We divide into squarelets of area
. Recall that a squarelet of area in level of the hi-

erarchy is called dense if it contains at least nodes. We
impose a power constraint of during the
time any particular relay squarelet is active. Since we time share
between relay squarelets, this satisfies the overall
average power constraint (by choosing constants appropriately).

Since other regions of area are active at the same time as
the one under consideration, we have to deal with interference.
To this end, we consider a slightly more general noise model
that includes the experienced interference at the relay squarelets.
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More precisely, we assume that, for all , the additive
noise term is independent of the signal and of
the channel gains ; that the noise term is stationary
and ergodic across time , but with arbitrary dependence across
nodes ; and that the noise has zero mean and bounded power

independent of . Note that we do not require the additive
noise term to be Gaussian. In the above, accounts for both
noise (which has power in the original model), as well as in-
terference. We show in Section VII that these assumptions are
valid.

Recall the following choice of and :

(11)

with independent of . This choice satisfies

if

for all

as (12)

The first condition in (12) implies that the number of squarelets
we divide into increases in . The second condition

implies the squarelet area at the last level of the hierarchy
is bigger than . As we will see, the third condition implies that
the number of dense squarelets at the last level (and hence at
every level) grows unbounded as (see Lemma 6).

Throughout Section VI, we consider the fast-fading channel
model. Slow fading is discussed in Section VII-B.

A. Setting Up Relays

The first lemma states that the minimum-separation require-
ment implies that a constant fraction of squarelets
must be dense. We point out that this is the only consequence of
the minimum-separation requirement used to prove Theorem 1.
Thus, Theorem 1 remains valid if we just assume that Lemma 6
holds directly. See also Section XII-D for further details.

Lemma 6: For any with and
with minimum separation , each of its squarelets
of area contains at most nodes, and there are
at least dense squarelets.

Proof: Put a circle of radius around each node. By
the minimum-separation requirement, these circles do not inter-
sect. Each node covers an area of . Increasing the side-
length of each squarelet by , this provides a total area of

in which the circles around these nodes are packed. Here we
have used that by (12), and therefore

Hence, there can be at most nodes per squarelet with

Note that, since , we have .
Let be the number of dense squarelets in ,

and therefore, is the number of squarelets that

are not dense. By the argument in the last paragraph, each
dense squarelet contains at most nodes, and those
squarelets that are not dense contain less than nodes by
the definition of dense squarelets. Hence, must satisfy

Thus, using , we have

As , this yields

with

Consider with , and choose
arbitrary dense squarelets of area (as guaran-

teed by Lemma 6). Call those squarelets .
For each source–destination pair, we now select one such dense
squarelet to relay traffic over. To avoid bottlenecks, this selec-
tion has to be done such that all relay squarelets carry approxi-
mately the same amount of traffic. Moreover, for technical rea-
sons, the distances from the source and the destination to the
relay squarelet cannot be too small.

Formally, the selection of relay squarelets can be described
by the schedules with if
source node relays traffic over dense squarelet , and

with if destination node re-
ceives traffic from dense squarelet . With slight abuse of no-
tation, let be the distance between node
and the closest point in , i.e.,

(13)

Define the sets

(14)

and

The sets and are the collection of schedules sat-
isfying the conditions mentioned in the last paragraph. More
precisely, the first condition in (14) ensures that at most
source–destination pairs relay over the same dense squarelet,
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the second condition ensures that each source–destination pair
chooses at most one relay squarelet, and the third condition
ensures that sources and destinations are at least at distance

from the chosen relay squarelet.
Next, we prove that any node placement that satisfies Lemma

6 allows for a decomposition of any permutation traffic matrix
into a small number of schedules belonging to and
.

Lemma 7: There exist such that for all large enough
(independent of ), and every permutation traffic matrix

, we can find schedules

satisfying

Proof: Pick an arbitrary source–destination pair in ,
and consider the squarelets containing the source and the desti-
nation node. Since each squarelet has side length , there
are at most 50 squarelets at distance less than from ei-
ther of those two squarelets. As as

by (12), there exists (independent of ) such that, for
, we have . Since there are at least

dense squarelets by Lemma 6, there must exist at
least dense squarelets that are at distance at least

from both squarelets containing the source and the des-
tination node.

In order to construct a decomposition of , we use the
following procedure. Sequentially, each of the source–desti-
nation pairs chooses one of the (at least) dense
squarelets at distance at least that has not already
been chosen by other pairs. If any source–destination pair
cannot select such a squarelet, then stop the procedure and use
the source–destination pairs matched with dense squarelets
so far to define matrices and . Now, re-
move all the matched source–destination pairs, forget that
dense squarelets were matched to any source–destination pair,
and redo the above procedure, going through the remaining
source–destination pairs.

Let

We claim that by repeating this process of generating matrices
and , we can match all source–destination

pairs to some dense squarelet with at most such ma-
trices. Indeed, a new pair of matrices is generated only when a
source–destination pair cannot be matched to any of its avail-
able (at least) dense squarelets. If this happens,
all these dense squarelets are matched by
pairs. Hence, at least source–destination pairs are
matched in each “round.” Since there are total pairs, we
need at most

matrices and .

