On CCA-Secure Somewhat Homomorphic Encryption

Jake Loftus!, Alexander May2, Nigel P. Smart!, and Frederik Vercauteren®

! Dept. Computer Science,
University of Bristol,

Merchant Venturers Building, Woodland Road,
Bristol, BS8 1UB, United Kingdom
{loftus,nigel}@cs.bris.ac.uk
2 Horst Gortz Institute for IT-Security,
Faculty of Mathematics,
Ruhr-University Bochum, Germany
alex.may@rub.de
3 COSIC - Electrical Engineering,
Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10,

B-3001 Heverlee, Belgium
fvercaut@esat.kuleuven.ac.be

Abstract. It is well known that any encryption scheme which supports any form
of homomorphic operation cannot be secure against adaptive chosen ciphertext
attacks. The question then arises as to what is the most stringent security defini-
tion which is achievable by homomorphic encryption schemes. Prior work has
shown that various schemes which support a single homomorphic encryption
scheme can be shown to be IND-CCAI, i.e. secure against lunchtime attacks.
In this paper we extend this analysis to the recent fully homomorphic encryp-
tion scheme proposed by Gentry, as refined by Gentry, Halevi, Smart and Ver-
cauteren. We show that the basic Gentry scheme is not IND-CCAI; indeed a
trivial lunchtime attack allows one to recover the secret key. We then show that
a minor modification to the variant of the somewhat homomorphic encryption
scheme of Smart and Vercauteren will allow one to achieve IND-CCA1, indeed
PA-1, in the standard model assuming a lattice based knowledge assumption. We
also examine the security of the scheme against another security notion, namely
security in the presence of ciphertext validity checking oracles; and show why
CCA-like notions are important in applications in which multiple parties submit
encrypted data to the “cloud” for secure processing.

1 Introduction

That some encryption schemes allow homomorphic operations, or exhibit so called
privacy homomorphisms in the language of Rivest et. al [24]], has often been consid-
ered a weakness. This is because any scheme which supports homomorphic operations
is malleable, and hence is unable to achieve the de-facto security definition for en-
cryption namely IND-CCA2. However, homomorphic encryption schemes do present
a number of functional benefits. For example schemes which support a single additive
homomorphic operation have been used to construct secure electronic voting schemes,
e.g. [9112].
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The usefulness of schemes supporting a single homomorphic operation has led some
authors to consider what security definition existing homomorphic encryption schemes
meet. A natural notion to try to achieve is that of IND-CCAL, i.e. security in the pres-
ence of a lunch-time attack. Lipmaa [20] shows that the ElGamal encryption scheme is
IND-CCA1 secure with respect to a hard problem which is essentially the same as the
IND-CCA1 security of the ElGamal scheme; a path of work recently extended in [2] to
other schemes.

A different line of work has been to examine security in the context of Plaintext
Awareness, introduced by Bellare and Rogaway [5] in the random oracle model and
later refined into a hierarchy of security notions (PA-0, -1 and -2) by Bellare and Palacio
[4]. Intuitively a scheme is said to be PA if the only way an adversary can create a valid
ciphertext is by applying encryption to a public key and a valid message. Bellare and
Palacio prove that a scheme which possesses both PA-1 (resp. PA-2) and is IND-CPA,
is in fact secure against IND-CCA1 (resp. IND-CCAZ2) attacks.

The advantage of Bellare and Palacio’s work is that one works in the standard model
to prove security of a scheme; the disadvantage appears to be that one needs to make
a strong assumption to prove a scheme is PA-1 or PA-2. The assumption required is a
so-called knowledge assumption. That such a strong assumption is needed should not
be surprising as the PA security notions are themselves very strong. In the context of
encryption schemes supporting a single homomorphic operation Bellare and Pallacio
show that the Cramer-Shoup Lite scheme [10] and an ElGamal variant introduced by
Damgard [[11] are both PA-1, and hence IND-CCA1, assuming the standard DDH (to
obtain IND-CPA security) and a Diffie—Hellman knowledge assumption (to obtain PA-
1 security). Informally, the Diffie—Hellman knowledge assumption is the assumption
that an algorithm can only output a Diffie-Hellman tuple if the algorithm “knows” the
discrete logarithm of one-tuple member with respect to another.

Rivest et. al originally proposed homomorphic encryption schemes so as to enable
arbitrary computation on encrypted data. To perform such operations one would require
an encryption scheme which supports two homomorphic operations, which are “com-
plete” in the sense of allowing arbitrary computations. Such schemes are called fully
homomorphic encryption (FHE) schemes, and it was not until Gentry’s breakthrough
construction in 2009 [15/16] that such schemes could be constructed. Since Gentry’s
construction appeared a number of variants have been proposed, such as [14], as well
as various simplifications [27] and improvements thereof [17]. All such schemes have
been proved to be IND-CPA, i.e. secure under chosen plaintext attack.

