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Abstract Several Cartesian stiffness matrices for a single rigid body subject to a conserv-
ative force field are developed in this paper. The treatment is based on energetic arguments
and an Euler angle parameterization of the rotation of the rigid body is employed. Several
new representations for the stiffness matrix are obtained and the relation to other works on
Cartesian stiffness matrices and Hessians is illuminated. Additional details are presented
with respect to determining the Cartesian stiffness matrix for a pair of rigid bodies, as well
as for a system of rigid bodies constrained to a plane.

Keywords Rigid body · Rotation · Stiffness matrix · Cartesian stiffness matrix · Dual
Euler basis · Euler angles · Conservative force fields

1 Introduction

Papers by Duffy, Griffis, and Pigoski [8, 18] appeared in the early 1990s discussing examples
of a linear mapping of the increments to the conservative force and moment components act-
ing on a rigid body with the infinitesimal displacements and rotations which produced them.
The linear mapping was a stiffness matrix KO which had the unusual feature of being asym-
metric. To distinguish this matrix from the Hessian H of a potential energy, KO is known
as the “Cartesian stiffness matrix.” Griffis and Duffy’s examples in [8] featured rigid bodies
tethered to a fixed surface using linear springs. In the event that the springs were unstretched
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in the state of the body of interest, then the asymmetry of KO was seen to vanish. Subse-
quent works by Ciblak and Lipkins [5] clarified aspects of the asymmetry. Howard et al. [9]
and Žefran and Kumar [21] used a Lie group approach, considered the more general case
of a rigid body in a potential field, and established several representations for the Cartesian
stiffness matrix. Several others researchers, such as [3, 10, 19], extended the formulation of
the Cartesian stiffness matrices to a range of mechanical systems. Our interest in this matrix
stems from its potential biomechanical applications ranging from quantifying the motion
of a knee joint using a stiffness parameter [1], to modeling the intervertebral disc of the
spine using a stiffness matrix [7, 16, 17]. These joints are ideally suited to such an analysis
especially in the realm of small motions about an equilibrium.

Here, we present another perspective on the Cartesian stiffness matrix, and discuss its
dependency on the force-moment pair that it characterizes. In contrast to the works [5,
8–10, 18, 21], we do not use screw theory to describe the rigid body motion, and instead
parameterize the rotation of the rigid body using a set of Euler angles. We follow [15] and
use an argument based on energetic considerations to establish the resultant conservative
force and moment acting on a rigid body. Invoking the same argument, expressions for the
conservative moment considered relative to a fixed point O , an arbitrary material point A,
and the center of mass X̄ are established. These expressions feature equivalent (but distinct)
functional forms of the potential energy function. With the help of a Taylor series expansion,
several examples of Cartesian stiffness matrices are then established:1

1Kc =
[

Q
T

0

0 G
T

]

1H

[

Q 0

0 G

]

+
[

0 1C

0 1D

]

+
[

0 1Y

0 1Z

]

,

2Kc =
[

I 0

0 G
T

]

2H

[

I 0

0 G

]

+
[

0 0

0 2D

]

.

The conditions required for the asymmetry of these matrices are discussed at length. The
stiffness matrix 1Kc is related to the stiffness matrix KO analyzed in Ciblak and Lipkins [5],
Howard et al. [9], and Žefran and Kumar [21]:

1Kc = KO +
[

0 1Y

0 1Z

]

.

We also discuss the steps necessary to extrapolate the results obtained to systems composed
of more than a single rigid body and elaborate further on this by examining planar motions
of multiple rigid bodies. We illuminate further features of the stiffness matrices using a
mass-spring system known as the Stewart–Gough platform that is featured in Griffis and
Duffy [8], among others. Finally, we contrast the Cartesian stiffness matrix and the stiffness
matrix formed from the Hessian H.

An outline of the paper is as follows. In the next section, relevant background from a
variety of sources on the kinematics and kinetics of a rigid body is presented. Using an
argument based on energetics, several representations for the conservative forces and mo-
ments acting on the rigid body are established in Sect. 3. These representations are used to
establish expressions for various Cartesian stiffness matrices in Sect. 4. The skew-symmetric
parts of these stiffness matrices receive additional attention in Sect. 5. There it is shown how
the skew-symmetric parts are related to the conservative forces and moments needed for

1These representations are established in Sect. 4 (cf. (28) and (35) in particular).
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equilibrium. Several of the results in this section can be considered as analogues of those
presented in [5, 9, 21]. The expressions for the stiffness matrices are then applied to a class of
planar mechanisms in Sect. 6. Following [8, 9, 21] and others, the Stewart–Gough platform
and its associated values of 1Kc and 2Kc are discussed in Sect. 7.

Section 8 further expands upon the analysis of Sects. 3 and 4 by examining systems
composed of more than one rigid body. A planar multibody system is analyzed in Sect. 9
to further illuminate the results obtained in Sect. 8. Some closing remarks are presented in
Sect. 10 and the two stiffness matrices characterized by the Cartesian stiffness matrix Kc and
the Hessian H will be compared there.

The paper contains two appendices. The first appendix, Appendix A, presents proofs of
certain identities which are needed to establish several results in Sect. 5. Details on the 3-2-1
set of Euler angles which are used in Sect. 7 are presented in Appendix B.

1.1 Notation

In the present paper, arrays of real numbers are denoted by san-serif roman letters, such as
G, x, etc. Vectors and tensors are denoted by bold-faced roman letters, e.g., x and C. The
indices i, j, k, l, n,m, r , and s range from 1 to 3. Further details on notation can be found in
Appendix A.

2 Background

A rigid body B consists of a collection of material points X where the distance between any
of these points remains constant. As shown in Fig. 1, it is convenient to define a fixed refer-
ence configuration κ0 of this body. This configuration occupies a fixed region of Euclidean
three-space E

3. The position vector, relative to a fixed origin O , of a material point X in
this configuration is defined by the position vector X. In a similar manner, the present (or
current) configuration κ t of B can be defined and the position vector of a material point X

in this configuration is denoted by x.

Fig. 1 The reference κ0 and present κ t configurations of a rigid body B. This figure also displays the
corotational basis {e1, e2, e3}, center of mass X̄, material point A, and the resultant force F and moment M
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The motion of the rigid body can be characterized by the rotation Q of the body and the
position vector x of a point on the body:

x = Q(t)X + d(t). (1)

Here, d(t) is a vector-valued function of time, and Q(t) is a rotation tensor. The determinant
of a rotation tensor is 1, and so the motion also preserves relative orientations, as required. In
the sequel, we will parameterize the rotation of the body by a set of Euler angles: ν1, ν2, ν3.
Further, we denote the position vector of the center of mass X̄ of the rigid body by x̄ and the
position vector of a point (or landmark) A on the rigid body by xA. Both of these position
vectors are defined relative to a fixed origin O (cf. Fig. 1).

It is convenient to define two bases for E
3: a fixed right-handed basis {E1,E2,E3} and

a corotational (body-fixed) basis {e1, e2, e3}. The basis vectors are related: ei = QEi , where
i = 1,2,3. For the position vector of the center of mass and the point A, we have the repre-
sentations

x̄ = X1E1 + X2E2 + X3E3 = x1e1 + x2e2 + x3e3,

xA = XA1 E1 + XA2 E2 + XA3 E3 = xA1 e1 + xA2 e2 + xA3 e3.
(2)

For any given choice of one of the twelve possible sets of Euler angles, we have the
following representation for the angular velocity vector:

ω = ν̇1g1 + ν̇2g2 + ν̇3g3, (3)

where {g1,g2,g3} is the Euler basis. This set of vectors fails to be a basis at the two singu-
larities experienced by the second Euler angle ν2.

Following [13–15], the dual Euler basis is defined as the set {g1,g2,g3} such that

gi · gk = δi
k, (4)

where δi
k is the Kronecker delta: δi

k = 1 when i = k and is otherwise 0. We can think of the
Euler basis {g1,g2,g3} and the dual Euler basis {g1,g2,g3} as basis vectors in the tangent and
cotangent spaces respectively of the manifold SO(3). The connection coefficients associated
with the Euler angles are defined as

γ i
jk = ∂gj

∂νk
· gi . (5)

Using the identity (4), we can find an alternative representation for the connection coeffi-
cients:

γ i
jk = − ∂gi

∂νk
· gj . (6)

Further details on the role played by connection coefficients and their relationship to
Christoffel symbols can be found in [2, 4].

