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ON CASTELNUOVO-MUMFORD REGULARITY
OF PROJECTIVE CURVES

ISABEL BERMEJO AND PHILIPPE GIMENEZ

(Communicated by Wolmer V. Vasconcelos)

Abstract. We give an effective method to compute the regularity of a satu-
rated ideal I defining a projective curve that also determines in which step of
a minimal graded free resolution of I the regularity is attained.

Introduction

Let S := K[x0, . . . , xn] be a polynomial ring over an algebraically closed field
K, and let I be a homogeneous ideal of S defining a subscheme X of projective n-
space PnK . The Castelnuovo-Mumford regularity (or simply regularity) of I, reg I,
is defined as follows: if

0→
βp⊕
j=1

S(−epj)
ϕp−→ · · · ϕ1−→

β0⊕
j=1

S(−e0j)
ϕ0−→ I → 0(0.1)

is a minimal graded free resolution of I, setting ei := max {eij ; 1 ≤ j ≤ βi}, then
reg I := max {ei − i; 0 ≤ i ≤ p}. In other words, reg I is the smallest integer m
for which I is m-regular, i.e. eij ≤ m+ i for all i, j (see [2, Def. 3.2] for equivalent
definitions). When I is saturated (i.e. when it is the largest ideal defining X), we
call this the regularity of X (see [2, Sect. 1]).

The regularity is a numerical invariant of the ideal I and is, as said in [6],
“an important measure of how hard it will be to compute a free resolution”. In
fact, knowing it beforehand avoids unnecessary computation in large degrees while
obtaining the minimal graded free resolution of I through Buchberger’s syzygy
algorithm (see [3]).

In this paper, we shall essentially be concerned with the regularity of a saturated
ideal I defining a subscheme X of PnK of dimension one.

In Section 1, we show a general property of finitely generated graded S-modules
asserting that the regularity of M is determined by the tail of the minimal graded
free resolution (Proposition 1.1). As a consequence we obtain that, in our case,
reg I is equal to either en−1 − n + 1 or en−2 − n + 2, i.e. the regularity is always
attained at one of the last two steps of the resolution.
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1294 ISABEL BERMEJO AND PHILIPPE GIMENEZ

Assuming that K[xn−1, xn] is a Noether normalization of S/I, we give in Sec-
tion 2 an effective method to compute the regularity of I that does not require the
knowledge of a minimal graded free resolution of I (Theorem 2.7). The idea is to in-
troduce an arithmetically Cohen-Macaulay curve whose regularity is closely related
with that of X. For this reason, we first focus on the Cohen-Macaulay case (The-
orem 2.4). These two theorems together with an effective criterion to determine
whether X is arithmetically Cohen-Macaulay (Proposition 2.1), give an algorithm
to compute the regularity of I. Using Section 1, this algorithm also determines in
which step of a minimal graded free resolution of I, reg I is attained.

1. Where is the regularity attained?

Let M be a finitely generated graded S-module and consider a minimal graded
free resolution of M :

0→ Fp
ϕp−→ · · · ϕ1−→ F0

ϕ0−→M → 0 ,(1.1)

with Fi =
βi⊕
j=1

S(−eij). We denote by ei := max {eij ; 1 ≤ j ≤ βi}.

Using spectral sequences, Schenzel proved that the regularity of M is determined
by the tail of (1.1) ([10, Thm. 3.11]). We propose here a different proof of this issue
based on an observation of Herzog relating the vanishing of a row in some matrix in
(1.1) and the regularity of M when M is Cohen-Macaulay ([11, Cor. B.4.1]). Our
treatment is both elementary and carries some additional information.

Proposition 1.1. Let M be a finitely generated graded S-module and let (1.1) be
a minimal graded free resolution of M . Denoting c := n+ 1− dimM , one has:

e0 < e1 < · · · < ec .