For a permutation traffic matrix , communication pro-
ceeds as follows. Write

as in Lemma 7. Split time into equal length time slots. In
slot , we use as our traffic matrix. Consider
without loss of generality in the following. Write

where is the traffic relayed over the
dense squarelet . We time share between the schedules
for . Consider now any such . In
the worst case, there are exactly communication pairs to
be relayed over , and the relay squarelet
contains exactly nodes. We will assume this worst case
in the following.

We focus on the transmission according to the traffic ma-
trix . Let be the nodes in

, and let and be the source and
destination nodes of , respectively.
In other words, the source nodes communicate to
their respective destination nodes using the nodes

as relays.

B. Multiple-Access Phase

Each source node in splits its message into
equal length parts. Part at every node is to be
relayed over the th node in . Each part is separately
encoded at the source and separately decoded at the destination.
After the source nodes are done transmitting their messages, the
nodes in the relay squarelet quantize their (sampled) observa-
tions corresponding to part and communicate the quantized
values to the th node in the relay squarelet. This node then de-
codes the th message parts of all source nodes. Note that this
induces a uniform traffic pattern between the nodes in the relay
squarelet, i.e., every node needs to transmit quantized observa-
tions to every other node. While this traffic pattern does not cor-
respond to a permutation traffic matrix, it can be written as a
sum of permutation traffic matrices. A fraction of
the traffic within the relay squarelet is transmitted according to
each of these permutation traffic matrices. This setup is depicted
in Fig. 2 in Section IV-A.

Assuming for the moment that we have a scheme to send
the quantized observations to the dedicated node in the relay
squarelet, the traffic matrix between and

describes then a MAC with transmitters, each
with one antenna, and one receiver with antennas. We call
this the MAC induced by in the following. Before
we analyze the rate achievable over this induced MAC, we need
an auxiliary result on quantized channels.

Consider the quantized channel in Fig. 5. Here, is the
channel encoder, is the channel decoder, and are
quantizers. All these have to be chosen. and , on
the other hand, represent fixed stationary ergodic channels
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Fig. 5. Sketch of the quantized channel: � and � are the channel encoder and decoder, respectively; �� � are quantizers; and � and � represent
stationary ergodic channels with the indicated marginal distributions.

with the indicated marginal distributions. We call the rate of
the channel code and the rates of quantizers

.

Lemma 8: If there exist distributions and
such that and , then

is achievable over the quantized channel.
Proof: The proof follows from a simple extension of The-

orem 1 in Appendix II of [8].

Lemma 9: Let the additive noise be uncor-
related (over ). For the MAC induced by with
per-node average power constraint , a rate of

per source node is achievable, and the number of bits required at
each relay node to quantize the observations is at most bits
per total message bits5 sent by the source nodes.

Proof: The source nodes send signals with a power of (es-
sentially) for a fraction of time
and are silent for the remaining time. To ensure that interference
is uniform, the time slots during which the nodes send signals
are chosen randomly as follows. Generate independently for
each region a Bernoulli process with param-
eter for some small . The
nodes in are active whenever and remain silent
otherwise. Since the blocklength of the codes used is assumed to
be large, this satisfies the average power constraint of with
high probability for any . Since we are interested only in
the scaling of capacity, we ignore the additional term
in the following to simplify notation. Clearly, we only need to
consider the fraction of time during which .

Let be the received vector at the relay squarelet, and let be
the (componentwise) quantized observations. We use a matched
filter at the relay squarelet, i.e.,

where column vector are the channel
gains between node and the nodes in the relay
squarelet . The use of a matched filter is possible since
we assume full CSI is available at all the nodes.

We now use Lemma 8 to show that we can design quantizers
of constant rate and achieve a per-node commu-

nication rate of at least . The first channel

5Total message bits refer to the sum of all message bits transmitted by the
� source nodes.

in Lemma 8 (see Fig. 5) will correspond to the wireless channel
between a source node and its relay squarelet . The
second “channel” in Lemma 8 will correspond to the matched
filter used at the relay squarelet. To apply Lemma 8, we need to
find a distribution for and for . Define

with as in (13), to be the normalized distance of the
source node to the relay squarelet . For
each , let independent
of for , and let for
independent of and for some . Note that the channel
input has power that depends on the normalized distance

(i.e., only nodes that are at maximal distance
from the relay squarelet transmit at full available power).

This is to ensure that all signals are received at roughly the same
strength by the relays.

We proceed by computing the mutual informations
and as required in Lemma

8 (the conditioning on being due to the availability of
full CSI). Note first that by construction of [see
(14)], we have for and

and, hence

(15)

From this, and since , we obtain

(16)

We start by computing . We have

and, hence, has mean zero and variance
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where we have used (16). Hence

(17)

We now compute . We have

Conditioned on

and

where we have used the assumption that are un-
correlated in the second line. Using (16), this is, in turn, upper
bounded by

Similarly, we can lower bound the received signal power as

Since Gaussian noise is the worst additive noise under a power
constraint [15], and applying Jensen’s inequality to the convex
function , we obtain (18), shown at the bottom of
the page. We have for

(19)

and, hence, using (15)

Therefore, we can continue (18) as

(20)
Using (17) and (20) in Lemma 8, and observing that we only

communicate during a fraction

of time yields a per source node rate arbitrarily close
to

and a quantizer of rate arbitrarily close to

bits per observation at each relay node. Since by (20) mu-
tual information is at least for every

during the fraction of time we actually commu-
nicate, this implies that there are at most observations at
each relay node per total message bits. Thus, the number
of bits per relay node required to quantize the observations is
at most

bits per total message bits sent by the source nodes.