For a given set of Euler angles, we can compute expressions for the vectors gk in terms
of the bases {E1,E2,E3}:

gk =
3

∑

n=1

Gk
nEn. (7)
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The components Gk
i form a matrix, which we denote by G, and are related to the connection

coefficients associated with the Euler angles. Indeed, it is easy to show that

∂gk

∂νj
=

3
∑

n=1

∂Gk
n

∂νj
En

= −
3

∑

n=1

γ k
nj gn

= −
3

∑

n=1

3
∑

m=1

γ k
njG

n
mEm. (8)

Additional details on the derivatives of gk and ei can be found in Appendix A. In addi-
tion, explicit expressions for these basis vectors, the components Gk

n, and the connection
coefficients for the 3-2-1 Euler angles can be found in Appendix B.

3 Conservative forces and moments

Motivated by the developments in [15], we assume that the potential energy function U of
a rigid body can be expressed as a function of the position vector x̄ and rotation tensor Q.
Among others, such a function encompasses the situation where the conservative field is
supplied by springs tethering the body to a fixed surface, and a Newtonian gravitational
force field attracting the rigid body to a fixed body. Alternatively, we can also express U as
a function of the Cartesian coordinates of a point on the rigid body and the Euler angles. In
fact, we can readily establish several distinct representations for U :

U = U(Q, x̄)

= U1

(

ν1, ν2, ν3, x1, x2, x3

)

= U2

(

ν1, ν2, ν3,X1,X2,X3

)

= U3

(

ν1, ν2, ν3, xA1 , xA2 , xA3

)

= U4

(

ν1, ν2, ν3,XA1 ,XA2 ,XA3

)

. (9)

We obtain U1 from U by expressing the components of Q in terms of the Euler angles and
the vector x̄ in terms of its components xk and the bases vectors ek : x̄ =

∑3
k=1 xkek . The

vector x̄ can also be expressed in terms of the fixed basis {E1,E2,E3} and this leads to the
representation U2. Related comments apply for the two potential functions U3,4.

To prescribe the conservative force F and moment (relative to the center of mass) M

acting on the body, we identify the mechanical power of these quantities with the negative
of the time rate of change of U :

−U̇ = F · ˙̄x + M · ω. (10)

Following [15] and with the help of the dual Euler basis, we find the following representa-
tions for F and M:

F = −
3

∑

k=1

∂U2

∂Xk

Ek, M = −
3

∑

k=1

∂U2

∂νk
gk. (11)

We emphasize that the force in this expression is assumed to act at the center of mass and
the moment M is taken relative to the center of mass (cf. Fig. 1).
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Now suppose we wish to consider moments relative to other points. There are two cases
of primary interest: a point A on the body and a fixed point O . With the help of the well-
known identities for the resultant moments relative to A and O ,

MA = M − (xA − x̄) × F, MO = M + x̄ × F, (12)

and using the fact that A is a point on the body,

ẋA = ˙̄x + ω × (xA − x̄), (13)

we find that

F · ˙̄x + M · ω = F · ẋA + MA · ω = F ·
( ˙̄x − ω × x̄

)

+ MO · ω. (14)

Invoking (10) and noting that

˙̄x − ω × x̄ =
3

∑

k=1

ẋkek, (15)

we conclude that

F = −
3

∑

k=1

∂U4

∂XAk

Ek, MA = −
3

∑

k=1

∂U4

∂νk
gk, (16)

and

F = −
3

∑

k=1

∂U1

∂xk

ek, MO = −
3

∑

k=1

∂U1

∂νk
gk. (17)

The contrast between (11) and (17) is illuminating. When moments about a fixed point O

are considered, the natural representation for the conservative force is with respect to the
corotational basis. This is in surprising contrast to the case where the moments are taken
relative to a material point on the body.

4 The Cartesian stiffness matrix

For any of the representations of the conservative forces and moments, a Cartesian stiffness
matrix can be defined. This matrix relates the changes to Cartesian components of a pair
of forces and moments in two configurations of the rigid body to the Cartesian components
of the infinitesimal displacement of a point on the rigid body and the infinitesimal rotation
between the configurations. In experimental situations, it is often easier to measure F · Ei

and MO · Ei using a load cell than the er and gk components featuring in (17). An example
of this situation arises in experiments conducted on the lumbar spine using a servo-hydraulic
test frame (see, e.g., [16]).

Additionally, as mentioned in [9], the Cartesian matrix is particularly useful in mecha-
nisms such as robots where motion is parameterized in terms of small rotations about and
small translations along the axes of a reference frame. In these instances, the coordinate
system of the reference frame rather than generalized coordinates is the natural choice of
parameterization to use.
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Fig. 2 Two configurations κ t and κ t ′ of a rigid body B. The kinematic quantities associated with the config-
uration κ t ′ are distinguished by a superscript ′ from those associated with the configuration κ t : e.g., x̄′ = x̄(t ′)

To elaborate, consider two configurations of a rigid body κ t and κ t ′ . We distinguish
quantities associated with κ t ′ with a superscript ′. The motion between these configurations
can be defined with the help of (1):

x′ = x(t ′) = Q(t ′)QT (t)x(t) + z, z = d(t ′) − QT (t)d(t). (18)

We shall assume that the two configurations differ by an infinitesimal rigid body motion.
Thus,

Δx̄ = x̄′ − x̄ = O(ǫ), I + ΔQ = Q(t ′)QT (t), ΔQ = O(ǫ), (19)

where ǫ is a small number and I is the identity tensor.
As the rotation ΔQ is infinitesimal, ΔQ is skew-symmetric [20]. If νk′

denote the values
of the Euler angles associated with Q(t ′), then a lengthy, but straightforward calculation
shows that the axial vector Δθ of ΔQ has the representation (cf. (117))

Δθ =
3

∑

k=1

(

νk′ − νk
)

gk + O(ǫ2), (20)

where gk are the Euler basis vectors associated with Q(t). It follows that

νk′ − νk = Δθ · gk =
3

∑

i=1

Gk
i Δθ · Ei, (21)

where we used (7) to express the dual Euler basis vectors in terms of the Cartesian basis
vectors.
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To first order in ǫ, the displacement vector Δx̄ has the representations

Δx̄ =
3

∑

k=1

(

X′
k − Xk

)

Ek =
3

∑

r=1

(

x ′
r − xr

)

er + Δθ × x̄, (22)

where x ′
k = x̄′ · e′

k = x̄′ · ek + x̄′ · (ΔQek). Consequently,

X′
k − Xk = Δx̄ · Ek,

x ′
r − xr = Δx̄ ·

(

3
∑

k=1

QrkEk

)

+ Δθ · (er × x̄). (23)

The presence of the term Δθ · (er × x̄) in (23)2 reflects the difference in the vectors e′
r and er .

We are now in a position to define a Cartesian stiffness matrix Kc. Based on the four
functions discussed earlier, there are four possible matrices and we distinguish them by a left
subscript. All of the stiffness matrices are obtained by performing a Taylor series expansion
of the expressions for the appropriate conservative forces and moments. In addition, the
developments for the stiffness matrices associated with the potential energies U3 and U4 are
similar to those presented for U1 and U2, respectively. In the interests of brevity, they are
omitted.

4.1 The stiffness matrix 1Kc

The first Cartesian stiffness matrix, which we denote by 1Kc , relates the differences in the
force F and moment MO in the configurations κ t ′ and κ t to the infinitesimal displacement
vectors Δx̄ and Δθ . The matrix 1Kc is defined by the identity

ΔF = −1KcΔx + O(ǫ2), (24)

where

ΔF =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(F′ − F) · E1

(F′ − F) · E2

(F′ − F) · E3

(M′
O − MO) · E1

(M′
O − MO) · E2

(M′
O − MO) · E3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Δx =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δx̄ · E1

Δx̄ · E2

Δx̄ · E3

Δθ · E1

Δθ · E2

Δθ · E3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Δs =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(Δx̄ − Δθ × x̄) · E1

(Δx̄ − Δθ × x̄) · E2

(Δx̄ − Δθ × x̄) · E3

Δθ · E1

Δθ · E2

Δθ · E3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (25)

We have also taken this opportunity to define another displacement vector Δs in order to
be able to compare our work with those of Ciblak and Lipkin [5] and others who use screw
theory.

To obtain a representation for 1Kc, we perform Taylor series expansions of the expres-
sions for F and MO about the configuration κ t (cf. (17)). After ignoring terms of order ǫ2,
we find that

F′ − F = −
3

∑

k=1

3
∑

i=1

∂

∂xk

(

∂U1

∂xi

ei

)

(

x ′
k − xk

)

−
3

∑

k=1

∂

∂νk

(

3
∑

i=1

∂U1

∂xi

ei

)

(

νk′ − νk
)

,

M′
O − MO = −

3
∑

k=1

∂

∂xk

(

3
∑

i=1

∂U1

∂νi
gi

)

(

x ′
k − xk

)

−
3

∑

k=1

∂

∂νk

(

3
∑

i=1

∂U1

∂νi
gi

)

(

νk′ − νk
)

.