Proof. Assume the claim is false. Then for some i, 1 ≤ i ≤ c, the matrix Mi

describing ϕi : Fi → Fi−1 has a zero row.
Consider now the head of the minimal graded free resolution (1.1) of M :

Fc
ϕc−→ Fc−1

ϕc−1−→ · · · ϕ1−→ F0
ϕ0−→M → 0

and apply HomS(., S) to this complex. Setting N := Coker ϕ?c , one gets

F ?0
ϕ?1−→ F ?1

ϕ?2−→ · · · ϕ
?
c−→ F ?c −→ N → 0(1.2)

which is a complex whose homology is ExtiS(M,S) = 0 for i < c. Thus, (1.2) is
the head of a minimal graded free resolution of N , contradicting the fact that the
matrix describing ϕ?i , the transpose of Mi, has a zero column.

Consider a homogeneous ideal I of S and a minimal graded free resolution (0.1)
of I. The following is a direct consequence of the above proposition.

Corollary 1.2. reg I = max {ei − i; n− dimS/I ≤ i ≤ p}.

2. How to compute the regularity?

Let I be a homogeneous ideal of S defining a not necessarily reduced projective
curve C in PnK . Assume that K[xn−1, xn] is a Noether normalization of S/I (i.e.
K[xn−1, xn] ↪→ K[x0, . . . , xn]/I is an integral ring extension). Monomials in S will
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CASTELNUOVO-MUMFORD REGULARITY OF PROJECTIVE CURVES 1295

be denoted by xα := xα0
0 · · ·xαnn , with α = (α0, . . . , αn) ∈ Nn+1. Let in (I) denote

the initial ideal of I with respect to the reverse lexicographic order.
Consider the evaluation morphism θ (resp. χ): K[x0, . . . , xn]→ K[x0, . . . , xn−2]

defined by xn 7→ 0 (resp. xn 7→ 1), xn−1 7→ 0 (resp. xn−1 7→ 1) and xi 7→ xi for
i /∈ {n − 1, n}. Let Ĩ be the ideal of S generated by χ(in (I)). Ĩ is a primary
monomial ideal such that in (I) ⊆ Ĩ and Ĩ defines a projective curve C̃ ⊆ PnK of
degree deg C̃ = deg C (see [5, Lemme 1]).

Denote by I0 the ideal I0 := θ(I)S ⊂ S. As in (I0) = θ(in (I))S, then in (I0) ⊆
in (I) and so the degree of the curve C0 ⊆ PnK defined by I0 satisfies deg C0 ≥ deg C.

Define F := {α = (α0, . . . , αn−2) ∈ Nn−1 |x(α,0,0) ∈ Ĩ − in (I0)} ⊂ Nn−1. As
K[xn−1, xn] is a Noether normalization of S/I, F is finite (possibly empty). The
following is a criterion to determine, in terms of F , whether S/I is Cohen-Macaulay
(i.e. whether C is an arithmetically Cohen-Macaulay projective curve). It implies
that S/I is Cohen-Macaulay if and only if S/ in (I) is Cohen-Macaulay, and that
S/I0 and S/Ĩ are Cohen-Macaulay.

Proposition 2.1. S/I is Cohen-Macaulay if and only if F = ∅.

Proof. Observe that F = ∅ is equivalent to in (I0) = in (I). As S/I is Cohen-
Macaulay if and only if {xn−1, xn} is a regular sequence on S/I ([9, Ch. 3,
Prop. 4.4]), we shall prove that in (I0) = in (I) if and only if {xn−1, xn} is a
regular sequence on S/I.

Assume that in (I0) = in (I). Let f ∈ (I : xn). Then f ∈ I because otherwise
the remainder r of the division of f by a Gröbner basis of I w.r.t. the reverse
lexicographic order is nonzero and in (r) /∈ in (I). As xn in (r) ∈ in (I) and in (I) =
in (I0), this is impossible. Similarly, let f ∈ ((I, xn) : xn−1). For the same reason
as above, f ∈ (I, xn) because in (I, xn) = (in (I), xn) and in (I) = in (I0).

Conversly, if {xn−1, xn} is a regular sequence on S/I, then the monomials in a
minimal set of generators of in (I) are not divisible by either xn−1 or xn. Thus,
in (I0) = in (I).

As already stated, C0 is arithmetically Cohen-Macaulay by Proposition 2.1 and
deg C0 ≥ deg C. The difference between deg C0 and deg C is indeed a measure of
how far C is from being arithmetically Cohen-Macaulay.

