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We study in this and in a related paper [5] the equation
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for a scalar function u(x) over a region Q in n-dimensional Euclidean space, n>2. We
assume the boundary 2 of Q to satisfy smoothness hypotheses, which vary with the con-
text. For some purposes it suffices that £ € CV in local parameters. However, at times,
we shall have to refer, at least locally, to a mean curvature at points on X. Although our
results could be stated in terms of generalized boundary curvatures in such cases, it is
preferable for the purpose of these papers to assume that X € C!? at these points. Finally,
certain results deal with boundaries on which regularity fails at a set of points, small
enough to permit a restricted form of the divergence theorem to hold. The type of singular
set that is admissible in this sense will be clarified later.

Our principal concern is the case of (1) of special physical interest,
. (1
div (1717 Vu) = xu + nH(x), (2)

where » is a constant. If % =0 and H = const., then u(x) defines a (non-parametric) surface
of constant mean curvature H. If in addition H =0, then (2) becomes the minimal surface
equation. If <=0 and H = const., then (2) becomes the equation for a surface whose mean
curvature is proportional to its distance from a fixed reference plane. In this case H can be
eliminated by adding a constant to u(x).

Both cases are encountered physically as the equation for the height of a capillary

surface in a cylindrical domain with base Q and bounding walls Z generated by rays
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through 2 and parallel to the u axis. The case x =0 occurs in the absence of gravitational
forces; if % >0, a gravitational field is directed parallel to the cylinder and towards the
base, while if % <0 a gravity force points away from the base, as in an upside down capillary
tube. One finds x= ((¢ —g,)g)/0, where ¢ is the surface tension of the liquid in the tube, o
and g, are the densities of the liquid and of the gas outside the liquid, and ¢ is the gravita-
tional acceleration (see, e.g., [1]). The solution surface § is to be determined by the equa-
tion and by the (physical) boundary condition that the angle y (measured within the fluid)
between § and Z is prescribed on the manifold C of contact. If v denotes the outer-directed

unit normal to X, then this condition is
Tu-v= W-'Yu-v=cosy onX. 3)

For functions u(x) in Q, which need not be defined up to X, (3) is to be understood in the
following sense: The vector v is extended continuously into Q, and Tu -v is required to exist
almost everywhere as a limit, as X is approached from points of Q. No further hypothesis
about boundary behavior need be made, and we shall interpret (3) in this way throughout
the text.

In practice, y is determined experimentally and depends on the materials in the three-
phase interface at C. The physical situation of constant y is of central interest in our work,
although we are able often to discuss without essential change the more general case in
which y is allowed to vary along C.

There are important differences of behavior between the cases »=0 and % +0, and
different techniques are required to study them. For this reason we have divided our work
into two parts. The first part discusses (1) for the case in which H is independent of u (cor-
responding to » =0 in (2)) and is covered in this paper. The second part, covered in a sub-
sequent paper [5], corresponds to » #0 in (2); that is, } depends on u explicitly, as is the
case for a capillary surface in a gravitational field.

Part of the work reported here and in [5] was done while the former author was at
the University of Reading under a Science Research Council grant and at the National
Physical Laboratory in Teddington, during 1970-71. Part was done while the latter author
was at the University of Sussex in the Spring of 1970. Some of the results contained here

and in [5] were announced in [3].

§1
In this section we give some geometric results that are of use in subsequent sections,
but are of general interest in themselves. Consider an n dimensional domain Q with bound-

ary surface X that has mean curvature HZ. (We choose the sign of H” so that H= >0 when



ON CAPILLARY FREE SURFACES IN THE ABSENCE OF GRAVITY 179

the curvature vector is directed along the interior normal.) Let ¥ denote the volume of
Q, A the area of X, and v the outer-directed unit normal to X. Let r denote the distance
from the origin to a general point of 2.

We consider first the case in which Q is star-shaped with respect to the origin. Then
HF can be extended to all of Q as a function constant along rays from the origin, equal on
each ray to the value at the intersection point with . We denote by H= the volume aver-
age of the extended H=,

I?E=-11§f H*(x) dx.
Q

LeMMA 1. There holds nHE = % 4)

Proof: In a spherical coordinate system (r, w), we may describe Z by an equation of
the form 7 =f(w). We consider the function F=r/f(w), so that X is described, as well, by
F =1. Wethen have

1 . VF
HE=—— div ——; 5
n—1 v IVF|F=1 ®)
. VUF § vF
and divi——dx=0¢ —— vdo= 6
Jotv G 2x=§, i ©
since V F' is orthogonal to % on that surface and coincides in direction with v.
If 0 <r<f(w), then
L aiv Y2 _Tge (7)

n—1" [vF|~r

This last result is evident geometrically, since the left side of (7) is the mean curvature of
the similar surface obtained by contracting X with respect to the origin in the ratio r/f.
Placing (7) into (6) and integrating with respect to r yields

fﬁﬂzwdw= A. (8)
The quantity r"dw is, however, n times the volume element subtended at the origin by

the solid angle dw. Thus, dividing (8) by U, one obtains the desired result (4)(1):
From Lemma 1, we obtain the result,

