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Abstract. In this paper the authors refine the Carlson’s inequa-
lities for inverse cosine function, and the Shafer’s inequalities for
inverse tangent function.
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§ 1. Introduction

During the past fifteen years, numerous authors have studied vari-
ous inequalities for trigonometric functions [1 – 12]. Thus, some classical
and also more recent inequalities, such as inequalities of Jordan, Cusa–
Huygens, Shafer–Fink, and Wilker have been refined and generalized. One
of the key methods in these studies has been so called monotone l’Hospital
Rule from [1] and an extensive survey of the related literature is given in
[13]. This Rule is formulated as Lemma 1 and it will be also applied
here. Motivated by these studies, in this paper we make a contribution
to the topic by sharpening Carlson’s and Shafer’s inequalities, and our
inequalities refine the existing results in literature.

We start our discussion with the following well-known inequalities,

cos(t)1/3 <
sin(t)

t
<

cos(t) + 2

3
, (1)

for 0 < |t| < π/2. The first inequality is due to by D.D. Adamović and
D. S. Mitrinović [14, p. 238], while the second inequality was obtained by
N. Cusa and C. Huygens [15]. These inequalities can be written as

3 sin(t)

2 + cos(t)
< t <

sin(t)

cos(t)1/3
.
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For the further studies and refinements of inequalities in (1), e. g., see
[2, 5–8, 13, 16] and the references therein. For the easy references we recall
the following inequalities

cos

(
t

2

)4/3

<
sin(t)

t
< cos

(
t

3

)3

, (2)

the first inequality holds for t ∈ (0, π/2) [6], while the second one is valid
for t ∈ (−

√
27/5,

√
27/5), and was proved by Klén et al. [2]. The first

inequality in (2) refines the following one

t <
2 sin(t)

1 + cos(t)
, 0 < x <

π

2
,

which was constructed in [17] by using Chebyshev’s integral inequality.
Oppenheim’s problem [14, 18, 19] states to determine the largest a2

and the least a3 as a function of a1 > 0, such that the following inequalities

a2 sin(x)

1 + a1 cos(x)
< x <

a3 sin(x)

1 + a1 cos(x)
(3)

hold for all x ∈ (0, π/2). A partial solution of this problem was given
by Oppenheim and Carver [19], they showed that (3) holds for all a1 ∈
∈ (0, 1/2) and x ∈ (0, π/2) when a2 = 1+ a1 and a3 = π/2. In 2007, Zhu
[20, Theorem 7] solved Oppenheim’s problem completely by proving that
the inequalities in (3) hold if a1, a2 and a3 are as follows:

1) if a1 ∈ (0, 1/2), then a2 = 1 + a1 and a3 = π/2,

2) if a1 ∈ (1/2, π/2− 1), then a2 = 4a1(1− a21) and a3 = π/2,

3) if a1 ∈ (π/2− 1, 2/π), then a2 = 4a1(1− a21) and a3 = 1 + a1,

4) if a1 > 2/π, then a2 = π/2 and a3 = 1 + a1,

where a2 and a3 are the best possible constants in (1) and (4), while a3
is the best possible constant in (2) and (3). Thereafter, Carver’s solution
was extended to the Bessel functions for the further results by Baricz
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[21, 22]. On the basis of computer experiments we came up that the
following lower and upper bounds for x,

(π/2) sin(x)

1 + (2/π) cos(x)
< x <

π sin(x)

2 + (π − 2) cos(x)
(4)

are the best possible bounds, and can be obtained from case (4) and (3),
respectively.

Recently, Qi et al. [23] have given a new proof of Oppenheim’s problem,
and deduced the following inequalities,

(π/2) sin(x)

1 + (2/π) cos(x)
< x <

(π + 2) sin(x)

π + 2 cos(x)
. (5)

for x ∈ (0, π/2). It is obvious that

((π − 2)− 4)(1− cos(x)) < 0,

which is equivalent to

π sin(x)

2 + (π − 2) cos(x)
<

(π + 2) sin(x)

π + 2 cos(x)
.

This implies that the second inequality of (4) is better than the corre-
sponding inequality of (5).

Our first main result, which refines the inequalities in (4), reads as
follows.

Theorem 1. For x ∈ (0, π/2), we have

Cα < x < Cβ , (6)

where

Cα =
8 sin(x/2)− sin(x)

α
and Cβ =

8 sin(x/2)− sin(x)

β
,

with the best possible constants α = 3 and β = (8
√
2− 2)/π ≈ 2.96465.