C. Broadcast Phase

At the end of the MAC phase, all relay nodes re-
ceived a part of the message sent by each source node. In the
BC phase, each node in the relay squarelet encodes these mes-
sages together for transmit antennas. The encoded mes-
sage is then quantized and communicated to all the nodes in the
relay squarelet. These nodes then send the quantized encoded
message to the destination nodes . Note that this again

(18)
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induces a uniform traffic pattern between the nodes in the relay
squarelet, i.e., every node needs to transmit quantized encoded
messages to every other node. While this traffic pattern does not
correspond to a permutation traffic matrix it can be written as a
sum of permutation traffic matrices. A fraction of
the traffic within the relay squarelet is transmitted according to
each of these permutation traffic matrices. This setup is depicted
in Fig. 3 in Section IV-A.

Assuming for the moment that we have a scheme to send
the quantized encoded messages to the corresponding nodes
in the relay squarelet, the traffic matrix between

and describes then a BC with one transmitter
with antennas and receivers, each with one antenna.
We call this the BC induced by in the following.

Lemma 10: For the BC induced by with per-
node average power constraint , a rate of

is achievable per destination node, and the number of bits re-
quired to quantize the observations is at most
bits at each relay node per total message bits6 received by
the destination nodes.

Proof: Consider a node in the relay
squarelet, say the first one. From the MAC phase, this node
received the first part of the messages of each source node

. We would like to jointly encode these message
parts at the relay node using transmit beamforming, and then
transmit the corresponding encoded signal using all the nodes
in the relay squarelet. However, this cannot be done directly,
because at the encoding time, the future channel state at trans-
mission time is unknown.

We circumvent this problem by reordering the signals to be
transmitted at the relay nodes as follows. Let

be a “quantized” channel state. The part of the messages at node
one in the relay squarelet is encoded for transmit nodes
with an assumed channel gain of

where the are cycled as a function of through
all possible values in . The components
of the encoded messages are then quantized and each compo-
nent sent to the corresponding node in the relay squarelet. Once
all nodes in the relay squarelet have received the encoded mes-
sage, they send in each time slot a sample of the encoded mes-
sages corresponding to the quantized channel state closest (in
Euclidean distance) to the actual channel realization in that time
slot. By ergodicity of , each quantized channel state
is used approximately the same number of times. More pre-
cisely, as the message length grows to infinity, we can send
samples of the encoded message parts a fraction of
time with probability approaching for any . Since we
have no constraint on the encoding delay in our setup, we can

6Total message bits refers to the sum of all message bits received by the �
destination nodes.

choose arbitrarily small, and given that we are only interested
in scaling laws, we will ignore this term in the following to sim-
plify notation. Note that the destination nodes can reorder the
received samples since we assume full CSI. In the following, we
let be the random quantized channel state induced by

through the above procedure. Denote by
the corresponding channel gains.

As in the MAC phase, the nodes in the relay squarelet
send signals at a power (essentially) a fraction

of time and are silent for the remaining
time. To create interference at uniform power, this is done
in the same randomized manner as in the MAC phase. Gen-
erate independently for each region a Bernoulli process

with parameter for some
small . The nodes in are active whenever
and remain silent otherwise. As before, we ignore the additional

term. Again we only need to consider the fraction of
time during which .

Consider the message part at a relay node for destination node
. We encode this part independently; call the

encoded message part. The relay node then performs transmit
beamforming to construct the encoded message for all its desti-
nation nodes, i.e.,

where row vector contains the channel

gains to node , and where we have used . The
relay node then quantizes the vector of encoded messages com-
ponentwise and forwards the quantized version to the other
nodes in the relay squarelet. These nodes then send over the
channel to the destination nodes. The received signal at destina-
tion node is thus

With this, we have the setup considered in Lemma 8 (with
different variable names). The first “channel” in Lemma 8 (see
Fig. 5) will correspond to the transmit beamforming used at
the relay squarelet. The second channel in Lemma 8 will now
correspond to the wireless channel between the relay squarelet

and a destination node . To apply Lemma 8, we need
to find a distribution for and for . We also need to
guarantee that satisfies the power constraint at each node

in the relay squarelet. For each , let
(for some to be chosen later) indepen-

dent of for , and let for
independent of and for some . We then have

We proceed by computing the mutual informations
and as required in Lemma

8 (the conditioning on again being due to the availability
of full CSI). Note first that by construction of , we
have for any
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and, therefore

(21)

We start by computing . has mean zero
and variance

(22)

for

which is positive for , and where we have used (21) and
that

by (12). Equation (22) shows that satisfies the power con-
straint of node in the relay squarelet . Moreover, we
obtain

(23)

It remains to compute . Note that the en-
coding procedure guarantees that

Moreover, for

From this, we get by a similar argument as in Lemma 9 that

(24)

Using (23) and (24) in Lemma 8, and observing that we only
communicate during a fraction

of time, yields a per destination node rate arbitrarily
close to

bits per channel use and a quantizer rate arbitrarily close to

bits per encoded sample. Since by (24) mutual information
is at least for every during

the fraction of time we actually communicate, this implies that
there are at most encoded message samples for each relay
node per total message bits received by the destination
nodes . Thus, the number of bits required at each
relay node to quantize the encoded message samples is at most

bits per total message bits received by the destination
nodes, and where we have used by (12).