(1) This result could have been obtained alternatively from a general integral formula, due ori-
ginally to Minkowski [12], and given recently in a general formulation by Hsiung [10]. The proof we
present seems particularly simple and adapted to the case considered here.
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LemMMA 2. If Q is star shaped and if H® equals or exceeds the mean curvature of a ball

B" of radius R, then there holds
A_n

__>_,
YV R

The result of Lemma 2 can also be obtained under a different hypothesis, which does

not require that { be star shaped.
Lemwma 3. If Q lies interior to a ball Bg of radius R, then

A n
pig > —
VR
equality holding if and only if Q coincides with Bj.
Lemmas 1 and 3 together yield:

CorOLLARY: If Q is star shaped and lies interior to Bg, then

1

HE> .
H*>5

Proof of Lemma 3. The isoperimetric inequality implies the existence of a ball Bg,
of volume equal to that of €2, such that B < Bf and for which

A" A"
51 5y T

A _{* B &)m_i n
Thus, 19]92 '19]3;._ (79 —ROZR.

Clearly, equality can hold only if Q coincides with Bf.

We now consider any twice differentiable surface u(x) defined in  and having con-
tinuous first derivatives up to X. Let H(x) be its mean curvature, H(x) = (1/2) div ((1/ W)Vu),
W =(1+|Vu|?*. Let y(x) be the angle between the surface u(x) and the (hyper-)cylinder
with base 2 and generators parallel to the u-axis; then, denoting the surface average over
Z by ~ and, as before, the volume average over Q by —, we obtain for star-shaped Q,

THEOREM 1. There holds
— NN =
H(x)=cos y H* (x). (10)

Proof. From the above expression for H(x), we have
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nf H(x)dx=§ Vl&-vda=f cos ydo,
Q s W by

which, using (4), yields the result.

§2

We consider now solutions of

1
div (W Vu) = nH(x) (11)
in Q. Denote by {Q’} a sequence of domains exhausting Q, whose boundaries X/ have
uniformly bounded surface area, 4= A4[X7} < 4 < oo, We find immediately the result:

LEMMA 4. A necessary condition for the existence of a solution of (11) in Q is that
n|fai H(x)dx| < A for all j.

The assertion follows from the relation

J,= nf H(x)dz=¢ Tu-vdo,
07 EJ

since |Tu| <1 on X’.
In particular, fo H(x)dx can be defined for any solution as the limit of a suitable sub-
sequence of the {J,}. We remark, however, that lim J, need not exist for every choice

{Q7}, as can be seen from simple examples.

LeMma 5. Suppose u(x) satisfies (11) in Q, with Tu-v = cosy on Z. Then there exists

n H(x)dx=limnf H(x)dx:ff cos ydo (12)
e} of =

j—>o00
for dny sequence {Q7} exhausting Q.

Even under these hypotheses, the integral need not exist absolutely.
We note that in the volume and surface average notation introduced in section 1,
(12) can be written
= A~
nH(x)=®cosy (13)

and for the frequently encountered physical situation in which ¢ and H(x) are constants
(13) reduces to

nﬂz%cos Y. | (14)
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From Lemma 5 we conclude that solutions of (11) satisfying the boundary condition
(3) can exist only for those y (if any) that satisfy (12). We remark also that solutions of
(11) in star-shaped domains must, of course, satisfy (10).

Combination of the geometrical results of section 1 with (13) yields

THEOREM 2. If X satisfies the hypotheses of Lemma 2 or of Lemma 3, then there holds
— 1,-—~
|H(x)| >3 [cos |- (15)
For the case in which y and H(x) are constants, (15) reduces to

1
|H|>1—?|cos'y|. (16)

§3
Here and in what follows we shall use symbols interchangeably to denote a set and

its area, or volume; thus, X denotes a bounding surface and also its area, { denotes an open

set and also its volume.

Fig. 1. One-sided neighborhood of p. Fig. 2. Segment of unit disk.

We consider the local behavior of a solution u(x) near a boundary point p, and we
suppose 4(x) to be defined in a one-sided n-dimensional neighborhood #j of p, bounded by
a piece Zp€ C*? of (n—1)-dimensional surface. Let I" be an (rn—1)-surface lying in M,
and meeting Xy in an (» —2)-manifold that surrounds p on %, (sée Fig. 1). Let Q* be the
part of Mp bounded by I'and X, let £* be the part of 2 contacting *. We integrate (11) over

—_ P
Q*, setting H* =(1/Q*) [ o« H(x)dx, cosy* =(1/Z*) [z« cosy do; noting | Tu| <1 onT', we find:
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LemMwmaA 6. There holds

nH*Q*—T /\*<nI7*Q*+l"
——~2*—<cosy < T .