(26)
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Performing some rearranging and using (21) and (23)2, (26) can be rewritten as

F′ − F = −
3

∑

i=1

(

3
∑

r=1

3
∑

k=1

(

∂2U1

∂xk∂xi

)

QkrΔx̄ · Er +
3

∑

k=1

3
∑

r=1

(

∂2U1

∂νk∂xi

)

Gk
rΔθ · Er

)

ei

−
3

∑

k=1

3
∑

i=1

3
∑

r=1

(

∂U1

∂xi

)

(

Gk
rΔθ · Er

) ∂ei

∂νk

−
3

∑

i=1

3
∑

k=1

(

∂2U1

∂xk∂xi

)

(

Δθ · (ek × x̄)
)

ei,

(27)

M′
O − MO = −

3
∑

i=1

(

3
∑

r=1

3
∑

k=1

(

∂2U1

∂xk∂νi

)

QkrΔx̄ · Er +
3

∑

r=1

3
∑

k=1

(

∂2U1

∂νk∂νi

)

Gk
rΔθ · Er

)

gi

−
3

∑

k=1

3
∑

i=1

3
∑

r=1

(

∂U1

∂νi

)

(

Gk
rΔθ · Er

) ∂gi

∂νk

−
3

∑

i=1

3
∑

k=1

(

∂2U1

∂xk∂νi

)

(

Δθ · (ek × x̄)
)

gi .

In (27), the components of the matrix Q are Qik = ei(t) · Ek and the components of the
matrix G are Gi

k = gi(t) · Ek .
Taking the En components of the force and moment vectors in (27) and using (8) and

(120), the following representation for the stiffness matrix is obtained:

1Kc =
[

Q
T

0

0 G
T

]

1H

[

Q 0

0 G

]

+
[

0 1C

0 1D

]

+
[

0 1Y

0 1Z

]

. (28)

Here, 1H is the Hessian of the potential energy function U1:

1H =
[

1K1 1K3

1K
T
3 1K2

]

, (29)

with

1K1,ij = ∂2U1

∂xi∂xj

, 1K2,ij = ∂2U1

∂νi∂νj
, 1K3,ij = ∂2U1

∂νi∂xj

. (30)

The components of the 3 × 3 matrices 1C, 1D, 1Y, and 1Z are, respectively,

1Cmn =
3

∑

k=1

3
∑

i=1

∂Qim

∂νk
Gk

n

∂U1

∂xi

,

1Dmn =
3

∑

k=1

3
∑

i=1

∂Gi
m

∂νk
Gk

n

∂U1

∂νi
,

1Y = Q
T

1K1SQ,

1Z = G
T

1K
T
3 SQ, (31)
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and the components of the skew-symmetric matrix S are

Smn = x̄ · (en × em). (32)

We emphasize that the partial derivatives and vectors in the expressions for the components
of 1Kc are all evaluated using the values x̄ and νk associated with the configuration κ t . It
will be shown in Sect. 5 that 1C is skew-symmetric and has an axial vector F · Ei , while the
skew-symmetric part of 1D has an axial vector 1

2 MO · Ei .

4.2 The stiffness matrix 2Kc

A second Cartesian stiffness matrix can be defined relating the components of F · Ek and
M · Ek to the vector Δx:

ΔF̄ = −2KcΔx + O(ǫ2), (33)

where

ΔF̄ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(F′ − F) · E1

(F′ − F) · E2

(F′ − F) · E3

(M′ − M) · E1

(M′ − M) · E2

(M′ − M) · E3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (34)

The derivation of 2Kc closely follows the developments in the previous subsection and they
are omitted in the interest of brevity. In summary, we find that

2Kc =
[

I 0

0 G
T

]

2H

[

I 0

0 G

]

+
[

0 0

0 2D

]

. (35)

Here, 2H is the Hessian of the potential energy function U2:

2H =
[

2K1 2K3

2K
T
3 2K2

]

, (36)

with

2K1,ij = ∂2U2

∂Xi∂Xj

, 2K2,ij = ∂2U2

∂νi∂νj
, 2K3,ij = ∂2U2

∂νi∂Xj

, (37)

and

2Dmn =
3

∑

k=1

3
∑

i=1

∂Gi
m

∂νk
Gk

n

∂U2

∂νi
. (38)

In the previous expression, 2Dmn are the components of the 3×3 matrix 2D. It will be shown
in Sect. 5 that the skew-symmetric part of 2D has an axial vector 1

2 M · Ei .

4.3 Remarks

As noted by several authors (e.g., [10]), it is important to distinguish the Cartesian stiff-
ness matrix Kc from the stiffness matrix or Hessian H in analytical dynamics. Indeed, it is
transparent from (28) and (35), how Kc is a function of, and distinct from H.
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The matrices 1Kc and 2Kc both provide expressions for F′ − F in terms of Δx̄ and Δθ .
Consequently, 18 of the 36 components of 1Kc and 2Kc are identical:

Q
T

1K1Q = 2K1, Q
T

1K3G + 1C + 1Y = 2K3G. (39)

This result will be used in Sect. 7 to validate our numerical computations of 1Kc and 2Kc for
a specific mechanism.

Now suppose we were to consider a point P which is not a material point of the body.
In this case, vP �= ˙̄x + ω × (xP − x̄). Unless P is a fixed point, it is not possible to establish
identities of the form (14) featuring F and the resultant moment relative to P , MP . As a
result, if we wish to establish an expression for a stiffness matrix relative a point P on the
helical axis of motion, we would need to consider a fixed point O which instantaneously
coincides with the point P of interest. The stiffness matrix would then be 1Kc . If P were to
move, then we would need to relocate O , recompute x̄ · ei and reevaluate 1Kc .

In the work of Ciblak and Lipkin [5] and others where screw theory is used, the incre-
mental displacement vector Δs is used instead of Δx (cf. (25)). This choice of displacement
leads to another stiffness matrix, which we denote by KO is defined:

ΔF = −KOΔs + O(ǫ2), (40)

Here, Δs is defined by (25)3. Paralleling the developments which lead to (28), we find the
following representation for KO :

KO =
[

Q
T

0

0 G
T

]

1H

[

Q 0

0 G

]

+
[

0 1C

0 1D

]

. (41)

That is,

1Kc = KO +
[

0 1Y

0 1Z

]

, (42)

and so 1Kc can be asymmetric even when KO is symmetric.
The stiffness matrices in (28) and (35) relate the Ei components of the infinitesimal dis-

placements to the increments in the Ei components of the conservative forces and moments.
It is possible to define another Cartesian stiffness matrix where the Ei components are re-
placed by the components with respect to ei(t). As an example,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(F′ − F) · e1(t)

(F′ − F) · e2(t)

(F′ − F) · e3(t)

(M′
O − MO) · e1(t)

(M′
O − MO) · e2(t)

(M′
O − MO) · e3(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= −
[

Q 0

0 Q

]

1Kc

[

Q
T

0

0 Q
T

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δx̄ · e1(t)

Δx̄ · e2(t)

Δx̄ · e3(t)

Δθ · e1(t)

Δθ · e2(t)

Δθ · e3(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (43)

From this equation, it is easy to infer that the Cartesian stiffness matrix in this case is a
transformation of the stiffness matrix when the fixed basis is used.

5 The asymmetric parts of the stiffness matrices

As is the case with the situations discussed in [5, 8, 9, 21], the asymmetry of KO arises
because of the presence of a nonzero gradient of U for the configuration κ t . A similar
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situation arises for 1Kc and 2Kc . For 1Kc , the nonzero gradient of U1 then combines with
the dependency of the basis vectors ek and gk on the Euler angles to yield asymmetric
contributions to the Cartesian stiffness matrix. On the other hand, for 2Kc only the moment
M contributes to the asymmetry of this matrix. If the body is in equilibrium under the sole
action of conservative forces and moments in the configuration κ t , then the gradient of U

will be zero. In this case, the stiffness matrices KO and 2Kc will be symmetric, however the
matrix 1Kc may still be asymmetric (due to the presence of non-zero 1Y and 1Z).

As mentioned, the asymmetry of KO and part of the asymmetry of 1Kc is due to the
presence of the matrices 1C and 1D. These two matrices have several unusual features. In
particular, 1C is skew-symmetric, and the skew-symmetric parts of 1C and 1D can be related
to the force F and moment MO , respectively. Our results for the matrix KO in this respect
are the analogues of Theorem 1 of Ciblak and Lipkin [5], Corollary 1 in Howard et al. [9],
and Proposition 4.2 in Žefran and Kumar [21]. In a similar manner, for the stiffness matrix
2Kc , the skew-symmetric part of 2D is related to the moment M.