VII. PROOF OF THEOREM 1

The proof of Theorem 1 is split into two parts. In
Section VII-A, we prove the theorem for fast fading, and
in Section VII-B, for slow fading.

A. Fast Fading

In this section, we prove Theorem 1 under fast fading, i.e.,
is stationary and ergodic in . We first prove that the

assumptions on the power constraint and the interference made
in Section VI (see Lemmas 9 and 10) during the analysis of one
level of the hierarchical relaying scheme are valid. We then use
the results proved there to analyze the behavior of the entire hi-
erarchy, yielding a lower bound on the per-node rate achievable
with hierarchical relaying.

We first argue that the constraint needed
in Lemmas 9 and 10 is satisfied. Consider the hierarchical re-
laying scheme as described in Section IV and fix a level

in this hierarchy. At level , we have a square
of area , with source–destina-
tion pairs. Since we are time sharing between relay
squarelets at this level, we have an average power constraint of

during the time any particular relay squarelet is active. Since
and since as , we have, for

large enough (independent of ), that

Therefore, the power constraint in Lemmas 9 and 10 is satisfied.
We continue by analyzing the interference caused by spatial

reuse. Recall that the MAC and BC phases at level induce per-
mutation traffic within the dense squarelets at level . The
permutation traffic within those dense squarelets at level is
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transmitted in parallel with spatial reuse. We now describe in de-
tail how this spatial reuse is performed. Partition the squarelets
of area (i.e., at level ) into four subsets such that in each
subset all squarelets are at distance at least from each
other. The traffic that the MAC and BC phases at level induce
in each of the relay squarelets at level is transmitted simul-
taneously within all relay squarelets in the same subset. Con-
sider now one such subset. We show that at any relay squarelet
the interference from other relay squarelets in the same subset
is stationary and ergodic within each phase, additive (i.e., inde-
pendent of the signals and channel gains in this relay squarelet),
and of bounded power independent of .

We first argue that the interference is stationary and ergodic
within each phase. Note first that on any level in the hier-
archy, all relay squarelets are either simultaneously in the MAC
phase or simultaneously in the BC phase. Furthermore, all relay
squarelets are also synchronized for transmissions within each
of these phases (recall that the induced traffic in level is
uniform and is sent sequentially as permutation traffic). Hence,
it suffices to show that the interference generated by either the
MAC or the BC induced by some permutation traffic matrix is
stationary and ergodic. Since all codebooks for either of these
cases are generated as i.i.d. Gaussian multiplied by a Bernoulli
process, and in the BC phase beamformed for stationary and er-
godic fading, this is indeed the case.

The additivity of the interference follows easily for the MAC
phase, since codebooks are generated independently of the
channel realization in this case. Moreover, since the channel
gains are independent from each other and all codebooks are
generated as independent zero mean processes, the interference
in the MAC phase is also uncorrelated (over space) within each
relay squarelet. For the BC phase, the codebook depends only
on the channel gains within each relay squarelet at level .
Since the channel gains within relay squarelets are independent
of the channel gains between relay squarelets, this interference
is additive as well.

We now bound the interference power. Note that by the ran-
domized time-sharing construction within the MAC and BC
phases (see Lemmas 9 and 10), in each relay squarelet, at most

nodes transmit at an average power of . In the MAC
phase, all nodes use independently generated codebooks with
power at most , and thus, the received interference power from
another relay squarelet at distance is at most

by (12). In the BC phase, the nodes in each active relay
squarelet use beamforming to transmit to nodes within their
own squarelet. Since the channel gains within a relay squarelet
are independent of the channel gains between relay squarelets,
the same calculation as in (19) shows that we can upper bound
the received interference power from another relay squarelet at
distance by

in the BC phase as well.

Now, by the way in which we perform spatial reuse, every
active relay squarelet has at most active relay squarelets at
distance at least . Hence, the total interference power
received at an active relay squarelet is at most

since . With this, we have shown that the interference term
has the properties required for Lemmas 9 and 10 to apply.

We now apply those two lemmas to obtain a lower bound on
the rate achievable with hierarchical relaying. Call the
number of channel uses to transmit one bit from each of
source nodes to the corresponding destination nodes at level .
Lemma 7 states that for large enough (independent of ), we
relay over each dense squarelet at most times. Combining
this with Lemma 9, we see that to transmit one bit from each
source to its destination at this level we need at most

channel uses for the MAC phase. Here, the factor accounts
for the spatial reuse, accounts for relaying over the same
relay squarelets multiple times, accounts for time
sharing between the relay squarelets, and the last term accounts
for the time required to communicate over the MAC. Similarly,
combining Lemmas 7 and 10, we need at most

channel uses for the BC phase. Moreover, at level in the
hierarchy, this induces a per-node traffic demand of at most
bits from the MAC phase, and at most from
the BC phase. Thus, we obtain the following recursion:

(25)

for positive constants independent of and .
We use TDMA at scale with nodes and source–desti-

nation pairs. Time sharing between all source–destination pairs,
we have (during the time we communicate for each node) an
average power constraint of . Since at this level we commu-
nicate over a distance of at most , we have

(26)

Since
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as , we can upper bound (26) as

(27)

for some constant .
Now, using the recursion (25) times, and combining with

(27), we obtain

(28)

Using the definition of and in (11), we have for
large enough

Since , the term dominates in (28), and we
obtain

where

as . Therefore

with

concluding the proof for the fast-fading case.