By using Mathematica SoftwareR⃝ [24], one can see that Theorem 1
refines the inequalities in (4) as follows:

Zl(x) < Cα(x), for x ∈ (0, 1.28966),
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Zu(x) < Cβ(x), for x ∈ (0, 0.980316),

where Zl and Zu denote the lower and upper bound of (4), respectively. It
is worth to mention that the first inequality in Theorem 1 was discovered
heuristically by Huygens [25], here we have given a proof.

In 1970, Carlson [26] established the following inequalities,

6(1− x)1/2

2
√
2 + (1 + x)1/2

< arccos(x) <
41/3(1− x)1/2

(1 + x)1/6
, (7)

0 < x < 1. These inequalities are known as Carlson’s inequalities in litera-
ture. Thereafter, several authors studied these inequalities, and gave some
generalization and partial refinement, e. g., see [27 – 30]. It is interesting
to observe that the Adamović-Mitrinović and Cusa-Huygens inequality
(1) implies the second and the first inequality of (7), respectively, with
the transformation x = arccos(t), 0 < t < π/4.

For 0 < x < 1, Guo and Qi [28, 29] gave the following inequalities,

π

2

(1− x)1/2

(1 + x)1/6
< arccos(x) <

(1/2 +
√
2)(1− x)1/2

2
√
2 + (1 + x)1/2

, (8)

41/π(1− x)1/2

(1 + x)(4−π)/(2π)
< arccos(x) <

π(1− x)1/2

2(1 + x)(4−π)/(2π)
. (9)

They concluded that these inequalities don’t refine (7) in the whole inter-
val (0, 1) of x.

Chen et al. [27] established the lower bound for arccos(x) as follows,

π

2

(1− x)(π+2)/π2

(1 + x)(π−2)/π2 < arccos(x), 0 < x < 1. (10)

The inequality (10) refines the first inequality of (7) for x ∈ (0, 0.345693).
In [30], Zhu proved that for p ≥ 1 and x ∈ (0, 1)

2 · 31/p
√
1− x

((2
√
2)p + (

√
1 + x)p)

1
p

< arccos(x) <
2π

√
1− x

((2
√
2)p + (πp − 2p)(

√
1 + x)p)

1
p

,

(11)
inequalities reverse for p ∈ [0, 4/5].

We give the following theorem, which refines Carlson’s inequality, see
Figure 1.
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Theorem 2. For x ∈ (0, 1)

1

3

(
8

√
2−

√
2
√
1 + x

)
< arccos(x) <

211/6
√
1− x

(2 +
√
2
√
1 + x)2/3

. (12)

We see that Theorem 2 refines the inequalities in (11) by using the
Mathematica SoftwareR⃝ [24].

In 1967, Shafer [31] proposed the following elementary inequality

3x

1 + 2
√
1 + x2

< arctan(x), x > 0. (13)

This inequality was proved by Grinstein, Marsh and Konhauser by differ-
ent ways in [32].

In 2009, Qi et al. [33] refined the inequality (13) as follows,

(1 + a)x

a+
√
1 + x2

< arctan(x) <
(π/2)x

4 +
√
1 + x2

, x > 0, −1 < a < 1/2, (14)

4a(1 + a2)x

a+
√
1 + x2

< arctan(x) <
max{π/2, 1 + a}x

a+
√
1 + x2

, x > 0, 1/2 < a < 2/π.

Recently, Alirezaei [34] has sharpened Shafer’s inequality (13) by gi-
ving the following bounds for arctan(x),

x

4/π2 +
√
(1− 4/π2)2 + 4x2/π2

< arctan(x) < (15)

<
x

1− 6/π2 +
√
(6/π2)2 + 4x2/π2

,

for x ∈ R. Graphically, it is shown that the maximum relative errors of
the obtained bounds are approximately smaller than 0.27% and 0.23% for
the lower and upper bound, respectively.

Our next result refines the bounds given in (15), which is illustrated
in Figure 2.

Theorem 3. For x ∈ (0, 1), we have

1

3

(
4
√
2

√
1− 1√

1 + x2
− x√

1 + x2

)
< arctan(x) < (16)
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<
22/3x

√
1 + x2

(
1 + 1/

√
1 + x2

)2/3 .
§ 2. Preliminaries

For easy reference, we recall the the following Monotone l’Hôpital rule
due to Anderson et al. [1, Theorem 2], which has been extremely used in
literature.