We start with the matrix 1C. This matrix has a strong dependency on the change in the
corotational basis vectors with respect to the Euler angles: ∂ei

∂νk . To prove the skew-symmetry
of 1C, we first observe that the components of 1C can be used to form a tensor 1C:

1C =
3

∑

m=1

3
∑

n=1

1CmnEm ⊗ En =
3

∑

i=1

3
∑

k=1

∂U1

∂xi

∂ei

∂νk
⊗ gk, (44)

where ⊗ is the tensor product of two vectors: (a ⊗ b)c = a(b · c) for all vectors a, b, and c.
We now invoke two identities (cf. (17)1 and (119)):

∂ei

∂νk
= gk × ei,

∂U1

∂xi

= −F · ei . (45)

Thus,

1C =
3

∑

k=1

(

gk ×
(

3
∑

i=1

∂U1

∂xi

ei

))

⊗ gk = −
3

∑

k=1

(gk × F) ⊗ gk. (46)

A direct calculation shows that, for any vector a,

−
(

3
∑

k=1

(gk × F) ⊗ gk

)

a = F × a. (47)

Thus, we conclude that the matrix 1C is skew-symmetric and that

1C32 = −1C23 = F · E1, 1C13 = −1C31 = F · E2, 1C21 = −1C12 = F · E3. (48)

This result is a generalization of Theorem 1 of Ciblak and Lipkin [5] to systems where the
elastic element can also supply pure moments.

It is tempting to conclude that 1D will also be skew-symmetric, but this is not the case.
The skew-symmetric part of this matrix is in direct correspondence with the components
MO · Ek . To arrive at this result, we note that the components of 1D can be used to form a
tensor 1D:

1D =
3

∑

m=1

3
∑

n=1

1DmnEm ⊗ En =
3

∑

i=1

3
∑

k=1

∂U1

∂νi

∂gi

∂νk
⊗ gk. (49)
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With the help of (8), we can express the derivatives of gi using the connection coefficients:

1D = −
3

∑

i=1

3
∑

j=1

3
∑

k=1

∂U1

∂νi
γ i

jkgj ⊗ gk. (50)

However, as (cf. (5) and (17)2),

3
∑

i=1

γ i
jkgi = ∂gj

∂νk
, MO · gi = −∂U1

∂νi
, (51)

we find that the expression for 1D simplifies to

1D =
3

∑

k=1

3
∑

j=1

(

MO · ∂gj

∂νk

)

gj ⊗ gk. (52)

Thus,

1D − 1DT =
3

∑

k=1

3
∑

j=1

(

MO ·
(

∂gj

∂νk
− ∂gk

∂νj

))

gj ⊗ gk. (53)

We next appeal to the identity (123) and conclude that

1D − 1DT =
3

∑

k=1

3
∑

j=1

(MO · (gk × gj ))g
j ⊗ gk. (54)

To compute the axial vector of this tensor, we note that, for any vector a =
∑3

r=1 argr ,

(

3
∑

k=1

3
∑

j=1

(

MO · (gk × gj )
)

gj ⊗ gk

)

a =
3

∑

k=1

3
∑

j=1

(

MO ·
(

akgk × gj

))

gj

=
3

∑

j=1

(MO · (a × gj ))g
j

=
3

∑

j=1

((MO × a) · gj )g
j

= MO × a. (55)

We conclude that MO is the axial vector of 1D − 1DT . Hence,

1D32 − 1D23 = MO · E1, 1D13 − 1D31 = MO · E2, 1D21 − 1D12 = MO · E3. (56)

Using (41), the skew-symmetric part of KO can be shown to have the representation

1

2

(

KO − K
T
O

)

= 1

2

[

0 1C

−1C
(

1D − 1D
T
)

]

, (57)

we conclude that the force F and moment MO contribute equally to the skew-symmetric
components of KO .
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For the stiffness matrix 2Kc, the only matrix which contributes to its skew-symmetric part
is 2Dmn. Paralleling the development of (56), we find that

2D32 − 2D23 = M · E1, 2D13 − 2D31 = M · E2, 2D21 − 2D12 = M · E3. (58)

We emphasize that in contrast to 1Kc and KO , F does not contribute to the skew-symmetric
part of 2Kc . In Sect. 7, examples of the identities (48), (56), and (58) will be shown.

6 The planar case

It is of interest to restrict attention to rigid bodies undergoing planar motions in the E1 − E2

plane. An example of such a system is shown in Fig. 3. For the planar case, the sole angle
of rotation is ψ . Additionally, the dual Euler basis is not needed and the axis of rotation is
simply E3. Further,

U = U1(ψ,x1, x2) = U2(ψ,X1,X2) = U3(ψ,xA1 , xA2) = U4(ψ,XA1 ,XA2). (59)

It shall shortly become apparent that the Cartesian stiffness matrix 2Kc will be symmetric,
while the matrix 1Kc can still retain an asymmetric component provided that the gradient of
U1 doesn’t vanish.

The expression for the stiffness matrix simplifies dramatically in the planar case. First,
the stiffness matrix is now defined by the relations

⎡

⎣

(F′ − F) · E1

(F′ − F) · E2

(M′
O − MO) · E3

⎤

⎦ = −1Kc

⎡

⎣

(x̄′ − x̄) · E1

(x̄′ − x̄) · E2

ψ ′ − ψ

⎤

⎦ . (60)

Fig. 3 Schematic of a rigid body which undergoes planar motions. The body is attached to two fixed points
P1 and P2 by springs of stiffnesses ki and unstretched lengths Li . This example is identical to one considered
by Griffis and Duffy [8]



On Cartesian stiffness matrices in rigid body dynamics 455

Paralleling the developments in Sect. 4.1, we find that the Cartesian stiffness matrix has the
representation

1Kc = Q
T

⎡

⎢

⎢

⎢

⎣

∂2U1
∂x1∂x1

∂2U1
∂x1∂x2

∂2U1
∂x1∂ψ

∂2U1
∂x2∂x1

∂2U1
∂x2∂x2

∂2U1
∂x2∂ψ

∂2U1
∂ψ∂x1

∂2U1
∂ψ∂x2

∂2U1
∂ψ∂ψ

⎤

⎥

⎥

⎥

⎦

Q +

⎡

⎣

0 0 F · E2

0 0 −F · E1

0 0 0

⎤

⎦

+ Q
T

⎡

⎢

⎢

⎢

⎣

∂2U1
∂x1∂x1

∂2U1
∂x1∂x2

0

∂2U1
∂x2∂x1

∂2U1
∂x2∂x2

0

∂2U1
∂ψ∂x1

∂2U1
∂ψ∂x2

0

⎤

⎥

⎥

⎥

⎦

⎡

⎣

0 0 x2

0 0 −x1

−x2 x1 0

⎤

⎦Q. (61)

Here, the rotation matrix Q is

Q =

⎡

⎣

cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

⎤

⎦ . (62)

In writing (61), we choose to express the skew-symmetric components of 1Kc in terms of
the force components.

If the force F and moment M are used, then we need to repeat the calculation with the
function U2. In this case, we simply find a symmetric Cartesian stiffness matrix:

⎡

⎣

(F′ − F) · E1

(F′ − F) · E2

(M′ − M) · E3

⎤

⎦ = −

⎡

⎢

⎢

⎢

⎣

∂2U2
∂X1∂X1

∂2U2
∂X1∂X2

∂2U2
∂X1∂ψ

∂2U2
∂X2∂X1

∂2U2
∂X2∂X2

∂2U2
∂X2∂ψ

∂2U2
∂ψ∂X1

∂2U2
∂ψ∂X2

∂2U2
∂ψ∂ψ

⎤

⎥

⎥

⎥

⎦

⎡

⎣

(x̄′ − x̄) · E1

(x̄′ − x̄) · E2

ψ ′ − ψ

⎤

⎦ . (63)

The 3 × 3 matrix in this equation is a symmetric Cartesian stiffness matrix 2Kc . The sym-
metry of this matrix is independent of the value of the gradient of U2.

7 The Stewart–Gough platform

To illustrate the previous developments, we turn to the example of the Stewart–Gough plat-
form. As shown in Fig. 4, the realization of this system for the purposes of this paper is that
of a rigid platform in the shape of an equilateral triangle which is attached by six springs to
a rigid base. The springs define a conservative force field for the platform, and in the sequel
we compute its potential energy and Cartesian stiffness matrices. This platform is a featured
example in several other works on the Cartesian stiffness matrix [5, 8, 21]. For the purpose
of comparison, we consider the same parameter values as these works.