B. Slow Fading

In this section, we prove Theorem 1 under slow fading, i.e.,
is constant as a function of . We sketch the necessary

modifications for the scheme described in Section IV to achieve
a per-node rate of at least in the slow-fading case.

Consider level in the hierarchy. Instead of
relaying the message of a source–destination pair over one relay
squarelet as in the scheme described in Section IV, we relay the
message over many dense squarelets that are at least at distance

from both the source and the destination nodes. We
time share between the different relays. The idea here is that the
wireless channel between any node and its relay squarelet might
be in a bad state due to the slow fading, making communication

over this relay squarelet impossible. Averaged over many relay
squarelets, however, we get essentially the same performance as
in the fast-fading case.

We first state a (somewhat weaker) version of Lemma 7,
appropriate for this setup. Consider again the collection of
schedules and satisfying the conditions that no
relay squarelet is selected by more than source–destina-
tion pairs and that all sources and destinations are at least at
distance from their relay squarelet (see Section VI-A
for the formal definition). The next lemma shows that for each
source–destination pair, we can find distinct
relay squarelets satisfying the above conditions (the require-
ment that these relay squarelets are distinct is expressed by the
orthogonality condition of the schedules in Lemma 11).

Lemma 11: For every large enough (independent
of ) and every permutation traffic matrix

, there are schedules

satisfying

where are collections of orthogonal
matrices in the sense that for

(29)

Proof: The proof is similar to that of Lemma 7. In order
to construct and , consider the sequen-
tial pass over all source–destination pairs (assume is large
enough for Lemma 7 to hold). As before, for each source–desti-
nation pair, there are dense relay squarelets that
are at distance at least . Each pair chooses all of these

squarelets, instead of just one as before. Stop one
round of this procedure as soon as any of the relay squarelets
is chosen by pairs. Since by the end of one round at least
one relay squarelet is matched by source–destination pairs,
there are at most such rounds.

Consider now the result of one such round. We con-
struct matrices and , with
the th pair of matrices describing communication over
the th relay squarelets chosen by source–destination pairs
matched in this round. Thus, this process produces a total
of such matrices. The
orthogonality property follows since each source–destination
pair relays over the same relay squarelet only once.

Given a decomposition of the scaled traffic matrix
into matrices, each

source–destination pair tries to relay over dense
squarelets. We time share between these relay squarelets. Since
each source–destination pair relays only a
fraction of traffic over any of its relay squarelets, the loss due
to this time sharing is now
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as opposed to in Lemma 7. In other words, the loss is at
most a factor more than in Lemma 7. Using the definition
of in (11), we have

In other words, this additional loss is small.
Consider now a specific relay squarelet. If a source–destina-

tion pair can communicate over this relay squarelet at a rate
at least th of the rate achievable in the fast-fading case
(given by Lemmas 9 and 10), it sends information over this
relay. Otherwise, it does not send anything during the period
of time it is assigned this relay. We now show that, with prob-
ability as , for every source–destination pair
on every level of the hierarchy, at least one quarter of its relay
squarelets can support this rate. As we only communicate over a
quarter of the relay squarelets, this implies that we can achieve
at least th of the per-node rate for the fast-fading case (see
Section VII-A), i.e., that is achievable with proba-
bility as .

Assume that for each source–destination pair we have
picked dense squarelets over which it can relay;

call those relay squarelets . Consider
the event that source node can communicate at the
desired rate to destination node over relay squarelets
(assuming, as before, that we can solve the communication
problem within this squarelet).

Let be the events that the interference due to
matched filtering in the MAC phase, the interference from
spatial reuse in the MAC phase, the interference due to beam-
forming in the BC phase, and the interference from spatial reuse
in the BC phase are less than eight times the one for fast fading,
respectively. From the proof of Lemmas 9 and 10 and Theorem
1 for the fast-fading case in Section VII-A, we see that

Due to spatial reuse, multiple relay squarelets will be active in
parallel. Let denote the set of channel gains between active
relay squarelets. Using essentially the same arguments as for the
fast-fading case (see Lemmas 9 and 10 and Section VII-A) and
from Markov’s inequality, we have for all

, and hence, .
We now argue that the events

(30)

are independent conditioned on , by showing that these events
depend on disjoint sets of channel gains and codebooks. As-
suming the codebooks are generated new for each communica-
tion round, then they are all independent. Thus, we only have to
consider the dependence on the channel gains. Let and
be the source and destination nodes communicating over relay
squarelet in round , and let be the nodes in .
Let be the source and destination nodes that are commu-
nicating at the same time as due to spatial reuse. Let be
the relay nodes of and . Now, and depend

(for fixed ) on the channel gains between and .

depends on the channel gains between and . de-

pends (again for fixed ) on the channel gains between and
. Since these sets are disjoint for different by the orthogo-

nality of the schedules [see (29)], conditional independence of
the events in (30) follows.