Lemma 1. For −∞ < a < b < ∞, let f, g : [a, b] → R be continuous on
[a, b], and be differentiable on (a, b). Let g

′
(x) ̸= 0 on (a, b). If f

′
(x)/g

′
(x)

is increasing (decreasing) on (a, b), then so are

f(x)− f(a)

g(x)− g(a)
and

f(x)− f(b)

g(x)− g(b)
.

If f
′
(x)/g

′
(x) is strictly monotone, then the monotonicity in the conclu-

sion is also strict.

Lemma 2. The function

f(x) = 4x sin(x) + (4− x2) cos(x)− x2

is strictly decreasing from (0, π/2) onto (a, 4), a = π(8− π)/4 ≈ 3.81578.
In particular,

π(8− π)/4 + x2 − (4− x2) cos(x)

4x2
<

sin(x)

x
<

4 + x2 − (4− x2) cos(x)

4x2

for x ∈ (0, π/2).

Proof. By differentiating and using the indentities sin(x) = 2 sin(x/2)×
× cos(x/2) and 1− cos(x) = 2 sin(x/2)2 we get

f ′(x) = x(2 cos(x) + x sin(x)− 2) =

= 2 sin(x/2)(x cos(x/2)− 2 sin(x/2)) < 0.

Hence f is strictly decreasing in x ∈ (0, π/2), and the limiting values can
be obtained easily. □
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Lemma 3. The following function

f(x) =
sin(x)− x cos(x)

2 sin(x/2)− x cos(x/2)

is strictly decreasing from (0, π/2) onto (b, 4), b = 2
√
2/(4−π) ≈ 3.81578.

In particular,

2
√
2

4− π

(
2 sin

(x
2

)
− x cos

(x
2

))
< sin(x)− x cos(x) <

< 4
(
2 sin

(x
2

)
− x cos

(x
2

))
,

for x ∈ (0, π/2).

Proof. We get

f ′(x) =
x sin(x)

2 sin(x/2)− x cos(x/2)
− x sin(x/2)(sin(x)− x cos(x))

2(2 sin(x/2)− x cos(x/2))2
=

=
x sin(x/2)(x(2 + cos(x))− 3 sin(x))

4− (4x sin(x) + (4− x2) cos(x)− x2)
,

which is negative by the second inequality of (1) and Lemma 2. This
implies that f is strictly decreasing in x ∈ (0, π/2), and by applying
l’Hôpital rule we get the limiting values. □
Lemma 4. The following function

g(x) =
8 sin(x/2)− sin(x)

x

is strictly decreasing from (0, π/2) onto (β, 3), β = (8
√
2−2)/π ≈ 2.96465.

Also, the function

f(z) =
8 sin(z)

6z + sin(2z)

is strictly decreasing from (0, π/4) onto (1, γ), γ = 8
√
2/(2 + 3π) ≈

≈ 0.99028.

Proof. We get

g′(x) =
4 cos(x/2)− cos(x)

x
− 8 sin(x/2)− sin(x)

x2
=

=
sin(x)− x cos(x)− 4(2 sin(x/2)− x cos(x/2))

x2
,
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which is negative by Lemma 3. Thus, g is strictly decreasing in x ∈
∈ (0, π/2) , and the limiting values follow from the l’Hôpital rule.

Next, let f = f1(z)/f2(z), z ∈ (0, π/4), where f1(z) = 8 sin(z) and
f2(z) = 6z + sin(2z). We get

f ′
1(z)

f ′
2(z)

=
4 cos(z)

1 + cos(z)2
= f3(z).

One has,

f ′
3(z) = − sin(z)3

(3 + cos(2z))2
< 0.

Clearly, f1(0) = f2(0) = 0, hence by Lemma 1 f is strictly decreasing,
and we get

lim
z→π/4

f(z) = 8
√
2/(2 + 3π) ≈ 0.99028 < f(z) < lim

z→0
f(z) = 1,

this implies the proof. □

§ 3. Proof of Theorems

Proof of Theorem 1. The proof follows easily from Lemma 4. □
Corollary. For x ∈ (0, π/2), we have

8 sin(x/2)− sin(x)

β
<

8 sin(x/2)− β sin(x)

γ
,

where β and γ are as in Lemma 4.