At a high level all these constructions work in three stages: an initial somewhat ho-
momorphic encryption (SHE) scheme which supports homomorphic evaluation of low
degree polynomials, a process of squashing the decryption circuit and finally a boot-
strapping procedure which will give fully homomorphic encryption and the evaluation
of arbitrary functions on ciphertexts. In this paper we focus solely on the basic some-
what homomorphic scheme, but our attacks and analysis apply also to the extension
using the bootstrapping process. Our construction of an IND-CCA1 scheme however
only applies to the SHE constructions as all existing FHE constructions require public
keys which already contain ciphertexts; thus with existing FHE constructions the notion
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of IND-CCA1 security is redundant; although in Section[7] we present a notion of CCA
embeddability which can be extended to FHE.

In this paper we consider the Smart—Vercauteren variant [27] of Gentry’s scheme.
In this variant there are two possible message spaces; one can either use the scheme
to encrypt bits, and hence perform homomorphic operations in Fs; or one can encrypt
polynomials of degree N over Fy. When one encrypts bits one achieves a scheme that
is a specialisation of the original Gentry scheme, and it is this variant that has recently
been realised by Gentry and Halevi [17]. We call this the Gentry—Halevi variant, to
avoid confusion with other variants of Gentry’s scheme, and we show that this scheme
is not IND-CCAL1 secure.

In particular in Section 4] we present a trivial complete break of the Gentry—Halevi
variant scheme, in which the secret key can be recovered via a polynomial number of
queries to a decryption oracle. The attack we propose works in a similar fashion to
the attack of Bleichenbacher on RSA [8], in that on each successive oracle call we
reduce the possible interval containing the secret key, based on the output of the oracle.
Eventually the interval contains a single element, namely the secret key. Interesting all
the Bleichenbacher style attacks on RSA, [8121426], recover a target message, and are
hence strictly CCA2 attacks, whereas our attack takes no target ciphertext and recovers
the key itself.

In Section 5] we go on to show that a modification of the Smart—Vercauteren SHE
variant which encrypts polynomials can be shown to be PA-1, and hence is IND-CCAL.
Informally we use the full Smart—Vercauteren variant to recover the random polyno-
mial used to encrypt the plaintext polynomial in the decryption phase, and then we
re-encrypt the result to check against the ciphertext. This forms a ciphertext validity
check which then allows us to show PA-1 security based on a new lattice knowledge
assumption. Our lattice knowledge assumption is a natural lattice based variant of the
Diffie-Hellman knowledge assumption mentioned previously. In particular we assume
that if an algorithm is able to output a non-lattice vector which is sufficiently close to
a lattice vector then it must “know” the corresponding close lattice vector. We hope
that this problem may be of independent interest in analysing other lattice based cryp-
tographic schemes; indeed the notion is closely linked to a key “quantum” step in the
results of Regev [23]].

In Section [6] we examine possible extensions of the security notion for homomor-
phic encryption. We have remarked that a homomorphic encryption scheme (either
one which supports single homomorphic operations, or a SHE/FHE scheme) cannot
be IND-CCAZ2, but we have examples of singlely homomorphic and SHE IND-CCA1
schemes. The question then arises as to whether IND-CCAL is the “correct” security
definition, i.e. whether this is the strongest definition one can obtain for SHE schemes.
In other contexts authors have considered attacks involving partial information oracles.
In [13] Dent introduces the notion of a CPA+ attack, where the adversary is given access
to an oracle which on input of a ciphertext outputs a single bit indicating whether the
ciphertext is valid or not. Such a notion was originally introduced by Joye, Quisquater
and Yung [19] in the context of attacking a variant of the EPOC-2 cipher which had
been “proved” IND-CCAZ2. This notion was recently re-introduced under the name of
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a CVA (ciphertext verification) attack by Hu et al [18], in the context of symmetric
encryption schemes. We use the term CVA rather than CPA+ as it conveys more easily
the meaning of the security notion.

Such ciphertext validity oracles are actually the key component behind the traditional
application of Bleichenbacher style attacks against RSA, in that one uses the oracle to
recover information about the target plaintext. We show that our SHE scheme which is
IND-CCA1 is not IND-CVA, by presenting an IND-CVA attack. In particular this shows
that CVA security is not implied by PA-1 security. Given PA-1 is such a strong notion
this is itself interesting since it shows that CVA attacks are relatively powerful. The
attack is not of the Bleichenbacher type, but is now more akin to the security reduction
between search and decision LWE [23]]. This attack opens up the possibility of a new
SHE scheme which is also IND-CVA, a topic which we leave as an open problem; or
indeed the construction of standard additive or multiplicative homomorphic schemes
which are IND-CVA.