(17)

This simple result yields information of fairly precise character on the manner in
which the curvature of the boundary near a point controls the permissible behavior of a
solution at the point. We remark first that for prescribed intersection manifold of Zp with
I', the best estimate that (17) will yield for cosy* will be obtained by minimizing the
numerator on the right and maximizing that on the left. In the case H(X)= const. in My,
we see immediately that an extremizing surface I' passing through the intersection manifold,

if it ewists, will be a surface of constant mean curvature H* = (n/(n—1))H for the upper bound

N
and HY = — (n/(n— 1)) H for the lower bound of cosy* in (17)(*). This remark governs the

considerations that follow.

3.1. Asan example to illustrate the use of (17) for n =2, consider a solution w(x) of (11)
that is defined in a segment of a unit disk symmetric with respect to a boundary point p, has
constant mean curvature 0 <H <4}, and constant boundary data cos y. Following the above
remark, we choose for the upper bound the curve I'=I",, which has constant curvature
2H <1, and for the lower bound the curve I'=T"_ with curvature —2H (see Fig. 2). We
find

H—P (p) <cosy <H+P_(p), (18)
_0+2Hsin (p+0)
where P, (p)= iHgy .

We have ¢?P.],-,=0, also

(9P = 5 {1 +2H cos (p £ 0)]6" ~2H(1 %0’ sin (¢ £ 6)}.

cos @

One computes 01( ) =2H| ——F———
P o) V1—4H?sin®

<2H,

and 6"(p)= —(1—0"%) tan 6 <0 for 0<@ <m. Hence (p?P.) <0, which implies P (p)<0
for 0 <@ <zm. Thus P (p) decreases monotonically from P,(0)=1+H to P,(n)=0. There
follows from (18) a successively stronger (non-trivial) estimate for cos y as the segment in
which the solution is defined increases in size, until finally, for a solution defined in the

entire disk, we obtain H <cosy <H. In fact, since in this case I' degenerates to a point,

() The sign H is positive when the curvature vector is directed along the exterior normal to Q*.
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we are led again to the consequence of (14), that for a solution of (11) defined in the entire
disk, cos y=H.

If H>% the method continues to yield a non-trivial lower bound for cosy. We ob-
tain in this situation only a single stationary curve, with H' = —2H, which is the only
solution (interior to the disk) of the variational problem for this case. With increasing size
of the segment Q* the bound becomes at first stronger; however, for sufficiently large Q*
the bound weakens and eventually provides no information. The curve with H' = +2H
can be used to provide a lower bound on cos y for a solution defined in an exterior neighbor-
hood of a boundary arc on the unit disk, that is, for a solution defined interior to a neigh-
borhood of a boundary segment of a boundary X along which HZ= —1. This bound also
becomes at first stronger, but eventually weakens and provides no information as the size
of Q* increases.

The results of this section apply equally to the sitnation H <0; this case reduces to
that of positive & under the transformation 4= —u, = —~y, H=—H.

- We note that the method yields information only in the case for which “extremal
surfaces” I" passing through the given boundary continuum (in this case two points) can

be found. The same limitation applies to the following general considerations.
3.2. Consider again a one-sided neighborhood M, adjacent to T, X.

THEOREM 3. If either
(i) HE>-"_H,>0 on 3%,
n—1
or
(ii) |HE|< ——"—H,, on %,
n—1
then
(a) there exists yy>0 such that there is no solution u(x) of (11) for which H(x)<H,
throughout Hy and 0 <y <y, on Zp;
(b) there exists y, <z such that there is no solution u(x) of (11) for which H(x)= —Hy,
throughout Wy and y, <y <z on Zy.
We examine the case (i, a). The proof we give is based on the right inequality of (17},

which under the given hypotheses becomes, for a supposed solution,

cosyo<®<ﬁ£%£59[g*]. (19)

If n=2, we can obtain “extremal” surfaces I" explicitly as in 3.1; this procedure is not feas-
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ible if »>2, but since the essential requirements are local, it suffices to use as I' a surface
represented by appropriately chosen terms of a Taylor expansion.
We assume that 2* has, near p, the representation

" 1n~1 * 9
=3 Satat+ ...
1

so that i 'af = (n— 1) H, where Hy is the mean curvature of X at the point p. By
hypothesis, Hf > (n/(n—1)) Hy. As surface I', we introduce

ln—l
2=y % axi+e

for suitable small £>0. Clearly we may choose a,<a/, i=1,...,n—1, and such that
3%~ 'a,=nH,. The intersection set of the two surfaces projects asymptotically onto the
ellipsoid X} ! (af —a,)af =2¢. Thus, for sufficiently small ¢, £, and I' bound a simple
region Q*. The calculation of the ratio @[Q*] in (19) is a formal, if tedious, exercise. We
find
& n-1 .
QIQ*]=1+ it {2nHM~ ; (af + a,»)} + o(e).

Since X771 (@ + a,) >2 27! @, = 2nH,,, the result follows for case (i, a). The other cases in
the theorem can be proved in the same way.