Proof. For x ∈ (0, π/2), let f(x) = sin(x/2)/ sin(x). One has

f ′(x) =
sin(x/2)3

sin(x)2
> 0.

Hence, f is strictly increasing, and

1

2
= lim

x→0
f(x) < f(x) < lim

x→π/2
f(x) =

1√
2
.

We observe that

sin(x/2)

sin(x)
<

1√
2
= − 2− 8

√
2 + 3π

16− 2
√
2− 3

√
2π

,
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which is equivalent to

(16− 2
√
2− 3

√
2π) sin(x/2) + (2− 8

√
2 + 3π) sin(x)

24
√
2− 6

> 0.

This is equivalent to the desired inequality. □

Proof of Theorem 2. Let x = cos(2t) for 0 < t < π/4. Then
arccos(x)/2 = t, and clearly 0 < x < 1. From (2) and (6) we have

8 sin(t/2)− sin(t)

3
< t <

22/3 sin(t)

(1 + cos(t))2/3
, (17)

for t ∈ (0, π/2). Replacing cos(t), sin(t) and t by
√
(1 + x)/2,

√
(1− x)/2

and arccos(x)/2, respectively, in (17), we get

8((1−
√
(1 + x)/2)/2)1/2 −

√
(1− x)/2

3
<

arccos(x)

2
<

<
22/3

√
(1− x)/2

(1 +
√
(1 + x)/2)2/3

.

After simplification we get the desired inequality. □

Proof of Theorem 3. Next, let x = tan(t), t ∈ (0, π/2) and x ∈ (0, 1).
Then t = arctan(x), and by using the identity 1+tan(t)2 = sec(t)2 we get

sin(t) =
x√

1 + x2
= m, and sin

(
t

2

)
=

(√
1 + x2 − 1

2
√
1 + x2

)
= n.

We get the desired inequalities if we replace, t, sin(t), sin(t/2) by arctan(x),
m, n, respectively, in (17). □

For the comparison of the bounds of arccos(x) and arctan(x) given in
(7) and (12) with the corresponding bounds appear in Theorem 2 and 3,
we use the the graphical method, see Figure 1 and 2.
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Figure 1: We denote the left-hand sides of (7) and (12) by Clow and Nlow,
respectively, while the right-hand sides by Cup and Nup, respectively. It
is clear that (12) refines the Carlson’s inequality (7)

0.0 0.2 0.4 0.6 0.8 1.0

0.0002
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0.0010
0.0012
0.0014
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0.0 0.2 0.4 0.6 0.8 1.0

0.00002
0.00004
0.00006
0.00008
0.00010
0.00012

Aup-Bup

Figure 2: We denote the lower and upper bound of (16) by Blow and Bup,
respectively, while the corresponding bounds of (15) are denoted by Alow

and Aup. The differences Blow−Alow, Aup−Bup are positive, this implies
that the inequalities in (16) are better than the corresponding inequalities
of (15)
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[14] Mitrinović D. S. Analytic Inequalities. Springer-Verlag, Berlin, 1970.

[15] Huygens C. Oeuvres Completes 1888–1940. Socié te Hollondaise des Sci-
ence, Haga.

[16] Lv Y., Wang G. and Chua Y. A note on Jordan type inequalities for hy-
perbolic functions. Appl. Math. Lett., 2012, vol. 25, pp. 505–508.

[17] Qi F., Cui L.-H., and Xu S.-L. Some inequalities constructed by Tcheby-
sheff’s integral inequality. Math. Inequal. Appl., 1999, vol. 2, no. 4, pp.
517–528.



14 B. A. Bhayo, J. Sándor

[18] Ogilvy C. S., Oppenheim A., Ivanoff V. F., Ford Jr. L. F., Fulkerson D.
R., and Narayanan Jr. V. K. Elementary problems and solutions: problems
for solution: E1275-E1280. Amer. Math. Monthly, 1957, vol. 64, no. 7, pp.
504–505.

[19] Oppenheim A. E1277. Amer. Math. Monthly, 1957, vol. 64, no. 6, pp. 504.

[20] Zhu L. A solution of a problem of Oppeheim. Math. Inequal. Appl., 2007,
vol. 10, no. 1, pp. 57–61.
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