Finally, in Section [7l we consider an application area of cloud computing in which
multiple players submit encrypted data to a cloud computer; which in turn will per-
form computations on the encrypted data. We show that such a scenario does indeed
seem to require a form of IND-CCAZ2 protection of ciphertexts, yet still maintaining ho-
momorphic properties. To deal with this we introduce the notion of CCA-embeddable
homomorphic encryption.

2 Notation and Standard Definitions

For integers z, d reduction of z modulo d in the interval [—d /2, d/2) will be denoted by
[2]4. For a rational number ¢, |g] will denote the rounding of ¢ to the nearest integer,
and [¢] denotes the (signed) distance between ¢ and the nearest integer, i.e. |¢] = ¢—[q].
The notation a < b means assign the object b to a, whereas a <— B for a set B means
assign a uniformly at random from the set B. If B is an algorithm this means assign a
with the output of B where the probability distribution is over the random coins of B.

For a polynomial F'(X) € Q[X] we let | F'(X)| oo denote the co-norm of the co-
efficient vector, i.e. the maximum coefficient in absolute value. If F'(X) € Q[X] then
we let | F/(X)] denote the polynomial in Z[X | obtained by rounding the coefficients of
F(X) to the nearest integer.

FULLY HOMOMORPHIC ENCRYPTION: A fully homomorphic encryption scheme is a
tuple of three algorithms £ = (KeyGen, Encrypt, Decrypt) in which the message space
is a ring (R, +,-) and the ciphertext space is also a ring (R, ®,®) such that for all
messages m1,mg € R, and all outputs (pk, sk) < KeyGen(1*), we have

mq + mq = Decrypt(Encrypt(my, pk) & Encrypt(ma, pk), sk)
mq - ma = Decrypt(Encrypt(mq, pk) ® Encrypt(ma, pk), sk).

A scheme is said to be somewhat homomorphic if it can deal with only a limited number
of addition and multiplications before decryption fails.

SECURITY NOTIONS FOR PUBLIC KEY ENCRYPTION: Semantic security of a public
key encryption scheme, whether standard, homomorphic, or fully homomorphic, is
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captured by the following game between a challenger and an adversary .4, running
in two stages;

- (pk, sk) < KeyGen(1%).

(mo,my,St) < AV (pk). 7+ Stage 1 %/
b+ {0,1}.

¢* < Encrypt(mp, pk; 7).

- b« A(Q')(c"‘7 St). /* Stage 2 */

The adversary is said to win the game if b = ', with the advantage of the adversary
winning the game being defined by

AP = | Pr(b =) — 1/2].

A scheme is said to be IND-atk secure if no polynomial time adversary A can win
the above game with non-negligible advantage in the security parameter . The precise
security notion one obtains depends on the oracle access one gives the adversary in its
different stages.

— If A has access to no oracles in either stage then atk=CPA.

If A has access to a decryption oracle in stage one then atk=CCA1.

If A has access to a decryption oracle in both stages then atk=CCA2, often now
denoted simply CCA.

If A has access to a ciphertext validity oracle in both stages, which on input of a ci-
phertext determines whether it would output L or not on decryption, then atk=CVA.

LATTICES: A (full-rank) lattice is simply a discrete subgroup of R™ generated by n
linear independent vectors, B = {bs,...,b,}, called a basis. Every lattice has an
infinite number of bases, with each set of basis vectors being related by a unimodular
transformation matrix. If B is such a set of vectors, we write

L=L(B)={v-BlveZ"}

to be the resulting lattice. An integer lattice is a lattice in which all the bases vectors
have integer coordinates.

For any basis there is an associated fundamental parallelepiped which can be taken
as P(B) = {>_i_, ;- bj|lz; € [~1/2,1/2)}. The volume of this fundamental par-
allelepiped is given by the absolute value of the determinant of the basis matrix A =
| det(B)|. We denote by Ao (L) the co-norm of a shortest vector (for the co-norm) in L.

3 The Smart-Vercauteren Variant of Gentry’s Scheme

We will be examining variants of Gentry’s SHE scheme [13], in particular three variants
based on the simplification of Smart and Vercauteren [27], as optimized by Gentry and
Halevi [17]. All variants make use of the same key generation procedure, parametrized
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by a tuple of integers (N, ¢, 11); we assume there is a function mapping security param-
eters \ into tuples (IV, ¢, ). In practice N will be a power of two, ¢t will be greater than

2VN and v will be a small integer, perhaps one.

KeyGen(1*)

- Pick an irreducible polynomial F' € Z[X] of degree N.

- Pick a polynomial G(X) € Z[X] of degree at most N — 1, with coefficients
bounded by ¢.

- d «+ resultant(F, G).

— Gischosen such that G(X) has a single unique root in common with F'(X') modulo
d. Let o denote this root.

- Z(X) + d/G(X) (mod F(X)).