For the physical case in which H is constant and y is prescribed continuously over all
of X (and hence, from (13), H is determined), we obtain, using (13) and the notation in-
troduced in § 3,

COROLLARY 3.1. Suppose there is a point pEX at which H§>E/((n—l)ﬂ). Then for
any Xpdp there exists 7, 0< 5 <1, such that there is no solution u(x) of (11) with constant H
in Q, for which |cosy| >n on Zy.
The value for 77 depends on the geometry of Q and on the size of the neighborhood of
p in X in which H=>X/((n—1)Q). If H and y are both constant, the result can be put into
a simple explicit form. We obtain then from (17):

CoROLLARY 3.2, If u(x) is a solution of (11) with H(x)=H =const. in £, and if (3)
holds with y =const. on X, then
/=

leos v 1< 5vg) — (i)

(20)

for any choice of ' that makes the denominator positive.

13 — 742909 Acta mathematica 132. Imprimé le 18 Juin 1974
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This estimate is (in particular) nontrivial whenever the condition of Corollary 3.1
holds; a consequence is that the boundary value problem (3; 11) admits no solution for data
that do not satisfy (20).

The following reformulation of this result shows that solutions of the physical capil-
lary problem in the absence of gravity are always unstable with respect to boundary per-

turbations.

CoROLLARY 3.3. Let Q) be an arbitrary bounded open set, and let v be a prescribed con-
stant, with 0 < | (7/2) —y | <7/2. Then there exists a sequence {Q;} exhausting Q, with analytic
boundaries {X,}, such that there is no solution of the problem (3, 11) with H=const in Q,,

for any j.

Thus if, in particular, the problem (3, 11) has a solution interior to X, then there is
an arbitrarily small perturbation of X into an analytic X;, such that there is no solution
interior to Z;. If the requirement of analyticity is relaxed to infinite differentiability, then
it suffices to perturb X in an arbitrary neighborhood of one of its points.

We note further the consequence of Corollary 3.1, that in the case | (/2) —y | =n/2, the
surfaces 2; can be chosen to approximate X not only in position but also in normal direction.

When Q) is star shaped, we can use (4) to obtain a restatement of Corollary 3.1:

COROLLARY 3.4. Suppose there is a point pES at which Ha > (n/(n—1))HE. Then for
any XD there exists v, 0 <y <1, such that there is no solution u(x) of (11) with constant H
in Q, for which |cos y| >n on Zp.

3.3. Although the estimate obtained by the above method of proof for Theorem 3 is
certainly not precise, the theorem—and its corollaries—are qualitatively sharp in the sense
that for any prescribed constants HE, H, y, with >y >0, there exist solutions u(x) of (11)
near boundary surfaces T of mean curvature HE, such that Tu - v = cos y on XZ. A convenient
example is obtained by considering the surfaces of constant H possessing rotational

symmetry about an axis.(!) In spherical coordinates, (11) becomes

d .1 U -1
—o" =nHp"
do™ Y1+l ?
from which Ye =Hp+ Bp'™". (21)
V14 u?

(*) In the case n =2 these surfaces have been studied in a striking way by Delaunay [6], who
obtained them as the rotation surfaces of the roulades of the conies.
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Fig. 3. Sections of rotationally symmetric surfaces with constant H, n=2.

A solution of (21) can exist only in an interval for which |[Hp+ Bp'™"| < 1. We examine
the case H >0, and distinguish the three possibilities:

(a) B>0. Solutions exist only if

_ n-1
<l (’-‘—1) H",
n n

If this condition is satisfied, there is a solution in an annular region

1

0< <n_—1< <
91 92 H’

nH
where p;, p, assume all values in the indicated ranges as B varies from zero to its upper

bound, and wu,/ o as p™g, and as ¢ g, A vertical section of a solution surface is
shown in Fig. 3.

(b) B=0. In this case the unique solution of (21), up to a vertical displacement, is a
sphere of radius H-1.

(¢) B< 0. A solution exists in an interval (g,, g,), 0< g, < ©°, 1/H < g, <o, where g,
and g, increase through all values of their ranges as B decreases from 0 to — cc. In this
case u, . — ©° as p\py, %, /T -+ as 0, (Fig. 3).
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The examples indicated above can now be constructed, for any prescribed constants
HE H, y, by appropriate choice, first of B, then of & concentric (n —1) sphere X of suitable
radius. The corresponding surfaces u(g) provide counterexamples in every configuration
not covered by Theorem 3.

We do have, however:

COROLLARY 3.5. If() HZ >(n/(n—1)) Hy =0 or if |HY|< — (n/(n—1)) Hy, then,

(a) there is no solution of (11) m any WNp, with H(x)<H, in Wy, and such that
cosy=1 on Xyp; :

(b) there is no solution of (11) in any MNp, with H(x)> —H, in Ny, and such that

cos y= —1 on Zy.

The result follows immediately from the method of proof of Theorem 3.

The surfaces obtained from (21) yield situations in which cosy=1 on X occurs
with any H® in the ranges 0< H< (n/(n—1)) H or |H®| > —(n/(n—1)) H and in
which cosy= —1 on X occurs with any H* in the ranges 0< HX< —(n/(n—1)) H or
|HE| < (n/(n— 1)) H. In these situations, of course, the surfaces cannot be extended as solu-
tions into the entire interior (or exterior) of X. In fact, an easy reasoning shows that given
any g, in the closed interval g, <p, <gq, the rotationally symmetric surfaces constructed above are
the unique ones of the given H, meeting the cylinder Z,, over T, at the given angle and defined
throughout either of the annuli p, <p <g, or gy < <gq.