To summarize, conditioned on the channel gains between
active relay squarelets, the random variables are in-
dependent and have expected value . The
sum

is the number of relay squarelets over which the source–des-
tination pair successfully relays traffic. We now show
that with high probability at least one quarter of these relay
squarelets allow successful transmission. Applying the Chernoff
bound yields that

for some constant . Since the right-hand side is the same
for all , this implies

In each of the levels of the hierarchy, there are at most
source–destination pairs, and hence, by the union bound with

probability at least

for every source–destination pair on every level of the hierarchy
at least one quarter of its relay squarelets can support the desired
rate. By the choices of and in (11), this probability
is at least

as , and for some constant . This proves that the same
order rate as in the fast-fading case can be achieved with high
probability for all levels .

It remains to argue that the same holds for level .
Note that since we assume phase fading only, the received signal
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power is only a function of distance and not of the fading real-
ization. Since at level we use simple TDMA, this implies
that we can always achieve the same rate at level as in the
fast-fading case.

Hence, with probability as , we achieve the
same order rate at each level as for fast fading,
proving Theorem 1 for the slow-fading case.

VIII. PROOF OF THEOREM 2

Here, we provide a generalization and sharpening of the con-
verse in [8]. Most of the arguments follow [8, Th. 5.2]. We start
by proving a lemma upper bounding the multiple-input–mul-
tiple-output (MIMO) capacity.

Consider two subsets such that .
Assume we allow the nodes within and to cooperate
without any restriction. The maximum achievable sum rate
between the nodes in and is given by the MIMO ca-
pacity between them. The next lemma upper bounds

in terms of the node distances between the two sets
and the normalized channel gains

Lemma 12: Under either fast or slow fading, for every
with , we have

Proof: Let

be the matrix of (normalized) channel gains between the nodes
in and . Consider first fast fading. Under this assumption,
we have

Define

as the total received power in from , and set

with slight abuse of notation. Then

(31)

Define the event

for some and where denotes the largest singular value of
. In words, is the event that the channel gains between

and are “good.” We argue that, for appropriately chosen ,
the event has probability zero (i.e., the channel cannot be too
“good”). By Markov’s inequality

(32)

for any . We continue by upper bounding . We have

for any , and hence

(33)

Now, for any , we have by Jensen’s inequality

(34)

Combining (32)–(34) yields

(35)

for any .
Now, the arguments in [8, Lemma 5.3] show that

where is the th Catalan number. Combining with (35), this
yields

Taking the limit as and using that yields

Assume

(36)

then taking the limit as shows that

Using this, we can upper bound (31) as

Since this is true for all satisfying (36), we obtain the lemma
for the fast-fading case.
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Under slow fading

and the lemma can be obtained by the same steps.

We now proceed to the proof of Theorem 2. Consider a ver-
tical cut dividing the network into two parts. By the minimum-
separation requirement, an area of size can contain at most

nodes, and hence, we can find a cut such that each part
is of size and contains nodes. Call the left part of
the cut . Since there are nodes in and in , there
are sources in with their destination in with proba-
bility . For technical reasons, we add a node inside each
square in of the form for
some , where . These additional nodes
have no traffic demands on their own, and simply help with the
transmission. This can clearly only increase achievable rates.
Moreover, this increases the number of nodes in by less than
a factor . We now show that

(37)

and, hence, by the cut-set bound, and since there are
sources in with their destination in , we have

We prove (37) using Lemma 12. To this end, we need to upper
bound

The proof of [8, Lemma 5.3] shows that if:
1) there are less than nodes inside

for any ;
2) there is at least one node inside

for any , where ;
then

(38)

and for

(39)

for constants . For arbitrary node placement with min-
imum separation, the first requirement is satisfied for large
enough, since only a constant number of nodes can be contained
in each area of constant size. By our addition of nodes into
described above, the second condition is also satisfied. Using
Lemma 12 with (38) and (39) yields (37), concluding the proof
of Theorem 2.

IX. PROOF OF THEOREM 3

Consider a node placement with nodes located uniformly
on and nodes located on

with minimum separation . A random traffic
matrix is such that at least communication pairs have

their sources in the left cluster and destinations in the right
cluster with probability . Assume we are dealing with
such a in the following.

In this setup, with multihop, at least one hop has to cross the
gap between the left and the right cluster. Thus, even without
any interference from other nodes, we can obtain at most

Moreover, considering a cut between the two clusters (say,
and ), and applying Lemma 12 yields that

(40)
Now note that for any , we have

Hence

and

Combining this with (40) yields

for all .

X. PROOF OF THEOREM 4

We construct a cooperative multihop communication scheme
and lower bound the per-node rate it achieves. We use
the hierarchical relaying scheme as building block. Assume the
node placement is -regular at resolution for all

. We show that this implies that we can achieve a per-node rate
of at least as . Taking the smallest
such then yields the result.

We consider three cases for the value of [namely,
, and ]. First, if

as , then the result follows directly from The-
orem 1. Considering a subsequence if necessary, we can there-
fore assume without loss of generality that in
the following.