- pk — (Oé, d7 M?F(X))’ sk « (Z(X)7 G(X)7d7F(X))

In [17] Gentry and Halevi show how to compute, for the polynomial F(X) = X2" +1,
the root o and the polynomial Z (X ) using a method based on the Fast Fourier Trans-
form. In particular they show how this can be done for non-prime values of d (removing
one of the main restrictions in the key generation method proposed in [27]).

By construction, the principal ideal g generated by G(X) in the number field K =
Z[X]/(F(X)) is equal to the ideal with O basis (d, X — «). In particular, the ideal
g precisely consists of all elements in Z[X]/(F(X)) that are zero when evaluated at
« modulo d. The Hermite-Normal-Form of a basis matrix of the lattice defined by the
coefficient vectors of g is given by

where the elements in the first column are reduced modulo d.
To aid what follows we write Z(X) = 29+ 21 - X + ...+ zy_1 - XV ! and define

5o — { [9(X) - h(X) (mod F(X))|e
oo = Sup

19(X) oo - [[R(X)] 00
For the choice f = X~ + 1, we have 6o = N. The key result to understand how

the simplification of Smart and Vercauteren to Gentry’s scheme works is the following
lemma adapted from [27]].

1 g,h € Z[X],deg(g), deg(h) < N} )

Lemma 1. Let Z(X), G(X), a and d be as defined in the above key generation proce-
dure. If C(X) € Z[X]/(F(X)) is a polynomial with ||C(X)||cc < U and set c = C(«)
(mod d), then

- Z(X)

C(X)zc—r .

“ -G(X) (mod F(X))

d
U= .
2 bo0 - [|2(X) [l oo
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Proof. By definition of ¢, we have that ¢ — C'(X) is contained in the principal ideal
generated by G(X) and thus there exists a ¢(X ) € Z[X]/(F(X)) such thatc—C(X) =
¢(X)G(X). Using Z(X) =d/G(X) (mod F(X)), we can write

Since ¢(X) has integer coefficients, we can recover it by rounding the coefficients of
the first term if the coefficients of the second term are strictly bounded by 1/2. This
shows that C'(X') can be recovered from c¢ for ||C'(X)||co < d/(2 oo * || Z(X)||00)-

Note that the above lemma essentially states that if |C'(X)||cc < U, then C'(X) is
determined uniquely by its evaluation in v modulo d. Recall that any polynomial H (X)
of degree less than N, whose coefficient vector is in the lattice defined in equation (),
satisfies H(a)) = 0 (mod d). Therefore, if H(X) # 0, the lemma implies, for such an
H, that ||H(X)||sc > U, and thus we conclude that U < A, (L). Since the coefficient
vector of G(X) is clearly in the lattice L, we conclude that

U < Aso(L) < [G(X)loo -

Although Lemma [I] provides the maximum value of U for which ciphertexts are de-
cryptable, we will only allow a quarter of this maximum value, i.e. T = U/4. As such
we are guaranteed that T < A (L)/4. We note that T defines the size of the circuit
that the somewhat homomorphic encryption scheme can deal with. Our choice of T will
become clear in Section

Using the above key generation method we can define three variants of the Smart—
Vercauteren variant of Gentry’s scheme. The first variant is the one used in the Gen-
try/Halevi implementation of [17], the second is the general variant proposed by Smart
and Vercauteren, whereas the third divides the decryption procedure into two steps and
provides a ciphertext validity check. In later sections we shall show that the first variant
is not IND-CCAL1 secure, and by extension neither is the second variant. However, we
will show that the third variant is indeed IND-CCA1. We will then show that the third
variant is not IND-CVA secure.

Each of the following variants is only a somewhat homomorphic scheme, extending
it to a fully homomorphic scheme can be performed using methods of [15I16/17].

GENTRY-HALEVI VARIANT: The plaintext space is the field Fy. The above KeyGen
algorithm is modified to only output keys for which d = 1 (mod 2). This implies that
at least one coefficient of Z(X), say z;, will be odd. We replace Z(X) in the private
key with z;,, and can drop the values G(X) and F'(X) entirely from the private key.
Encryption and decryption can now be defined via the functions:

Encrypt(m, pk; ) Decrypt(c, sk)
- R(X)+ Z[X] st |R(X)||oo S e = m < [c- zi)a (mod 2)
- C(X)+m+2-R(X). - Return m.
- ¢+ [C(a)]a-

— Return c.
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FULL-SPACE SMART-VERCAUTEREN: In this variant the plaintext space is the algebra
Fo[X]/(F(X)), where messages are given by binary polynomials of degree less than
N. As such we call this the Full-Space Smart—Vercauteren system as the plaintext space
is the full set of binary polynomials, with multiplication and addition defined modulo
F(X). We modify the above key generation algorithm so that it only outputs keys for
which the polynomial G(X) satisifies G(X) = 1 (mod 2). This results in algorithms
defined by:

Encrypt(M (X), pk; ) Decrypt(c, sk)
- R(X)« Z[X]st. |[R(X)||oo <pt. = C(X)<c—|c-Z(X)/d].
- C(X)+ M(X)+2-R(X). - M(X) + C(X) (mod 2).
- ¢+ [C(a)]q- - Return M (X).
— Return c.