We point out finally that Theorem 3 is (at least qualitatively) sharp in still another
sense. The conclusion that there is no solution for which 0 <y <y, (respectively y, <y <n)
on X, cannot be strengthened to exclude these inequalities at an isolated point on Xy,
even for continuous data. For example, a lower hemisphere defines a solution of (11) with
H=1 in |x| <1. The inequality (i) will then be satisfied on the arc X: |x—%|=%. The
hemisphere, considered as solution interior to Z, defines a continuousy(x) on X, andy(x) =0 at

the point of contact of X with |x| =1. An analogous discussion applies to the inequality (ii).

3.4. The case H== (n/(n—1))H has a special interest, and is not completely covered
by Theorem 3. This situation is discussed in the following note [8], using other methods;
it is shown there (in particular) that if H = H,,>0, there is no bounded solution in any Hp
for which cosy=1 on X, while if H=H,<0, there is no bounded solution for which
cosy= —1on Z. J. Spruck has shown [13] that both these situations can occur for unbound-
ed solutions. We show here, for the special case n =2, that a solution can exist under these

conditions when the value H= = (n/(n — 1)) H=2H is achieved as discontinuous limit from

(1) For bounded solutions, the inequalities need not be strict, cf. § 3.4 and the note [8].
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Fig. 4. Roulade of hyperbola.

a) Free surface of constant H

I

b) Section of bathtub

Fig. 6. Neighborhood of discontinuity Fig. 5. Astronaut’s bathtub for y =0.
set 2°.

one side. Qur example corresponds to Case (c) of § 3.3 but is best viewed in the sense of the
Delaunay construction (see footnote p. 186) as surface of revolution of the roulade of a hyper-
bola. The roulade is shown in Fig. 4. We utilize only the portion indicated with solid line,
which we rotate # radians about the axis, and next rotate the resulting surface till it is
oriented as in Fig. 5a. We obtain a surface «(x) of constant H, defined in the domain Q
whose boundary ¥ is formed by the roulade, its reflected image, and the two straight lines
joining them, and meeting the cylinder wall under X in the constant angle y=0. At
the four points where the straight lines meet the roulades, X has curvature 2H as limit
from within the roulades; from within the straight lines, however, the curvature at these
points is zero.

If 2 is extended vertically downward to form a cylinder with base as in Fig. 5b, we
obtain what we have called an ‘“‘astronaut’s bathtub”. In a gravity-free situation, water

covering the base and meeting the boundary walls in the angle 9 =0 would form the free
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surface u(x), whose stability would presumably be ensured by the pressure of the adjacent
atmosphere. We are of course not in position to recommend the actual use of such an ap-

paratus for bathing purposes.

3.5. We apply here the inequality (17) to the case in which the tangent plane to the
boundary 2 may have discontinuities on a small set X0 X. The size of 2¢ will be limited
by the hypothesis that X0 can be covered, from within €, by a sequence of smoath surfaces
{A}, each of which meets Z in a set of zero (n—1)-dimensional measure, and such that A—X°
and the area A of A tends to zero.

We study solutions u(x) of (11) in ; we assume, as before, that Tu v isdefined on
2 —29 as a limit from within Q. The essential interest in the material to follow lies in the
fact that no assumption is made on the behavior of u(x) as points of X° are approached from
within Q. In particular the growth of «(x) near X is in no way restricted by any hypo-
thesis. We shall show that the geometry can nevertheless impose severe restrictions on the
kinds of solutions that can exist in Q near Z°.

Let p€29, let I'< €} be a (smooth) surface surrounding p, which, together with a set
2*c X, bounds a domain Q*< () (see Fig. 6). Let A< {A}. We integrate (11) over the part
of Q* between A and T'. Passing to the limit as A—ZX°, we find (since |Tu| <1 and 4*-0)
that Lemma 6 holds in this configuration. That is, in the notation of thatlemma, we have
again _ _

nH*Q*—I‘<(;S?<nH*Q*+I‘ 22)

Z* z*
the average on X* being taken now over points not in X°.

THEOREM 4. Suppose a sequence {I'} tending to p can be found, for which |H*| <H < oo,
and such that n=Ilim inf (0'/Z*) <1. Then there is no neighborhood of p in X* throughout
which |cos y| >ny>1.

The proof is immediate from (22) and from the isoperimetric inequality, which yields

Q* 2Q* 2Q*

lim sup §=hm sup Wéhm sup Z*+I‘=O

for any sequence along which I'/Z*< 1.

Theorem 4 yields a best possible result in all cases we have verified independently.
In cases in which a geometric invariance is present, e.g., a cone generated by straight lines,
it may even be unnecessary to apply the limiting process. As an example, we apply (22) to

an (n —1)-dimensional cone K generated by rays from the origin in n-dimensional space.