Corollary 2.2. C is arithmetically Cohen-Macaulay if and only if deg C = deg C0.

Proof. The difference deg C0 − deg C is equal to #F . In fact, deg C0 is equal to
#{α ∈ Nn−1 |x(α,0,0) /∈ in (I0)} because the Hilbert polynomial of S/I0 is PI0(T ) =∑
α/∈E0

(T + 1 − |α|) where E0 = {α ∈ Nn−1 |x(α,0,0) ∈ in (I0)}. By a similar
argument deg C̃ = #{α ∈ Nn−1 |x(α,0,0) /∈ Ĩ}.

Assume that S/I is Cohen-Macaulay. We will give an effective method to com-
pute reg I that does not require the knowledge of a minimal graded free resolution
of I.

Set E := {(α0, . . . , αn−2) ∈ Nn−1 |x(α,0,0) ∈ in (I)}. AsK[xn−1, xn] is a Noether
normalization of S/I, for s� 0 and α ∈ Nn−1 one has that |α| ≥ s implies α ∈ E.
Define the regularity of E, H(E), as the smallest integer s satisfying this property.

Denote by H(I) the regularity of the Hilbert function HI of S/I, i.e. the smallest
integer s0 such that for s ≥ s0, HI(s) = PI(s) (PI(T ) is the Hilbert polynomial of
S/I).
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1296 ISABEL BERMEJO AND PHILIPPE GIMENEZ

Lemma 2.3. H(E) = H(I) + 2.

Proof. As the value at s of HI is

HI(s) = #{(α0, . . . , αn) ∈ Nn+1 |α0 + · · ·+ αn = s and (α0, . . . , αn−2) /∈ E} ,

then PI(T ) =
∑
α/∈E(T + 1− |α|). Any element α /∈ E satisfies |α| ≤ H(E)− 1 so

H(I) ≤ H(E)− 1. It is now easy to check that HI(s0) = PI(s0) for s0 = H(E)− 2
and that HI(s0) > PI(s0) for s0 = H(E)− 3.

Theorem 2.4. Let I ⊂ S be the homogeneous defining ideal of an arithmetically
Cohen-Macaulay projective curve C ⊂ PnK. Then reg I = H(E).

Proof. By the previous lemma, one has to prove that reg I = H(I) + 2. From [6,
Prop. 20.20], one gets that reg I = reg (I, xn−1, xn). As dimS/(I, xn−1, xn) = 0,
then reg (I, xn−1, xn) coincides with the regularity H(I, xn−1, xn) of the Hilbert
function of S/(I, xn−1, xn) ([3, Lemma 1.7]). The result now follows from the
equality H(I, xn−1, xn) = H(I) + 2.

Example 2.5. Consider the ideal I ⊂ K[x, y, z, t] generated by f1 = x17y14 −
y31, f2 = x20y13, f3 = x60 − y36z24 − x20z20t20. The reduced Gröbner basis
of I w.r.t. the reverse lexicographic order is {f1, f2, f3, y

48, x3y31}, so in (I) =
(x17y14, x20y13, x60, y48, x3y31). Then K[x, y, z, t]/I is Cohen-Macaulay (Proposi-
tion 2.1) and reg I = 72 (Theorem 2.4).

@@

@@

(0,48)•

(3,31)
•

(17,14)•
(20,13)
•

(60,0)
•

reg I = 72

As already observed, S/I is Cohen-Macaulay if and only if S/ in (I) is Cohen-
Macaulay. Thus, we get the following consequence of Theorem 2.4 which can also
be obtained from [3, Thm. 2.4 (b)].

Corollary 2.6. If I satisfies the conditions of Theorem 2.4, then reg I = reg in (I).

Let’s assume now that I is a saturated ideal defining a nonarithmetically Cohen-
Macaulay projective curve C ⊂ PnK . We shall give a relation between reg I and
reg I0 to obtain, as in Theorem 2.4, an effective method to compute reg I that
does not require the knowledge of a minimal graded free resolution of I.