7.1 Preliminary kinematic considerations

The springs have stiffnesses of k1, . . . k6 and unstretched lengths of l01, . . . , l06, respectively.
We follow [5, 8, 21] and specify the parameter values

l01 = 11, l02 = 12, l03 = 13, l04 = 14, l05 = 15, l06 = 16,
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Fig. 4 Schematic of a realization of a six degree-of-freedom system known as a Stewart–Gough platform.
Here, a rigid body which undergoes planar motions is attached to three fixed points O , P , Q by linear springs.
This example is identical to one considered by Griffis and Duffy [8] and the related publications [5, 21]

k1 = 10, k2 = 20, k3 = 30, k4 = 40, k5 = 50, k6 = 60. (64)

The lengths are prescribed in centimeters and the stiffnesses are prescribed in N/cm. The
position vectors of the two points P and Q are

rP = 7E1, rQ = 3.5E1 + 3.5
√

3E2. (65)

The configuration κ t of the platform is defined by the position vector x̄ of the center of mass
and the set of 3-2-1 Euler angles values:

x̄ = 12.8457E1 + 4.3709E2 + 14.8457E3,

ν1 = −33.0826◦, ν2 = −39.9638◦, ν3 = 202.701◦. (66)
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For the configuration κ t of interest, the position vectors of the points R, S, and T are

xR = x̄ − 3.5e1 + 3.5√
3

e2, xS = x̄ − 7√
3

e2, xT = x̄ + 3.5e1 + 3.5√
3

e2. (67)

The reader is referred to Fig. 4 for an illustration of some of these vectors. Representations
for the corotational basis vectors in the configuration κ t are obtained using (124):

e1 = 0.642198E1 − 0.41832E2 + 0.642332E3,

e2 = −0.29577E1 − 0.9083E2 − 0.295824E3, (68)

e3 = 0.707179E1 − 0.707035E3.

With the help of (126), representations for the dual Euler basis vectors can be found:

g1 = −0.702167E1 + 0.457433E2 + E3,

g2 = 0.545847E1 + 0.837885E2, (69)

g3 = 1.0932E1 − 0.712176E2.

The potential energy function for the platform can be obtained by adding the potential
energies of each of the springs:

V =
6

∑

J=1

kJ

2
(lJ − l0J )2, (70)

where l1, . . . , l6 are the stretched lengths of the springs. The configuration κ t is held in equi-
librium by a force F acting at the center of mass and a moment M relative to the center of
mass. These quantities are obtained using the potential energy function V and the represen-
tations (16):

F = −
3

∑

k=1

∂V2

∂Xk

Ek = −304.649E1 − 59.3016E2 − 505.968E3,

M = −
3

∑

k=1

∂V2

∂νk
gk = −200.324g1 + 545.558g2 − 47.945g3

= 386.039E1 + 399.625E2 − 200.324E3.

(71)

The system (71) is equipollent to a force F and a moment MO where

F = −
3

∑

k=1

∂V1

∂xk

ek = −495.82e1 + 293.658e2 + 142.333e3

= −304.649E1 − 59.3016E2 − 505.968E3,

MO = −
3

∑

k=1

∂V1

∂νk
gk = 369.493g1 + 1475.27g2 − 1363.84g3

= −945.122E1 + 2376.42E2 + 369.493E3.

(72)
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7.2 Stiffness matrices

It is straightforward to compute the stiffness matrices associated with the potential energy
V for the configuration κ t . With the help of (28) and (41), we find that

KO =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

80.0014 5.20958 75.5599 206.947 −202.424 −180.249
5.20958 39.3191 5.20994 −75.5072 5.269 212.017
75.5599 5.20994 150.613 407.245 −532.151 −212.216
206.947 −75.5072 407.245 4779.91 −1693.32 −3895.24

−202.424 5.269 −532.151 −1693.32 2705.38 −336.504
−180.249 212.017 −212.216 −3895.24 −336.504 3264.02

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 505.968 −59.3016
0 0 0 −505.968 0 304.649
0 0 0 59.3016 −304.649 0
0 0 0 −2638.32 −401.422 2376.42
0 0 0 −31.9282 1402.01 945.122
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

1Kc = KO +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 −252.925 −217.057 282.757
0 0 0 560.947 −10.4145 −482.311
0 0 0 −580.968 812.987 263.339
0 0 0 −2900.98 2159.07 1874.49
0 0 0 2404.2 −3830.72 −952.461
0 0 0 4075.12 −50.1405 −3511.36

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (73)

It is interesting to note that the Hessian of V1 has the following value:

[

1K1 1K3

1K
T
3 1K2

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

158.747 −62.3749 −32.0617 −340.763 −164.594 253.051
−62.3749 71.4421 14.7679 −76.4696 116.32 −210.66
−32.0617 14.7679 39.744 22.5743 118.039 −173.972
−340.763 −76.4696 22.5743 3264.02 −2408.16 −264.238
−164.594 116.32 118.039 −2408.16 1774.58 −1344.02

253.051 −210.66 −173.972 −264.238 −1344.02 1668.71

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(74)

This Hessian has a spectrum

[λ1, . . . , λ6] = [−711.826,20.9161,49.4755,117.917,2343.64,5157.12]. (75)

Due to the nonzero values of F and MO , the matrix KO is asymmetric. We also observe that
the components of the skew-symmetric matrix 1C and the matrix 1D which feature in (73)
satisfy the identities (48) and (56). The value for KO in (73) is identical to the expression for
the stiffness matrix K̂O recorded in (50) of Ciblak and Lipkin [5] although their methods
are different to ours.
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The stiffness matrix 2Kc is distinct from 1Kc . With the help of (35), it is straightforward
to compute that

2Kc =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

80.0014 5.20958 75.5599 −45.9777 86.4865 43.2066
5.20958 39.3191 5.20994 −20.5279 −5.14554 34.355
75.5599 5.20994 150.613 −114.422 −23.812 51.1232

−45.9777 −20.5279 −114.422 −415.399 −293.389 242.607
86.4865 −5.14554 −23.812 −293.389 −1004.59 57.4772
43.2066 34.355 51.1232 242.607 57.4772 −499.799

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −148.617 385.404 399.625
0 0 0 185.08 −308.574 −386.039
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (76)

Clearly, this matrix is asymmetric. We also observe that the components of the skew-
symmetric part of the matrix 2D which feature in (76) satisfy the identities (58). In addition,
the values of the matrices 1Kc and 2Kc in (73) and (76) satisfy the identities (39).

It is interesting to note that one of the constituents of 2Kc , the Hessian of V2, has the value

[

2K1 2K3

2K
T
3 2K2

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

80.0014 5.20958 75.5599 43.2066 47.3689 −37.9579
5.20958 39.3191 5.20994 34.355 −15.5164 11.0361
75.5599 5.20994 150.613 51.1232 −82.4086 −30.6826
43.2066 34.355 51.1232 −499.799 180.586 −189.268
47.3689 −15.5164 −82.4086 180.586 −1097.41 231.658

−37.9579 11.0361 −30.6826 −189.268 231.658 −226.44

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(77)

The Hessian of V2 has a spectrum

[μ1, . . . ,μ6] = [−1231.46,−492.751,−128.017,38.0753,41.9597,218.474]. (78)

As the spectra of the Hessians of V1 and V2 are distinct (cf. (75) and (78)) they cannot be
related by a similarity transformation.

8 Multibody systems

Suppose now that our system is composed of two rigid bodies with positions of the center of
mass and rotation tensor associated with the K th body denoted by x̄K and QK respectively.
That is, the corotational basis vectors fixed to body K is given by eK

i = QKEi (cf. Fig. 5).
Echoing the development in Sect. 2, we have the representations,

x̄K = XK
1 E1 + XK

2 E2 + XK
3 E3 = xK

1 eK
1 + xK

2 eK
2 + xK

3 eK
3 ,

xK
A = XK

A1
E1 + XK

A2
E3 + XK

A3
E3 = xK

A1
eK

1 + xK
A2

eK
2 + xK

A3
eK

3 (K = 1,2).
(79)

Unless specified, we use capital letters when the components of the vector on the K th body
are written in terms of the fixed basis and lowercase letters when they are written in terms
of the basis vectors fixed to the K th body.
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Fig. 5 An example of a rigid
body system composed of two
bodies. The functional spinal unit
shown consists of the sacrum S ,
the fifth lumbar vertebra L5, and
the intervertebral disc I . The
basis vectors {e1

1, e1
3, e1

3} and

{e2
1, e2

3, e2
3} are attached to the

body S and L5 respectively. The
conservative forces (F1 and F2)
and moments (M1 and M2)
supplied by the disc, facets, and
ligaments to the two vertebral
units are given by (88) and
(95)–(94)

We denote the Euler angles used to parameterize the rotation tensor QK of the K th rigid
body by (ν1

K , ν2
K , ν3

K). Likewise, (β1, β2, β3) are the three Euler angles used to characterize
the relative rotation between the two bodies:

Q1 = Q1

(

ν1
1 , ν

2
1 , ν

3
1

)

,

Q2 = Q2

(

ν1
2 , ν

2
2 , ν

3
2

)

,

R = Q2(Q1)
T = R

(

β1, β2, β3
)

. (80)

It follows that the angular velocity vectors of the first and second rigid bodies have the
representations

ω1 = ν̇1
1 g1

1 + ν̇2
1 g1

2 + ν̇3
1 g1

3,

ω2 = ν̇1
2 g2

1 + ν̇2
2 g2

2 + ν̇3
2 g2

3

= ω1 + ωrel

=
(

ν̇1
1 g1

1 + ν̇2
1 g1

2 + ν̇3
1 g1

3

)

+
(

β̇1grel
1 + β̇2grel

2 + β̇1grel
3

)

. (81)

For the K th rigid body, {gK
1 ,gK

2 ,gK
3 } are the Euler basis vectors with a dual basis denoted by

{gK,1,gK,2,gK,3}. Further, {grel
1 ,grel

2 ,grel
3 } is the Euler basis of the relative rotation between

the two bodies with a dual basis denoted by {grel,1,grel,2,grel,3}.2

8.1 Potential energy functions

Depending on the system of interest, several different representations of the potential en-
ergy function for a system of two rigid bodies are possible. To elaborate, consider the three

2It is important to note that the Euler angles are not additive: νi
2 �= νi

1 + βi (i = 1,2,3).