That decryption works, assuming the input ciphertext corresponds to the evaluation of
a polynomial with coefficients bounded by T, follows from Lemmal (Il and the fact that
G(X) =1 (mod 2).

CCSHE: This is our ciphertext-checking SHE scheme (or ccSHE scheme for short).
This is exactly like the above Full-Space Smart—Vercauteren variant in terms of key
generation, but we now check the ciphertext before we output the message. Thus en-
cryption/decryption become;

Encrypt(M (X), pk; ) Decrypt(c, sk)
- R(X)«+ Z[X]st. |[RX)|loo <. =C(X)c—|c-Z(X)/d] G(X).
- C(X)+« M(X)+2-R(X). - C(X) + C(X) (mod F(X))
- ¢+ [C(a)]a- -+« [C(a)]a-
- Return c. - Ifd # cor||C(X)||oo > T return L.

M(X) + C(X) (mod 2).
Return M (X).

4 CCA1 Attack on the Gentry—Halevi Variant

We construct an IND-CCAL attacker against the above Gentry—Halevi variant. Let z be
the secret key, i.e. the specific odd coefficient of Z(X) chosen by the decryptor. Note
that we can assume z € [0, d), since decryption in the Gentry—Halevi variant works for
any secret key z + k - d with k& € Z. We assume the attacker has access to a decryption
oracle to which it can make polynomially many queries, Op(c). On each query the
oracle returns the value of [c - z]4 (mod 2).

In Algorithm [Tl we present pseudo-code to describe how the attack proceeds. We
start with an interval [L, . . ., U] which is known to contain the secret key z and in each
iteration we split the interval into two halves determined by a specific ciphertext c.
The choice of which sub-interval to take next depends on whether £ multiples of d are
sufficient to reduce ¢ - z into the range [—d/2, ..., d/2) or whether k + 1 multiples are
required.

ANALYSIS: The core idea of the algorithm is simple: in each step we choose a “cipher-
text” ¢ such that the length of the interval for the quantity c- z is bounded by d. Since in
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Algorithm 1. CCA1 attack on the Gentry—Halevi Variant

L+ 0,U+d-1
while U — L > 1 do
c+ |d/(U—-1L)|
b+ OD(C)
g+ (c+b) mod 2
k<« |Le/d+1/2]
B+ (k+1/2)d/c
if (k mod 2 = q) then
U+ |B]
else
L + [B]
return L

each step, z € [L, U], we need to take ¢ = |d/(U — L)]|. As such it is easy to see that
c(U—-1L1L)<d.

To reduce cL, we need to subtract kd such that —d/2 < ¢L — kd < d/2, which
shows that k = | Lc¢/d + 1/2]. Furthermore, since the length of the interval for ¢ - z
is bounded by d, there will be exactly one number of the form d/2 + id in [cL, cU],
namely d/2 + kd. This means that there is exactly one boundary B = (k + 1/2)d/cin
the interval for z.

Define ¢ as the unique integer such that —d/2 < cz — gd < d/2, then since the
length of the interval for ¢ - z is bounded by d, we either have ¢ = korq = k + 1.
To distinguish between the two cases, we simply look at the output of the decryption
oracle: recall that the oracle outputs [c - z]4 (mod 2), i.e. the bit output by the oracle is

b=c-z—q-d (mod2)=(c+¢q) (mod?2).

Therefore, ¢ = (b + ¢) (mod 2) which allows us to choose between the cases k and
kE+1.If ¢ =k (mod 2), then z lies in the first part [L, | B]], whereas in the other case,
z lies in the second part [[ B], U].

Having proved correctness we now estimate the running time. The behaviour of the
algorithm is easily seen to be as follows: in each step, we obtain a boundary B in the
interval [L, U] and the next interval becomes either [L, | B]] or [[B], U]. Since B can
be considered random in [L, U] as well as the choice of the interval, this shows that in
each step, the size of the interval decreases by a factor 2 on average. In conclusion we
deduce that recovering the secret key will require O(log d) calls to the oracle.

The above attack is highly efficient in practice and recovers keys in a matter of sec-
onds for all parameter sizes in [17].

5 c¢cSHE is PA-1

In this section we prove that the ccSHE encryption scheme given earlier is PA-1,
assuming a lattice knowledge assumption holds. We first recap on the definition of PA-1
in the standard model, and then we introduce our lattice knowledge assumption. Once
this is done we present the proof.