Second, consider satisfying

(41)

Divide into squares of sidelength . Since
, the number of such squares grows unbounded as

. We now show that we can use multihop communication with
a hop length of where each hops is implemented by squares
cooperatively sending information to a neighboring square. In
other words, we perform cooperative communication at local
scale and multihop communication at global scale .

Since is -regular at resolution , each such square
contains at least nodes. Pick the top left most square and
construct the square of sidelength consisting of it together
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Fig. 6. Sketch of the construction of the cooperative multihop scheme in the
proof of Theorem 4. The dashed squares have sidelength ����. The gray area
is one of the four subsets of bigger squares that communicate simultaneously.
The arrows indicate the traffic matrix � .

with its three neighbors. Continue in the same fashion, parti-
tioning all of into squares of sidelength . Note that
each such bigger square contains at least nodes by the
definition of . We assume this worst case in the following.
Partition into four subsets of those bigger squares such
that within each such subset each square is at distance at least

from any other square (see Fig. 6). We time share between
those four subsets. Consider in the following one such subset.
For every bigger square, we construct two permutation traffic
matrices and . In , the nodes in the
top two squares have as destinations the nodes in the bottom
two squares and the nodes in the bottom two squares have as
destinations the nodes in the top two squares (see Fig. 6). Sim-
ilarly, contains communication pairs between left and right
squares. We time share between and .

Communication according to within bigger squares in the
same subset occurs simultaneously. We are going to use hierar-
chical relaying within each bigger square. This is possible since
each such square contains at least nodes. We have to
show that the additional interference from bigger squares in the
same subset is such that Theorem 1 still applies. In particular,
we need to show that the interference has bounded power, say

. Using the same arguments as in the proof of Theorem 1 in
Section VII yields that this is indeed the case (the interference
from other bigger squares here behaves the same way as the in-
terference due to spatial reuse from other active relay squarelets
there). With this, we are now dealing with a hierarchical re-
laying scheme with area nodes, and additive
noise with power . Both the lower number of nodes and
the higher noise power will decrease the achievable per-node
rate by only some constant factor, and hence, Theorem 1 shows
that under fast fading we can achieve a per-node rate of at least

as , where

Moreover, the same rate is achievable under slow fading with
probability , where

The setup is the same for all bigger squares within each of the
four subsets.

We now “shift” the way we defined the bigger squares by
to the right and to the bottom. With this, each new bigger square
intersects with four bigger squares as defined before. We use the
same communication scheme within these new bigger squares
and time share between the two ways of defining bigger squares.

Construct now a graph where each vertex corresponds to a
square of sidelength and where two vertices are connected
by an edge if they are adjacent in either the same old or new
bigger square. This graph is depicted in Fig. 4.

With the above construction, we can communicate along each
edge of this graph simultaneously at a per-node rate of

in the fast-fading case. In the slow-fading case, this statement
holds with probability at least

for constants . By assumption (41)

and, hence

as , showing that with high probability, we achieve the
same order rate under slow fading as under fast fading.

The communication graph constructed forms a grid with
nodes. Using that each bigger square can contain at

most nodes by the minimum-separation requirement,
standard arguments for routing over grid graphs (see [16]) show
that in the fast-fading case we can achieve a per-node rate of

where

Moreover, the same statement holds in the slow-fading case with
probability .

Finally, consider such that

(42)

Construct the same communication graph as before, but this
time we use simple multihop communication between adjacent
squares of sidelength . By time sharing between the at most
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nodes in each square, and since we communicate over
a distance of at most , we achieve under either fast or slow
fading a per-node rate between the squares of at least

for some constant , and where we have used (42). Using the
analysis of grid graphs as before, we can achieve a per-node rate
of at least

for either the fast- or slow-fading case.

XI. PROOF OF THEOREM 5

Consider with nodes located uniformly on
and nodes located uni-

formly on such that . This
node placement is -regular at resolution . A random
traffic matrix is such that communication pairs have
their sources in the left cluster and destinations in the right
cluster with probability . Assume we are dealing with
such a in the following.

Considering a cut between the two clusters and applying
Lemma 12 (slightly adapting the arguments in Section VIII)
yields that

for .

XII. DISCUSSION

We briefly discuss several aspects of the proposed hierar-
chical relaying scheme. Section XII-A comments on the full
CSI assumption and Section XII-B on the use of bursty com-
munication. Sections XII-C and XII-D outline how the results
obtained here can be extended to the case of dense networks
and networks without minimum separation between nodes.
Section XII-E compares our hierarchical relaying scheme to
the hierarchical cooperation scheme presented in [8].

A. Full CSI Assumption

Throughout our analysis, we have made a full CSI as-
sumption. In other words, we assumed that the phase shifts

are available at time at all nodes in the network.
As this assumption is quite strong, it is worth commenting
on. First, we make the full CSI assumption in all the converse
results in this paper. This implies that all the converses also
hold under weaker assumptions on the CSI, and hence, are valid
as well under a wide variety of more realistic assumptions on
the availability of side information. Second, all achievability
results can be shown to hold under weaker assumptions on the
availability of CSI. In fact, in all cases, a 2-bit quantization of
the channel state available at all nodes at time

is sufficient to obtain the same scaling behavior. This follows
by an argument similar to the one used in the analysis of the
BC phase in Section VI-C, where it is shown that beamforming
using a quantized channel state results only in a constant factor
rate loss.