In this case F 6= ∅ (Proposition 2.1) and one has the partition introduced in [5]:

{(α0, . . . , αn) ∈ Nn+1 | xα0
0 · · ·xαnn /∈ in (I)} =

{(α0, . . . , αn) ∈ Nn+1 |xα0
0 · · ·x

αn−2
n−2 /∈ Ĩ} ∪ R ,
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CASTELNUOVO-MUMFORD REGULARITY OF PROJECTIVE CURVES 1297

where R =
⋃
α∈F {α×[N2−Eα]} for Eα = {(αn−1, αn) ∈ N2 |x(α,αn−1,αn) ∈ in (I)}.

Therefore, the value at s ∈ N of the Hilbert function HI of S/I is

HI(s) = HĨ(s) + #{β ∈ R ||β| = s} ,

where #{β ∈ R ||β| = s} is constant for s� 0. Denote by H(R) (resp. H(Eα)) the
smallest integer s0 such that for s ≥ s0, #{β ∈ R ||β| = s} (resp. #{(αn−1, αn) ∈
N2 − Eα |αn−1 + αn = s}) is constant. It is clear that

H(R) ≤ maxα∈F {|α|+H(Eα)}.

Theorem 2.7. Let I ⊂ S be a saturated ideal defining a nonarithmetically Cohen-
Macaulay projective curve C ⊂ PnK . Then reg I = max {reg I0, H(R) + 1}.

Proof. Since the field K is infinite and K[xn−1, xn] is a Noether normalization of
S/I and I is a saturated ideal, then there exists κ ∈ K −{0} such that xn− κxn−1

is a nonzero divisor on S/I. If we denote by Iκ the ideal (I, xn− κxn−1) of S, then
reg I = reg Iκ by [6, Prop. 20.20].

On the other hand, if (Iκ)sat is the saturation of Iκ, one deduces from [3, Lem-
mas 1.6, 1.7, 1.8] that reg Iκ = max {s0, H(Iκ, h)} where h is a linear form which
is a nonzero divisor on S/(Iκ)sat, and s0 is the smallest integer such that, for any
s ≥ s0, (Iκ : h)s = (Iκ)s.

Since S/(Iκ)sat is a finite K[xn]-module of dimension 1, then K[xn] is a Noether
normalization of S/(Iκ)sat by [9, Ch. 2, Rem. 6.5.0]. Thus, xn is a nonzero divisor
on S/(Iκ)sat and reg Iκ = max {s0, H(Iκ, xn)}, s0 being the smallest integer such
that, for any s ≥ s0, (Iκ : xn)s = (Iκ)s.

Let us prove now that reg Iκ = max {H(I) + 1, H(Iκ, xn)}. Indeed, as for any s,

0→ Ss−1/(Iκ : xn)s−1

. xn−→ Ss/(Iκ)s
ϕ−→ Ss/(Iκ, xn)s → 0

is an exact sequence, where ϕ is the canonical morphism, and as H(Iκ) = H(I)+1,
one has max {s0, H(Iκ, xn)} = max {H(I) + 1, H(Iκ, xn)}.

On the other hand, H(Iκ, xn) = reg I0 because (Iκ, xn) = (I0, xn−1, xn) and I0
defines an arithmetically Cohen-Macaulay curve (see proof of Theorem 2.4).

Finally, max {H(I)+1, reg I0} = max {H(R)+1, reg I0}. Indeed, as in (I0) ⊆ Ĩ,
then H(Ĩ) + 2 = reg Ĩ ≤ reg I0 by Lemma 2.3, Theorem 2.4 and Corollary 2.6. If
H(R) and H(I) are smaller or equal to H(Ĩ), the result follows from the previous
inequality. Otherwise, it is easy to check that H(R) = H(I) and we are done.

Remark 2.8. It is worth noting that knowledge of in (I) and some extra combina-
torial work give the value of reg I. In fact, in (I0) is generated by the minimal
generators of in (I) which are not divisible by either xn or xn−1 because in (I0) =
θ(in (I))S. Taking E = {α ∈ Nn−1 |x(α,0,0) ∈ in (I0)}, one gets reg I0 = H(E) by
Theorem 2.4. On the other hand, H(R) is also obtained from in (I).