64 J. Loftus et al.

PLAINTEXT AWARENESS — PA-1: The original intuition for the introduction of plain-
text awareness was as follows - if an adversary knows the plaintext corresponding to
every ciphertext it produces, then the adversary has no need for a decryption oracle and
hence, PA+IND-CPA must imply IND-CCA. Unfortunately, there are subtleties in the
definition for plaintext awareness, leading to three definitions, PA-0, PA-1 and PA-2.
However, after suitably formalizing the definitions, PA-x plus IND-CPA implies IND-
CCAXx, for x = 1 and 2. In our context we are only interested in IND-CCAT security, so
we will only discuss the notion of PA-1 in this paper.

Before formalizing PA-1 it is worth outlining some of the terminology. We have a
polynomial time adversary A called a ciphertext creator, that takes as input a public key
and can query ciphertexts to an oracle. An algorithm A* is called a successful extractor
for A if it can provide responses to A which are computationally indistinguishable from
those provided by a decryption oracle. In particular a scheme is said to be PA-1 if there
exists a successful extractor for any ciphertext creator that makes a polynomial number
of queries. The extractor gets the same public key as .4 and also has access to the
random coins used by algorithm .A. Following [4]] we define PA-1 formally as follows:

Definition 1 (PA1). Let £ be a public key encryption scheme and A be an algorithm
with access to an oracle O taking input pk and returning a string. Let D be an algorithm
that takes as input a string and returns a single bit and let A* be an algorithm which
takes as input a string and some state information and returns either a string or the
symbol L, plus a new state. We call A a ciphertext creator, A* a PA-1-extractor, and D
a distinguisher. For security parameter \ we define the (distinguishing and extracting)
experiments in Figurelll and then define the PA-1 advantage to be

AdvEA 4o (0) = [Pr(ExpE A (N = 1) — Pr(ExpE 4570 () = 1)|.

We say A* is a successful PA-1-extractor for A, if for every polynomial time distin-
guisher the above advantage is negligible.

Bxpg %' (V): Bxpg % 4 ():
— (pk, sk) «+ KeyGen(1*). = (pk,sk) < KeyGen(1).
— @ < APtk (ply, — Choose coins coins[A] (resp. coins[.A*]) for A (resp.
- d <+ D(z). AM).
- Return d. — St « (pk, coins[A]).

- z + A% (pk; coins[A]), replying to the oracle queries
O(c) as follows:
e (m,St) < A*(c, St; coins[A™]).
e Returnmto A
- d <+ D(z).
— Return d.

Fig. 1. Experiments Expgﬁ{’lﬁd and Expf j‘iﬂ

Note, in experiment ExpfgD j'}l;d (M) the algorithm A’s oracle queries are responded to

by the genuine decryption algorithm, whereas in Expgj’if()\) the queries are
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responded to by the PA-1-extractor. If A* did not receive the coins coins[.A] from A
then it would be functionally equivalent to the real decryption oracle, thus the fact that
A* gets access to the coins in the second experiment is crucial. Also note that the distin-
guisher acts independently of .4*, and thus this is strictly stronger than having A decide
as to whether it is interacting with an extractor or a real decryption oracle.

The intuition is that A* acts as the unknowing subconscious of 4, and is able to
extract knowledge about A’s queries to its oracle. That .4* can obtain the underlying
message captures the notion that A needs to know the message before it can output a
valid ciphertext.

The following lemma is taken from [4] and will be used in the proof of the main
theorem.

Lemma 2. Let £ be a public key encryption scheme. Let A be a polynomial-time ci-
phertext creator attacking £, D a polynomial-time distinguisher, and A* a polynomial-
time PA-1-extractor. Let DecOK denote the event that all A*’s answers to A’s queries
are correct in experiment Expf ‘:4411)“" 4+ (A). Then,

Pr(Exps 4 a-(A) = 1) > Pr(Expt % 5 (A) = 1) — Pr(DecOK)

LATTICE KNOWLEDGE ASSUMPTION: Our knowledge assumption can be stated in-
formally as follows: suppose there is a (probabilistic) algorithm C which takes as input
a lattice basis of a lattice L and outputs a vector c suitably close to a lattice point p, i.e.
closer than € Ao (L) in the co-norm for a fixed € € (0, 1/2). Then there is an algorithm
C* which on input of ¢ and the random coins of C outputs a close lattice vector p, i.e.
one for which ||c — p|loc < € Ao (L). Note that the algorithm C* can therefore act as a
€-CVP-solver for c in the co-norm, given the coins coins[C]. Again as in the PA-1 defi-
nition it is perhaps useful to think of C* as the “subconscious” of C, since C is capable
of outputting a vector close to the lattice it must have known the close lattice vector in
the first place. Formally we have:

Definition 2 (LK-¢). Let € be a fixed constant in the interval (0,1/2). Let G denote an
algorithm which on input of a security parameter 1 outputs a lattice L given by a basis
B of dimension n = n(\) and volume A = A(X). Let C be an algorithm that takes
a lattice basis B as input, and has access to an oracle O, and returns nothing. Let C*
denote an algorithm which takes as input a vector ¢ € R™ and some state information,
and returns another vector p € R™ plus a new state. Consider the experiment in Figure
The LK-€ advantage of C relative to C* is defined by

AdvgEe-(N) = Pr[Expgiee- () = 1.