ON CAPILLARY FREE SURFACES IN THE ABSENCE OF GRAVITY 191

Here X0 is the (single) vertex point p, and for {A} one may choose spherical caps centered
at p.

We define the “half-angle” « of K by the relation sin « =min (I'/2*) among all planes
IT that cut a section I' from the solid cone X and intercept a closed surface Z*3p on K;
if no such plane exists we set sin «=1. Note that always 0 <a<z/2. We obtain:

THEOREM 5. If o <oty< |(7/2) —y|, then there is no solution u(x) of (11) in the region
X, bounded by K and by any sphere Z, surrounding p, for which | H(x)| <H < oo and for which
(3) holds on the conical surface.

If W is a wedge generated by K, the same criterion applies. We emphasize that no
growth condition is imposed on the solution, as the vertex is approached from within the
region or on K.

This result appears in [3] for the case n=2, in which K consists of two rays from p.
The proof given in [3] extends without essential change to a cone (or wedge) symmetric
about an axis (or hyperplane); however, it does not yield the more general statement
given above. _

Theorem 5 is sharp, at least in the symmetric case, in the sense that solutions always
exist if (7w/2)— a<y<(n/2)+ «. In fact, one verifies readily that a hemisphere making

the prescribed angle y with K solves the problem explicitly in this case.

3.6. We complement Theorem 5 and the above remark by showing that ¢f u(X) satisfies
(11) in a symmetric cone X,, with H(x)>Hy,>0 and o+y >n/2, then u(x) is bounded above
at p. Precisely, u(x) <H;'+ maX,s , (x) for all x near p, with any r' <r.

We present a formal analytical proof of this statement in § 3.9. Here we give a direct
geometrical proof, which requires however the additional hypothesis that u(x) is (locally)
of class C'¥ up to the walls K.

Choose H,, Hy,>H, >0, and consider a lower hemisphere S: v(x) of radius Hy 1 with
center on the axis of K at distance Hi' from p. 8 cuts the cylindrical walls in an angle
o= (7/2) — &, and meets K at p in an undefined angle. If the center is displaced slightly
away from the vertex then either the surfaces will no longer contact, or the angle of contact
will decrease, so that we will then have y,<y, and p will be exterior to the domain A of
definition of »(x). The boundary of A (in X) will consist of inner and outer spherical caps
2, and X, and of portions X* of the conical walls.

We may suppose X, lies interior to the domain of definition of %(x), so that u(x) is
continuous on X,. Let ¢ be the smallest constant such that »(x)+C>u(x) in X, NA.
Then there is a point ¢ in the closure of this set, at which equality is attained. Clearly q
is not an interior point of X, N A, as the mean curvature of S: v(x) +C is less than that of
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the given surface, so that the surfaces would have to cross at any inner point of tangency.
Also, q¢2X, or Z,, as dv/on= oo at all such points(!). Similarly, q ¢X*, since at such a
point the tangential derivatives of » and of 4 would be equal, hence one would have again
(0von)|q > (Pulon)|q as & consequence of yo<y. Thus, q€Z,. We conclude that for all
X€EX,NA, u(x)<H7'+ maxy u(x). Letting the center of § slide back to its original posi-
tion, and then letting H, - H,, the stated result follows.

Similarly, if w(x) satisfies (11) in X,, with H(x)< Hy< 0 and a—y> — (7/2), then
u(x) is bounded below at p, and u(x)> — Hy'+ ming_u(x) near p.

3.7. We may note that in the above construction, the sphere § must project onto at
least one point of X,. For otherwise the procedure would yield v(x)+C>u(x) in X, N A for
every (. Thus, the procedure of § 3.6 yields as corollary that if u(x) satisfies (11) in X,, if
H(x)>Hy>0 and a+y>n/2, or if HX)< Hy< 0 and a—y > — (/2), then r < 2H,;*. That
is, there is a bound, depending only on H,, of the size of the domain in which the solution

can be defined.

3.8. The hypotheses of § 3.6 do not imply a bound below for the solution. To see this, con-
sider a spherical cap C in X, centered at p, and the lower half cylinder Z lying below C.
A slight rotation of Z about an axis through two diametrical points on the sphere of inter-
section of ¢ with K yields a surface z(x) of constant mean curvature H >0, defined in X,
for which « +y>x/2. Letting the angle of rotation tend back to zero yields a family of such
surfaces with the same fixed H, whose ordinates achieve arbitrarily large negative values
in X,.

The same example shows that the bounds of § 3.6 could not have been made to depend

on the value of u(x) at a single point of X,.

3.9. It remains to prove the assertion of § 3.6 without the hypothesis of boundedness for
%(x) on K. To do so we use a general comparison principle satisfied by the solutions of (11),
which is motivated by the procedure in § 3.6. Set Nf = div ((1/ W)V/), for any function f(x).