Example 2.9. For any ` ≥ 1, consider the saturated ideal I` = (f1, f2, f3, h`) ⊂
K[x, y, z, t] generated by f1, f2, f3 of the Example 2.5 and by h` = y41z`− y40z`+1.
One can check that {f1, f2, f3, h`, y

48, x3y31, y40z`+8} is the reduced Gröbner basis
of I` w.r.t. the reverse lexicographic order. Then in (I`) = (x17y14, x20y13, x60,
y41z`, y48, x3y31, y40z`+8). The set F is not empty and independent of `. It is
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1298 ISABEL BERMEJO AND PHILIPPE GIMENEZ

represented by the following diagram:

(0,40)•
← F = {(i, j); 0 ≤ i ≤ 2, 40 ≤ j ≤ 47}

•

•

••

•

Then for ` ≥ 1, K[x, y, z, t]/I` is not Cohen-Macaulay by Proposition 2.1. Observe
that for any ` ≥ 1, in (I`)0 coincides with in (I), where I is the ideal (f1, f2, f3) of the
Example 2.5. The regularity of (I`)0 is then reg (I`)0 = 72. Now Eα = (`+8, 0)+N2

for any α = (i, 40) ∈ F , and Eα = (`, 0) + N2 for any α = (i, j) ∈ F with j ≥ 41.
So H(R) + 1 = maxα∈F {|α|+H(Eα)}+ 1 = 50 + ` and reg I` = max {72, 50 + `}
by Theorem 2.7.

Remark 2.10. Observe that in the previous example, in (I`) is a saturated ideal for
any ` ≥ 1, but it is not true in general that I = Isat implies that in (I) = in (I)sat.
For example, the ideal I ⊂ K[x, y, z, t] generated by x2− 3xy+ 5xt, xy− 3y2 + 5yt,
xz− 3yz, 2xt− yt and y2− yz− 2yt is saturated since z − t is a nonzero divisor on
K[x, y, z, t]/I and in (I) = (yzt, y2, xt, xz, xy, x2) is not saturated because z−κt is a
zero divisor onK[x, y, z, t]/ in (I), for any κ ∈ K. In this example, reg I 6= reg in (I)
as reg I = 2 by Theorem 2.7 (reg I0 = H(R) + 1 = 2) and one can check with [4]
that reg in (I) = 3. Nevertheless, if in (I) is also saturated one gets directly from
Theorem 2.7 that

reg I = reg in (I) .

In particular, if xn is a nonzero divisor on S/I, one has in (I) = in (I)sat and the
above equality also comes from [3, Thm. 2.4 (b)].

The last result of this section says that the method obtained from Theorems 2.4
and 2.7 to compute the regularity of I also determines when the regularity is at-
tained at the last step of a minimal graded free resolution of I.

Corollary 2.11. Let I ⊂ S be a saturated ideal defining a projective curve C ⊂ PnK .
Then reg I is attained at the last step of a minimal graded free resolution of I if
and only if either S/I is Cohen-Macaulay or reg I = H(R) + 1.

Proof. When S/I is Cohen-Macaulay, the result is a consequence of Corollary 1.2.
Assume that S/I is not Cohen-Macaulay. As a consequence of the proof of Theo-
rem 2.7, one has that reg I = H(R) + 1 if and only if reg I = H(I) + 1. Let

0→
βn−1⊕
j=1

S(−en−1,j) −→ · · · −→
β0⊕
j=1

S(−e0j) −→ I → 0

be a minimal graded free resolution of I. The Hilbert series of S/I is Q(t)
(1−t)n+1 with

Q(t) = 1− (te01 + · · ·+ te0β0 ) + · · ·+ (−1)n(ten−1,1 + · · ·+ ten−1,βn−1 )
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CASTELNUOVO-MUMFORD REGULARITY OF PROJECTIVE CURVES 1299

and deg (Q(t)) = H(I) + n. Since deg (Q(t)) ≤ reg I + n− 1, and equality holds if
and only if reg I + n− 1 = en−1, and the result follows.

In summary, avoiding the construction of a minimal graded free resolution of I`,
in Example 2.9, one can assert now that for any `, 1 ≤ ` ≤ 21, the regularity of
I` is attained at the second step of a minimal graded free resolution of I` but not
at the third step. For ` ≥ 22, the regularity of I` is attained at the third step of a
minimal graded free resolution of I but can also occur at the second step.
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