B. Burstiness of Hierarchical Relaying Scheme

The hierarchical relaying scheme presented here is bursty in
the sense that nodes communicate at high power during a small
fraction of time. This leads to high peak-to-average power ratio,
which is undesirable in practice. We chose burstiness in the time
domain to simplify the exposition. The same bursty behavior
could be achieved in a more practical manner by using code-di-
vision multiple access (CDMA) with several orthogonal signa-
tures or by using orthogonal frequency-division multiplexing
(OFDM) with many subcarriers. Each approach leads to many
parallel channels out of which only few are used with higher
power. This avoids the issue of high peak-to-average power ratio
in the time domain.

C. Dense Networks

Throughout this paper, we have only considered extended net-
works, i.e., nodes placed on a square region of area with
a minimum separation of . The results can, how-
ever, be recast for dense networks, where nodes are arbitrarily
placed on a square region of unit area with a minimum separa-
tion of . It suffices to notice that by rescaling
power by a factor a dense network can essentially be
transformed into an extended network with path-loss exponent

(see also [8]). Hence, the same result for dense networks can
be obtained from the result for extended networks by consid-
ering the limit . Applying this to Theorem 1 yields a
linear per-node rate scaling of the hierarchical relaying scheme.

D. Minimum-Separation Requirement

The minimum-separation requirement on the
node placement is sufficient but not necessary for Theorem 1 to
hold. A weaker sufficient condition is that a constant fraction of
squarelets are dense, as shown in Lemma 6 to be a consequence
of the minimum-separation requirement. It is straightforward to
show that this weaker condition is satisfied with high probability
for nodes placed uniformly at random on . This yields
a different proof of Theorem 5.1 in [8].

E. Comparison With [8]

Both the hierarchical relaying scheme presented here and the
hierarchical scheme presented in [8] share that they use virtual
multiple-antenna communication and a hierarchical architecture
to achieve essentially global cooperation in the network. The
schemes differ, however, in several key aspects, which we point
out here.

First, we note that we obtain a slightly better scaling law.
Namely
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with

for any obtained here, compared to

with

for any in [8]. For the lower bound (i.e., achievability),
this is because the hierarchy here is not of fixed depth as in
[8], but rather of depth (for some constant

), i.e., changing with . For the upper bound (i.e.,
converse), this is due to a sharpening of the arguments in [8].

Second, note that the multiuser decoding at the relay
squarelets during the MAC phase and the multiuser encoding
during the BC phase are very simple in our setup. In fact, using
matched-filter receivers and transmit beamforming, we convert
the multiuser encoding and decoding problems into several
single-user decoding and encoding problems. This differs from
the approach in [8], in which joint decoding of a number of
users on the order of the network size is performed. Our results
thus imply that these simpler transmitter and receiver struc-
tures provide the same scaling as the more complicated joint
decoding in [8]. We note that the scheme proposed in [8] can be
modified to also use matched-filter receivers as suggested here.

Third, and probably most important, the schemes differ in
how they achieve the throughput gain from using multiple an-
tennas. In [8], the nodes are located almost regularly with high
probability. This allowed the use of a scheme in which a source
squarelet directly communicates with a destination squarelet. In
other words, the multiple-antenna gain comes from setting up a
virtual MIMO channel between the source and the destination.
In our setup, the arbitrary location of nodes prevents such an
approach. Instead, we use that at least some fixed fraction of
squarelets is almost regular (we called them dense squarelets).
Source–destination pairs relay their traffic over such a dense
squarelet. In other words, the multiple-antenna gain comes from
setting up a virtual multiple-antenna MAC and BC. Thus, the
hierarchical relaying scheme presented here shows that consid-
erably less structure on the node locations than assumed in [8]
suffices to achieve a multiple-antenna gain essentially on the
order of the network size. Note also that the additional degree
of freedom offered by the choice of relay squarelet for a given
source–destination pair makes it possible to extend the result to
hold also for slow-fading channels.

XIII. CONCLUSION

We considered the problem of the scaling of achievable rates
in arbitrary extended wireless networks. We generalized the hi-
erarchical cooperative communication scheme presented in [8]
for a fast-fading channel model and with random node place-
ments. We proposed a different hierarchical cooperative com-
munication scheme, which also works for arbitrary node place-

ment (with a minimum-separation requirement) and for either
fast or slow fading.

For small path-loss exponent , we showed that our
scheme is order optimal and achieves the same rate irrespective
of the node placement. In particular, this rate is equal to the one
achievable under random node placement. In other words, the
regularity of the node placement has no impact on achievable
rates for small path-loss exponent.

The situation is, however, quite different for large path-loss
exponent . We argued that in this regime the regularity of
the node placement directly impacts the scaling of achievable
rates. We then presented a cooperative communication scheme
that smoothly “interpolates” between multihop and hierarchical
cooperative communication depending on the regularity of the
node placement. We showed that this scheme is order optimal
for all under adversarial node placement with regularity
constraint. This contrasts with the situation for more regular
networks (like the ones obtained with high probability through
random node placement), in which multihop communication is
order optimal for all . Thus, for less regular networks, the
use of more complicated cooperative communication schemes
can be necessary for optimal operation of the network.
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