We say G satisfies the LK-e assumption, for a fixed e, if for every polynomial time C
there exists a polynomial time C* such that Advéféf* (N) is a negligible function of .

The algorithm C is called an LK-¢ adversary and C* a LK-€ extractor. We now discuss
this assumption in more detail. Notice, that for all lattices, if ¢ < 1/4 then the proba-
bility of a random vector being within € - Ao, (L) of the lattice is bounded from above
by 1/2", and for lattices which are not highly orthogonal this is likely to hold for all e
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Exp§$ e (N):
- B+ G@1™).
— Choose coins coins[C] (resp. coins[C*]) for C (resp. C¥).
St + (B, coins[C]).
Run C®(B; coins[C]) until it halts, replying to the oracle queries O(c) as follows:
e (p,St) «+ C*(c, St; coins[C*]).
o If p & L(B), return 1.
o If |p — c|loc > €- Ao (L), return 1.
e Returnpto C.
Return 0.

Fig. 2. Experiment Expj IZE* N

up to 1/2. Our choice of T in the ccSHE scheme as U/4 is to guarantee that our lattice
knowledge assumption is applied with € = 1/4, and hence is more likely to hold.

If the query ¢ which C asks of its oracle is within e - Ao (L) of a lattice point then we
require that C* finds such a close lattice point. If it does not then the experiment will
output 1; and the assumption is that this happens with negligible probability.

Notice that if C asks its oracle a query of a vector which is not within € - A\oo (L) of a
lattice point then the algorithm C* may do whatever it wants. However, to determine this
condition within the experiment we require that the environment running the experiment
is all powerful, in particular, that it can compute A (L) and decide whether a vector
is close enough to the lattice. Thus our experiment, but not algorithms C and C*, is
assumed to be information theoretic. This might seem strange at first sight but is akin
to a similarly powerful game experiment in the strong security model for certificateless
encryption [1]], or the definition of insider unforgeable signcryption in [3]].

For certain input bases, e.g. reduced ones or ones of small dimension, an algorithm
C* can be constructed by standard algorithms to solve the CVP problem. This does not
contradict our assumption, since C would also be able to apply such an algorithm and
hence “know” the close lattice point. Our assumption is that when this is not true, the
only way C could generate a close lattice point (for small enough values of ¢€) is by
computing x € Z" and perturbing the vector x - B.

MAIN THEOREM:

Theorem 1. Let G denote the lattice basis generator induced from the KeyGen algo-
rithm of the ccSHE scheme, i.e. for a given security parameter 17, run KeyGen(1?)
to obtain pk = (o, d, u, F(X)) and sk = (Z(X),G(X),d, F(X)), and generate the
lattice basis B as in equation (I). Then, if G satisfies the LK-¢ assumption for ¢ = 1/4
then the ccSHE scheme is PA-1.

Proof. Let A be a polynomial-time ciphertext creator attacking the ccSHE scheme,
then we show how to construct a polynomial time PAl-extractor A*. The creator A
takes as input the public key pk = (a,d, s, F(X)) and random coins coins[.4] and
returns an integer as the candidate ciphertext. To define .A*, we will exploit A4 to build a
polynomial-time LK-¢ adversary C attacking the generator G. By the LK-¢ assumption
there exists a polynomial-time LK-¢ extractor C*, that will serve as the main building



On CCA-Secure Somewhat Homomorphic Encryption 67

block for the PAl-extractor A*. The description of the LK-¢ adversary C is given in
Figure[3land the description of the PA-1-extractor A* is given in Figured]

LK-¢ adversary C° (B; coins[C])

Let d = B[0][0] and o = —BJ[1][0]

Parse coins|C| as p||F(X)||coins[A]

- Run A on input (e, d, i, F/(X)) and coins coins[.A] until it halts, replying to its oracle

queries as follows:

e If A makes a query with input ¢, then

Submit (¢, 0,0, ...,0) to O and let p denote the response

Letc = (c,0,...,0) —p,and C(X) = Z e X!

Letc = [C(a)]q

If ¢ # cor ||C(X)||oo > T, then M(X) <L, else M(X) + C(X) (mod 2)
e Return M (X) to A as the oracle response.