On Cartesian stiffness matrices in rigid body dynamics 461

Fig. 6 Three different systems of rigid bodies: In (a), the bodies are connected by springs to each other and
a fixed surface, in (b), the bodies are also pin jointed at A, and, in (c), the bodies are connected to each other
by springs and are otherwise isolated from the environment

examples shown in Fig. 6. In the first example, shown in Fig. 6(a), each of the bodies are
connected to the ground by springs and also connected to each other by elastic springs. The
potential energy of this system will depend on the absolute motion of the centers of mass
of the bodies and the rotation tensor of each body. As a modification to this case, suppose
that the bodies are now connected by a joint at a point A (see Fig. 6(b)). For this case, U

can be expressed as a function of the position vector of A and the rotation tensor of each
body. Finally, when the only conservative forces and moments acting on the pair of rigid
bodies are due to their interactions with each other, then U can be expressed as a function
of the relative position vector of their centers of mass and the relative rotation tensor R of
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the bodies. As emphasized in [14, 15], this situation arises in celestial mechanics problems
where the two bodies are attracted to each other by a central force field and in problems
featuring pairs of rigid bodies attached by elastic springs (see Fig. 6(c)).

When applicable, the easiest representation of U to work with arises when this function
depends only on the relative position vector y and relative rotation tensor R:

ȳ = x̄2 − x̄1 =
3

∑

i=1

YiEi, R = Q2QT
1 = R(β1, β2, β3). (82)

In the more general case, the potential energy function depends on position vectors of points
on each body and the rotation tensors of each body. Following our discussion of the situa-
tions shown in Fig. 6, we need to consider several distinct representations for U :

U = Û1

(

Q1,Q2, x̄1, x̄2
)

,

U = Û2

(

Q1,Q2, x̄1, x̄2
)

,

U = Û3(Q1,R,y),

U = Û4

(

Q1,Q2,x1
A,x2

A

)

,

U = Û5(R,y),

U = Û6

(

Q1,R,x1
A,x2

A

)

. (83)

These representations have the respective component forms,

U = U1

(

ν1
1 , ν

2
1 , ν

3
1 , ν

1
2 , ν

2
2 , ν

3
2 , x

1
1 , x

1
2 , x

1
3 , x

2
1 , x

2
2 , x

2
3

)

,

U = U2

(

ν1
1 , ν

2
1 , ν

3
1 , ν

1
2 , ν

2
2 , ν

3
2 ,X

1
1,X

1
2,X

1
3,X

2
1,X

2
2,X

2
3

)

,

U = U3

(

ν1
1 , ν

2
1 , ν

3
1 , β

1, β2, β3, Y1, Y2, Y3

)

,

U = U4

(

ν1
1 , ν

2
1 , ν

3
1 , ν

1
2 , ν

2
2 , ν

3
2 ,X

1
A1

,X1
A2

,X1
A3

,X2
A1

,X2
A2

,X2
A3

)

,

U = U5

(

β1, β2, β3, Y1, Y2, Y3

)

,

U = U6

(

ν1
1 , ν

2
1 , ν

3
1 , β

1, β2, β3,X1
A1

,X1
A2

,X1
A3

,X2
A1

,X2
A2

,X2
A3

)

. (84)

In certain cases, the potential energy function U can also be written as functions of the rela-
tive position vector y, or points x1

A and x2
A on the two bodies, all expressed in terms of their

components in the bases vectors fixed to the respective bodies. However, these representa-
tions cannot be used to derive the simple representations given below in (88) and (95)–(94)
of the conservative forces and moments.

8.2 The case U = Û2(Q1,Q2, x̄1, x̄2)

The expression for the potential function as

U = U2

(

ν1
1 , ν

2
1 , ν

3
1 , ν

1
2 , ν

2
2 , ν

3
2 ,X

1
1,X

1
2,X

1
3,X

2
1,X

2
2,X

2
3

)

(85)

is a direct extension of the potential U2 presented for the single rigid body case. To determine
the conservative forces, F1 and F2, and conservative moments, M1 and M2, taken relative to
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the center of mass of the individual bodies, we once again follow [15] and write

−U̇ = F1 · ˙̄x1 + F2 · ˙̄x2 + M1 · ω1 + M2 · ω2. (86)

Expressing U̇ as,

U̇ =
3

∑

i=1

(

∂U2

∂X1
i

Ẋ1
i + ∂U2

∂X2
i

Ẋ2
i + ∂U2

∂νi
1

ν̇i
1 + ∂U2

∂νi
2

ν̇i
2

)

, (87)

it can be concluded that

F1 = −
3

∑

k=1

∂U2

∂X1
k

Ek, F2 = −
3

∑

k=1

∂U2

∂X2
k

Ek, (88)

and

M1 = −
3

∑

k=1

∂U2

∂νk
1

g1,k, M2 = −
3

∑

k=1

∂U2

∂νk
2

g2,k. (89)

We emphasize that the force FK in this expression is assumed to act at the center of mass
XK and the moment MK is taken relative to the center of mass (cf. Figs. 5 and 6).

8.3 The case U = Û3(Q1,R,y)

For the case where U = Û3(Q1,R,y), we again start with the assumption (86). Using the
identities ω2 = ω1 + ωrel and ẏ = ˙̄x2 − ˙̄x1, it can be concluded that

F2 = −F1 = −
3

∑

k=1

∂U3

∂Yk

Ek,

M1 = −
3

∑

k=1

∂U3

∂νk
1

g1,k +
3

∑

k=1

∂U3

∂βk
grel,k,

M2 = −
3

∑

k=1

∂U3

∂βk
grel,k. (90)

The Cartesian stiffness matrix in this case will be a 12 × 9 matrix which relates the 12
Cartesian components F1 · Ek , F2 · Ek , M1 · Ek , and M2 · Ek to the 3 Cartesian components
of y, and the components of the axial vectors of ΔQ1 and ΔR. The details on the derivation
of this matrix is similar to those featuring in the development of (35) in Sect. 4.2.

8.4 The cases U = Û1(Q1,Q2, x̄1, x̄2) and U = Û4(Q1,Q2, x̄1
A, x̄2

A)

If we wish to consider moments relative to the points x1
A and x2

A, or the origin O , (12) and
(13) of Sect. 3 can be used to show that

F1 · ˙̄x1 + F2 · ˙̄x2 + M1 · ω1 + M2 · ω2 = F1 · ẋ1
A + F2 · ẋ2

A + M1,A · ω1 + M2,A · ω2

= F1 ·
( ˙̄x1 − ω1 × x̄1

)

+ F2 ·
( ˙̄x2 − ω2 × x̄2

)

+ M1,O · ω1 + M2,O · ω2. (91)
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It is helpful to note that the corotational derivatives in (91) are given in terms of basis vectors
fixed to the respective bodies. For instance,

˙̄x1 − ω1 × x̄1 =
3

∑

k=1

ẋ1
k e1

k,
˙̄x2 − ω2 × x̄2 =

3
∑

k=1

ẋ2
k e2

k. (92)

Thus, invoking (86), we can establish the identities

F1 = −
3

∑

k=1

∂U1

∂x1
k

e1
k, F2 = −

3
∑

k=1

∂U1

∂x2
k

e2
k, (93)

M1,O = −
3

∑

k=1

∂U1

∂νk
1

g1,k, M2,O = −
3

∑

k=1

∂U1

∂νk
2

g2,k, (94)

and

F1 = −
3

∑

k=1

∂U4

∂X1
Ak

Ek, F2 = −
3

∑

k=1

∂U4

∂X2
Ak

Ek, (95)

M1,A = −
3

∑

k=1

∂U4

∂νk
1

g1,k, M2,A = −
3

∑

k=1

∂U4

∂νk
2

g2,k. (96)

In contrast to (88), (93) illustrates, once again, how the natural representation for the con-
servative force associated with the rigid body of interest is with respect to the corotational
basis of that body when moments about a fixed point O are considered. This is a direct
consequence of (92).