THEOREM 6. Let X =30+ 3%+ 3° be a decomposition of X, such that X° is of class CV
and 2° is small in the sense introduced in § 3.5. Let u(x), v(x) be of class C'® in Q, and suppose

(i) Nu=Nv at all x€Q

(i) for any approach to T* from within Q, lim sup [u —v] <0

(

iii) on X4, (Tu —Tv) -v <0 almost everywhere as a limit from points of Q.

(*) The use of comparison surfaces with this property as a device for estimating solutions can be
traced to S. Bernstein [2]; the procedure was further developed and stated as a formal lemma by Leray
[11]. It waslater rediscovered and applied in a different context (in spirit close to that of the present work)
by one of the authors [7].
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Then if Z* can be so chosen that Z*< X0, there follows u(x) =v(x) + const. Otherwise, u(x) <
v(x) tn ; if equality holds at a single point of Q, then u(x)=v(x).

We note there is no hypothesis on smoothness or even of bounds for u(x) or v(x)
or of their derivatives near 2. The result clearly depends on the particular nonlinearity

of the operator N.

Proof of Theorem 6. Suppose u(x), v(x) satisfy (i), (ii), (iii) and for some x,€Q there
holds u(xy) —v(x,) =M >0. Let w(x) =u(x) —v(x) and let Q, be that subset of Q, in which
O0<e<w<M, for some £¢>0. If e<}M, then Q,, is non-null and is bounded in part by a
portion Z*< 34 by a part (or all) of 29, and by sets I',, I';, in Q, on which w=¢ or M. Let

# be the part of Q,, lying exterior to one of the covering sets A< {A}.

We consider the formal relation

f A[w(x) —&] (Nu— Nv)dx
Qy

§[2*+I" T ]A[w(X)—a] (Tu —Tv) - vdo
ety

—f AVw-[’l‘u—Tv] dx + § [w(x) —&] (Tu —Tv) - vdo. (23)
o A*

Here A*=A Ny, and the superscript A denotes the part of the set lying exterior to A
(see Figure 7).

Under the hypotheses, (23) makes sense as written if the first integral on the right is
defined by a limiting procedure in terms of the other quantities that appear. In order to
complete the proof, however, we need to define separately the contributions from X*
and from I');. The information at our disposal does not yet permit a unique definition of
these quantities, but we can attach a meaning to them that suffices for what is needed.

We approximate %4 from within Q by a sequence {iﬂ} of surfaces of class C'V that
converge to £f pointwise and in normal direction, and we observe first that when applied

to the restricted domain ﬁﬁ, all terms in (23) can be given an unambiguous meaning. This

is so since Tu, Tv are defined and smooth on iﬂ, and since I';, I, are level sets of w(x);
thus, we can either choose ¢ and M so that I';, I'}, are smooth (Sard’s theorem), or we can
use the method indicated in footnote (2) of [4] to show that the integration over I,
I'y; can be defined regardless of possible irregularities in the sets.

When (23) is applied to f)j}, the integration over Z* becomes an integration over a
set S*=3#n Q. Thus, [w(x)] <M on 2*. We note further that |Tf| <1 for any f(x);
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20
Fig. 7.

thus in particular |Tu —Tv| <2 on E*. Since the {£} converge in area to Z#, we conclude
there is a subsequence {i’? }, such that the corresponding integrals in (23) over i’," con-
verge, as §—> oo, to a limit £*.

On Z~}", w(x) >0. By hypothesis (iii), the functions ¢;= (Tu—Tv)-v on 2~‘," , considered
as functions defined over X4 by the approximation procedure, satisfy lim sup; e @,(x) <0
for each x€XA. By the theorem of Egorov, for any 6, >0, there exists j,(6, %) such that
for all j>7, the set for which @,(x) > has measure less than 7. Using again the relations
|w] <M, |Tu—Tv| <2, we conclude immediately that £*<O0.

In (23) the contribution from I', vanishes. We proceed to evaluate the integral over
T'iz. To do so, we observe that T'f} bounds, together with a set Zf< X4 and portions A, < A,
the set ITf}: w(x) > M, x€QA (see Fig. 7).
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We then have, formally,
§ (’l‘u—Tv)wda—f (Tu—Tv)-vda=§ (Nu—Nv)dx—% (Tu—Tv) - vdo, (24)
=4 ry g Ay -

the negative sign appearing in the second term because the orientation of v is taken here
to coincide with that of the corresponding term in (23).

The terms in (24) must be interpreted by a limiting procedure consistent with
the one used for (23). We introduce the same sequence {if} and consider the portion
iMi' = if N I1#}. As before, there is a subsequence of these sets such that the integrals corre-
sponding to the first term on the left in (24) converge to a limit £,,, and using again the
hypothesis (iii), the same reasoning as above yields L£,, <0, for any A.