The development of the Cartesian stiffness matrices for the functions U1 and U4 will be
similar to the derivation of 1Kc (see (28)). However, the resulting matrix for U1 will be a
12 × 12 matrix which will relate the Cartesian components F1 · Ek , F2 · Ek , M1,O · Ek , and
M2,O · Ek to the Cartesian components of x̄1, x̄2 and the axial vectors of ΔQ1 and ΔQ2.
That is,

[

ΔF1

ΔF2

]

= −1Kc

[

Δx
1

Δx
2

]

+ O(ǫ2), (97)

where ΔFK and Δx
K are given by

ΔFK =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(F′
K − FK) · E1

(F′
K − FK) · E2

(F′
K − FK) · E3

(M′
K,O − MK,O) · E1

(M′
K,O − MK,O) · E2

(M′
K,O − MK,O) · E3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Δx
K =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δx̄K · E1

Δx̄K · E2

Δx̄K · E3

ΔθK · E1

ΔθK · E2

ΔθK · E3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (98)

Related remarks pertain to the U4 case.
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8.5 The case U = Û5(R,y)

When the potential energy acting on the pair of rigid bodies is independent of the surround-
ings (cf. Fig. 6(c)), the potential energy simplifies dramatically to U = U5(y,R). Following
the same line of argument that led to (90), we conclude that

F2 = −F1 = −
3

∑

k=1

∂U5

∂Yk

Ek, M2 = −M1 = −
3

∑

k=1

∂U5

∂βk
grel,k. (99)

The Cartesian stiffness matrix for this case can be expressed as a 6 × 6 matrix which relates
the components of F2 and M2 to the increments in Δθ and y · Ei . The vector Δθ is the
axial vector of ΔR. The resulting stiffness matrix will be similar in form to the matrix 2Kc

discussed in Sect. 4.2.

8.6 Incorporating constraints

In certain situations, the two rigid bodies may be connected by joints (e.g., as in Fig. 6(b)).
This situation can be accommodated by appropriately selecting the point A on each body to
coincide with the joint:

xA = x1
A = x2

A, (100)

and, if needed, constraining the angles β1, β2, and possibly β3. To establish the stiffness
matrix for this case, we consider U = Û6(Q1,R,xA). Simplifying (86) with the help of
(91), we seek solutions of

−U̇6 = F1 · ẋ1
A + F2 · ẋ2

A + M1,A · ω1 + M2,A · ω2, (101)

subject to the constraints

ẋ1
A = ẋ2

A. (102)

Using a standard procedure, the solution is

F1 + F2 = −
3

∑

k=1

∂U6

∂XA,k

Ek,

M1,A = −
3

∑

k=1

∂U6

∂νk
1

g1,k +
3

∑

k=1

∂U6

∂βk
grel,k,

M2,A = −
3

∑

k=1

∂U6

∂βk
grel,k. (103)

The Cartesian stiffness matrix in this case will be a 9 × 9 matrix which will relate the
Cartesian components (F1 + F2) · Ek , M1,A · Ek , and M2,A · Ek to the Cartesian components
of xA, and the axial vectors of ΔQ1 and ΔR.

Because of the joint at A, the identity (101) does not yield the individual conservative
forces acting on the bodies rather it yields the resultant conservative force acting on the sys-
tem of two rigid bodies. To elaborate, reaction forces N1 and N2 will act on the respective
bodies at the joint A. These forces will be equal and opposite: N1 = −N2. The resultant
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forces on the first body due to the joint at A and the conservative forces is N1 + F1, while
the corresponding resultant force on the second body is N2 + F2. As N1 and N2 are non-
conservative, they are not prescribed by (101) and so we can only use (101) to determine
F1 + F2.

9 A planar multibody system

In the interest of brevity, we focus our attention on a multibody system undergoing planar
motions in the E1 − E2 plane as shown in Fig. 7. For the planar case, each body only has a
single angle of rotation, ψJ . As in Sect. 6, the axis of rotation for each of the N bodies is
simply E3.

Before proceeding, we first recall the following notation. Associated with each of the K

rigid bodies is the set of basis vectors given by eJ
i = QJ Ei , where QJ is the rotation tensor

associated with the J th rigid body. The position vector of the center of mass of each rigid
body is then be written as

x̄J =
3

∑

i=1

xJ
i eJ

i =
3

∑

i=1

XJ
i Ei (J = 1, . . . ,N). (104)

We will follow Sect. 8 and use lower case letters to express the components of x̄J with
respect to the basis vectors fixed to its body.

Once again, we assume that the potential energy can be written as functions of the coordi-
nates and rotation angles. However, we will focus only on the potential energy functions that
can be written as a function of the absolute as opposed to the relative position vectors since
the ensuing representation are more amenable to deriving the associated Cartesian stiffness
matrix associated with each rigid body. Thus, we have

U = U1

(

ψ1, x
1
1 , x

1
2 , . . . ,ψN , xN

1 , xN
2

)

= U2

(

ψ1,X
1
1,X

1
2, . . . ,ψN ,XN

1 ,XN
2

)

Fig. 7 Schematic of a system of N rigid bodies undergoing planar motion. The system is attached to two
fixed points P1 and P2 and to each other by a system of springs
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= U4

(

ψ1,X
1
A1

,X1
A2

, . . . ,ψN ,XN
A1

,XN
A2

)

= U6

(

ψ1,X
1
A1

,X1
A2

,ψ2 − ψ1, . . . ,ψN − ψN−1,X
N
A1

,XN
A2

)

. (105)

Associated with these potential energy functions are the respective Cartesian stiffness ma-
trices 1Kc, 2Kc , 4Kc , and 6Kc . Notice that the representation U = Û5 cannot be used in this
example since the bodies are connected to the ground by springs.

The potential energy function for the system can be obtained by adding the potential
energies of each of the M springs connecting the system:

V =
M

∑

p=1

kp

2
(lp − l0p)2, (106)

where l01, . . . , l0M and l1, . . . , lM are the unstretched and stretched lengths of the springs re-
spectively, written as functions of the coordinates of the rigid bodies, ψ1, x1

1 , x1
2 ,. . . ,ψN , xN

1 ,
and xN

2 . That is, V = U1. Paralleling the developments of Sects. 4.1 and 8.4 and performing
Taylor series expansions for FJ and MJ,O about their equilibrium configurations, we can
write

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ΔF1

ΔF2

...

ΔFN−1

ΔFN

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= −1Kc

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Δx
1

Δx
2

...

Δx
N−1

Δx
N

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ O(ǫ2), (107)

where

ΔFJ =

⎡

⎢

⎣

(F′
J − FJ ) · E1

(F′
J − FJ ) · E2

(M′
J,O − MJ,O) · E3

⎤

⎥

⎦
, Δx

J =

⎡

⎣

Δx̄J · E1

Δx̄J · E2

ΔψJ

⎤

⎦ . (108)

1Kc =

⎡

⎢

⎣

Q1 0 0

0
. . . 0

0 0 QN

⎤

⎥

⎦

T ⎡

⎢

⎣

H1,1 . . . H1,N

...
. . .

...

HN,1 . . . HN,N

⎤

⎥

⎦

⎡

⎢

⎣

Q1 0 0

0
. . . 0

0 0 QN

⎤

⎥

⎦
+

⎡

⎢

⎣

W1 0 0

0
. . . 0

0 0 WN

⎤

⎥

⎦

+

⎡

⎢

⎣

Q1 0 0

0
. . . 0

0 0 QN

⎤

⎥

⎦

T ⎡

⎢

⎣

H1,1 . . . H1,N

...
. . .

...

HN,1 . . . HN,N

⎤

⎥

⎦

⎡

⎢

⎣

S1 0 0

0
. . . 0

0 0 SN

⎤

⎥

⎦

⎡

⎢

⎣

Q1 0 0

0
. . . 0

0 0 QN

⎤

⎥

⎦
(109)

with

HI,J =

⎡

⎢

⎢

⎢

⎢

⎣

∂2U1
∂xI

1 ∂xJ
1

∂2U1
∂xI

1 ∂xJ
2

∂2U1
∂xI

1 ∂ψJ

∂2U1
∂xI

2 ∂xJ
1

∂2U1
∂xI

2 ∂xJ
2

∂2U1
∂xI

2 ∂ψJ

∂2U1
∂ψI ∂xJ

1

∂2U1
∂ψI ∂xJ

2

∂2U1
∂ψI ∂ψJ

⎤

⎥

⎥

⎥

⎥

⎦

(I, J = 1, . . . ,N), (110)
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QK is the rotation matrix associated with the K th rigid body,

QK =

⎡

⎣

cos(ψK) sin(ψK) 0
− sin(ψK) cos(ψK) 0

0 0 1

⎤

⎦ , (111)

SK is the skew-symmetric matrix with components given by

SK,ij =
(

eK
j × eK

i

)

· x̄K , (112)

and, as in Sect. 6, the asymmetric components of 1Kc have been written in terms of force
components:

WK =

⎡

⎣

0 0 FK · E2

0 0 −FK · E1

0 0 0

⎤

⎦ . (113)

If the force F and moment M are used instead, then we need to repeat the calculation
with the function U2. In this case, we obtain a symmetric Cartesian stiffness matrix:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ΔF1

ΔF2

...

ΔFN−1

ΔFN

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎢

⎢

⎣

H̃1,1 H̃1,2 . . . H̃1,N−1 H̃1,N

H̃2,1 H̃2,2 . . . H̃2,N−1 H̃2,N

...
. . .

...

H̃N−1,1 H̃N−1,2 . . . H̃N−1,N−1 H̃N−1,N

H̃N,1 H̃N,2 . . . H̃N,N−1 H̃N,N

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Δx
1

Δx
2

...

Δx
N−1

Δx
N

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ O(ǫ2).

(114)
The 3K × 3K matrix in this equation is the (symmetric) Cartesian stiffness matrix 2Kc with
components, H̃IJ given by

H̃I,J =

⎡

⎢

⎢

⎢

⎢

⎣

∂2U1
∂XI

1∂XJ
1

∂2U1
∂XI

1 ∂XJ
2

∂2U1
∂XI

1∂ψJ

∂2U1
∂XI

2∂XJ
1

∂2U1
∂XI

2 ∂XJ
2

∂2U1
∂XI

2∂ψJ

∂2U1
∂ψI ∂XJ

1

∂2U1
∂ψI ∂XJ

2

∂2U1
∂ψI ∂ψJ

⎤

⎥

⎥

⎥

⎥

⎦

. (115)

10 Closing remarks

In this paper, it is shown how various representations for Cartesian stiffness matrices Kc are
obtained for a wide range of pairs of resultant forces and moments. The selection of the
pair of forces and moments is not arbitrary: rather it is related by a work argument to the
functional representation of the potential energy function (see (10) and (14)):

(F,MO) → U1

(

ν1, ν2, ν3, x1, x2, x3

)

,

(F,M) → U2

(

ν1, ν2, ν3,X1,X2,X3

)

,

(FA,MO) → U3

(

ν1, ν2, ν3, xA1 , xA2 , xA3

)

,

(FA,MA) → U4

(

ν1, ν2, ν3,XA1 ,XA2 ,XA3

)

.

(116)
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We also remark that the use of the dual Euler basis to calculate Kc was an essential com-
ponent of the formulation. Should a quaternion or Euler–Rodrigues symmetric parameter
representation of the rotation be used, then it is possible to extend the formulation presented
in this paper to that case. The formulation would use representations for the conservative
moments that can be found in [6].
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Appendix A: Derivatives of the corotational basis vectors and the Euler basis vectors

The Euler basis vectors are parallel to the three axes of rotation which are used to define
the Euler angles. Thus, if ν1, ν2, and ν3 are the three Euler angles, then the rotation tensor
Q = Q(ν1, ν2, ν3). As Q is a rotation tensor: QQT = I, where I is the identity tensor and the
superscript T denotes the transpose. Consequently, Q̇QT is a skew-symmetric tensor. Every
skew-symmetric tensor A has a unique axial vector a where Ab = a × b: a = ax(A). The
axial vector of Q̇QT is the angular velocity vector ω and this vector has the representations

ω = ax
(

Q̇QT
)

=
3

∑

k=1

ν̇kax

(

∂Q

∂νk
QT

)

=
3

∑

k=1

ν̇kgk. (117)

From the representations (117), it should be clear that we can identify gk as the axial
vector of the skew-symmetric tensor Ωk :

gk = ax(Ωk), Ωk = −Ω
T
k = ∂Q

∂νk
QT . (118)

The partial derivatives of the corotational vector ei = QEi with respect to the Euler angles
play a key role in the development of the stiffness matrix. Computing ∂ei

∂νk and appealing to
(118), it is easy to show that

∂ei

∂νk
= gk × ei . (119)

This identity is used to establish (48) in Sect. 5. This expression for the partial derivative of
ei complements the more traditional representation

∂ei

∂νk
=

3
∑

r=1

∂Qir

∂νk
Er (120)

which is obtained by differentiating ei =
∑3

r=1 QirEr .
The second set of derivatives which play a key role in the stiffness matrix are ∂gk

∂νi . Here,
we derive an identity which is used to establish (56) and (58) in Sect. 5. First, we compute
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the derivative of gk and find that

∂gk

∂νj
= ax

(

∂2Q

∂νjνk
QT

)

+ ax

(

∂Q

∂νk

∂QT

∂νj

)

= ax

(

∂2Q

∂νjνk
QT

)

+ ax

(

∂Q

∂νk
QT Q

∂QT

∂νj

)

= ax

(

∂2Q

∂νjνk
QT

)

+ ax
(

ΩkΩ
T
j

)

. (121)

Invoking the identities ∂2Q

∂νj νk = ∂2Q

∂νkνj and Ω
T
j = −Ω j , it follows that

∂gk

∂νj
− ∂gj

∂νk
= ax(Ω jΩk − ΩkΩ j ). (122)

From (118), we note that the axial vectors of Ω j and Ωk are, respectively, gj and gk . With
the help of a well-known identity3 for the axial vector of a product of the form Ω jΩk −
ΩkΩ j , we conclude that

∂gk

∂νj
− ∂gj

∂νk
= gj × gk. (123)

Appendix B: The 3-2-1 set of Euler angles

For the 3-2-1 set of Euler angles, we denote ν1 = ψ , ν2 = θ , and ν3 = φ (see Fig. 8). This set
of Euler angles is commonly used in biomechanics and vehicle dynamics, and is discussed
in numerous textbooks. Here, we recall some results for this set from [13, 14].

Fig. 8 Schematic of the 3-2-1
set of Euler angles and the
individual rotations these angles
represent. In this figure, the three
Euler angles are denoted by
ψ = ν1, θ = ν2 and φ = ν3,
respectively, and the rotation
tensor Q that they parameterize
transforms Ei to ei

3See Example A.7 in [11] or Eq. (A.3)1 in [12].
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Recalling that Qki = ek · Ei , one can compute the components of the matrix Q:

⎡

⎣

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎤

⎦ =

⎡

⎣

1 0 0
0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

⎤

⎦

⎡

⎣

cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

⎤

⎦

×

⎡

⎣

cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

⎤

⎦ . (124)

The Euler basis vectors {g1,g2,g3} have the representations

⎡

⎣

g1

g2

g3

⎤

⎦ =

⎡

⎣

0 0 1
− sin(ψ) cos(ψ) 0

cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

⎤

⎦

⎡

⎣

E1

E2

E3

⎤

⎦ . (125)

The components Gi
k = gi · Ek of the matrix G can be inferred from the following represen-

tations for the dual Euler basis vectors:
⎡

⎣

g1

g2

g3

⎤

⎦ =

⎡

⎣

cos(ψ) tan(θ) sin(ψ) tan(θ) 1
− sin(ψ) cos(ψ) 0

cos(ψ) sec(θ) sin(ψ) sec(θ) 0

⎤

⎦

⎡

⎣

E1

E2

E3

⎤

⎦ . (126)

The matrix featuring on the right-hand side of (125) is G
−T . Notice that gi · gk = δi

k where
δi
k is the Kronecker delta.

It is straightforward to show from (126) that

∂g1

∂ψ
= tan(θ)g2,

∂g2

∂ψ
= − cos(θ)g3,

∂g3

∂ψ
= sec(θ)g2,

∂g1

∂θ
= sec(θ)g3,

∂g2

∂θ
= 0,

∂g3

∂θ
= tan(θ)g3,

∂gk

∂φ
= 0. (127)

From these equations, we can compute the connection coefficients:

γ i
jk = − ∂gi

∂νk
· gj . (128)

Most of these 27 coefficients are zero, and so we only record the non-trivial ones:

γ 1
21 = − tan(θ), γ 1

32 = −sec(θ), γ 2
31 = cos(θ),

γ 3
21 = −sec(θ), γ 3

32 = − tan(θ). (129)

It should be noticed that the coefficients γ i
kj do not possess the symmetry γ i

kj = γ i
jk that is

found in the Christoffel symbols Ŵi
kj of the second kind.
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