In terms of the given approximation procedure, (24) defines the integral over I'j; in
terms of other quantities whose sign is known and an integral over A whose sign is not
known. We are however now in position to pass to the limit as A—20. In (24), w(x) does
not appear explicitly in the integrals over A, while in (23), |w(x)| <M in these integra-
tions. Since |Tu| <1, |Tv| <1, and since by hypothesis the area 40, we find that (23)
and (24) both hold with the superscript A deleted. We then have from (24)

5€ (’I‘u—'l‘v)-vda=§ (Tu—-Tv)-vda—f (Nu—Nv)dx<0 (25)
Ty Zy Oy

by (i) and (iii); from (23) we obtain

vw- [Tu —Toldx= —f [w(x) ~&] (Nu — Nv)dx
Qy Qy

+(M—e)f§ (Tu—"Tv) - vdo

Ty

+§ [w(x)—¢e] (Tu—Tv)-vdo <0 (26)
>*

by (25), (i) and (iii). The integrand on the left side of (26} is however a positive definite
form in the components of Yw (this follows from the convexity of the area functional).
We conclude that either «(x) <v(x) in Q, or else Q,,>Q and «(x) =v(x) + const. in Q.

If 2*< X0 we observe that the hypotheses of the theorem do not change if a constant
is added to u(x). For some x,€€, choose Cy so that u(xy) +Cy—v(xg) >0. The above rea-
soning then yields u(x) + {j —v(x) =const. in Q, which was to be shown.

If %430 then in particular X% =+¢ and we conclude from (ii) that in either event
u(x) <v(x) in Q. The maximum principle of E. Hopf [9] then yields the result that equality
holds throughout € if it holds at a single interior point.
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Another form of this comparison principle, suited to the situation encountered in a

gravitational field, will be given in [5, § 3.6].

3.10. We now apply Theorem 6 to obtain a strengthened version of the result of § 3.6.
We suppose again u(x) satisfies (11) in a symmetric X,, with H(x) > H,>0. However no
assumption is now made on smoothness of u(x) up to the walls K,; »(x) is not required to
be defined on K,, and it is supposed only that o+y>n/2 as a limit (almost everywhere)
from within X,.

In the physical case n =2, we show that w(x) <M +2H;" near £° whenever u(x) <M on
a certain one dimensional interior subset, depending only on the geometry and not on the solu-
tion considered. If n>2, there holds w(x)<M+Hg' in X, whenever w(x)<M on some

outer bounding surface X (figure 8).

- ~

— -

Fig. 8a Fig. 8b

We choose for v(x) a lower hemisphere § of radius H;!, with projection (fig. 8a) passing
through the vertex X0 and meeting X, in a region A bounded by X°, Z*, and by an outer
cap I'. We note that S meets the walls K, in an angle ys= (7/2) — o.

If A lies in the region Q of definition of u(x), we set X*=¢, X=2*+1"; Theorem 6
then yields (since y3<y on Z*, v-Tv=1 on I') H(x)=H,, u(x)=wv(x)+const. Thus, in this
case the surface u(x) is identically a lower hemisphere.

I A¢ Q, we obtain the situation illustrated in Figure 8a. We may redefine Q so that
it is bounded in part by portions X4 of X* and I, by 2° and by some set X* on which
u(x) is, locally, bounded. If it is known that u(x) <M on all of ¢, Theorem 6 yields im-
mediately w(x) <M +H;' in Q, as was to be proved.

Suppose n=2 and u(x) is known to be bounded only on compact interior subsets of
Q. We construct a spherical cap of radius Hy' interior to £, as indicated in Figure 8b.
Letting M* = maxp« u(x), we find from Theorem 6 that u(x) < M*+ H,' throughout the cap.
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Fig. 9(a) o=60°, y=48°; (b) oe=60° =25 (¢} a=60°y=0°% (d) «=60°, y=0°,

Thus, if M$ is a bound for u(x) on the remainder of 2% Theorem 6 now yields u(x) <
max {Me+Hy', M7} +H;' in Q, the desired result.

Remark. We note the bound in JX depends on the bound on an (n-—1) dimensional
compact subset of JX. Clearly there is no universal bound, as u(x) + C satisfies (11) whenever
u(x) does, for any constant C. It is not clear whether a significantly smaller set than the

~ one introduced would suffice for the estimate; however, we point out here that a considera-
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tion of the example of § 3.8 shows that it does not suffice to know a bound at a single in-

terior point.

3.11. Theorem 5 was tested experimentally by W. J. Masica at the NASA Lewis Zero
Gravity Facility in Cleveland, using cylinders of polygonal cross section in a 142 meter
drop-tower. As used in this experiment, the tower provided approximately five seconds
during which the fluid contained in the cylinder experienced no gravitational acceleration.
In Figure 9 the equilibrium configurations for an acrylic plastic cylinder of hexagonal
section are compared, using fluids for which (a) y =48°, (b) y =25°, (c) y =0°. In Figure 9d
the fluid of case (¢) is shown at rest on the surface of the earth. The varying appearances
of the fluid and surface are due to varying light conditions under which the photographs
were made. In case (a) the solution appears to be part of a hemisphere, as our results pre-
dict, while in cases (b) and (c), to which Theorem 5 applies, the fluid rises in the edges and
fills in the corners and edges at the top. This is in agreement with Theorem 5, according to
which there can be no solution surface defined up to the edges and projecting simply onto

the base.
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