— Halt

Fig. 3. LK-¢ adversary

PA-1-extractor A*(c, St[.A*]; coins[A*])
If St[A*] is initial state then

e parse coins[A*] as («, d, 1, F(X))]||coins[A]

o St[C*] + (o, d, p, F(X))]||coins[A]

e clse parse coins[A*] as (o, d, 1, F/(X))||St[C”]
(p,St[C*]) « C*((c,0,...,0),St[C"]; coms[A D
- Letc = (¢,0,...,0) —p,and C(X) = Zl JleiX!
Letc = [C(a)]q
If ¢ # cor ||C(X)||oo > T, then M(X) <L, else M(X) + C(X) (mod 2)
SHLA"] (o, d, 1, F(X))][St[C"]
Return (M (X), St[A*]).

Fig. 4. PA-1-extractor

We first show that A* is a successful PA-1-extractor for A. In particular, let DecOK
denote the event that all A*’s answers to .A’s queries are correct in Expi‘gﬁlﬁ” Ap.a-(N),
then we have that Pr(DecOK) < Advé’fé:é* (N).

We first consider the case that ¢ is a valid ciphertext, i.e. a ciphertext such that
Decrypt(c,sk) #.L, then by definition of Decrypt in the ccSHE scheme there exists
a C(x) such that ¢ = [C(«)]q and ||C(X)|leoc < T'. Let p’ be the coefficient vector
of ¢ — C(X), then by definition of ¢, we have that p’ is a lattice vector that is within
distance T of the vector (c, 0, ..., 0). Furthermore, since T' < Ao (L) /4, the vector p’
is the unique vector with this property. Let p be the vector returned by C* and assume
that p passes the test ||(c,0,...,0) — plleoc < T, then we conclude that p = p’. This
shows that if ¢ is a valid ciphertext, it will be decrypted correctly by A*.
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When c is an invalid ciphertext then the real decryption oracle will always output
1, and it can be easily seen that our PA-1 extractor A* will also output L. Thus in
the case of an invalid ciphertext the adversary A cannot tell the two oracles apart. The
theorem now follows from combining the inequality Pr(DecOK) < Advé Iéé (A) with
Lemmal2] as follows:

AdvESl a-(N) = Pr(Bxpt 45 (V)
< Pr(Exps %5 (N)
< Advgee- ().

) = Pr(Exps 557 a-(A) = 1)

1
1) — Pr(Exps 55 (A) = 1) + Pr(DecOK)

6 ccSHE Is Not Secure in the Presence of a CVA Attack

We now show that our ccSHE scheme is not secure when the attacker, after being given
the target ciphertext c¢*, is given access to an oracle Ocvya (¢) which returns 1 if ¢ is
a valid ciphertext (i.e. the decryption algorithm would output a message), and which
returns 0 if it is invalid (i.e. the decryption algorithm would output L ). Such an “oracle”
can often be obtained in the real world by the attacker observing the behaviour of a party
who is fed ciphertexts of the attackers choosing. Since a CVA attack is strictly weaker
than a IND-CCAZ2 attack it is an interesting open (and practical) question as to whether
an FHE scheme can be CVA secure.

We now show that the ccSHE scheme is not CVA secure, by presenting a relatively
trivial attack: Suppose the adversary is given a target ciphertext c¢* associated with a
hidden message m*. Using the method in Algorithm[Plit is easy to determine the mes-
sage using access to Ocya (c¢). Basically, we add on multiples of o' to the ciphertext
until it does not decrypt; this allows us to perform a binary search on the i-th coefficient
of C'(X), since we know the bound 7" on the coefficients of C'(X).

Algorithm 2. CVA attack on ccSHE
C(X)«0
for i from 0 upto N — 1 do
L+ -T+1L,U+T-1
while U # L do
M+ [(U+L)/2]. ,
c+— [+ (M+T-1) a]a.
if OCVA(C) = 1 then
L+ M.

else
U+~M-1.
CX)«+C(X)+U-X".
m* + C(X) (mod 2)
return m”™

If ¢; is the ith coefficient of the actual C'(X') underlying the target ciphertext ¢*, then
the ith coefficient of the polynomial underlying ciphertext c being passed to the Ocya
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oracle is given by M + T — 1 — ¢;. When M < ¢; this coefficient is less than 7" and
so the oracle will return 1, however when M > c¢; the coefficient is greater than or
equal 7" and hence the oracle will return 0. Thus we can divide the interval for ¢; in two
depending on the outcome of the test.

It is obvious that the complexity of the attack is O(N - log, T'). Since, for the rec-
ommended parameters in the key generation method, N and log, T are polynomial
functions of the security parameter, we obtain a polynomial time attack.

7 CCA2 Somewhat Homomorphic Encryption?

In this section we deal with an additional issue related to CCA security of somewhat
homomorphic encryption schemes. Consider the following scenario: three parties wish
to use SHE to compute some information about some data they posses. Suppose the
three pieces of data are mj, mo and ms. The parties encrypt these messages with the
SHE scheme to obtain ciphertexts c;, co and c3. These are then passed to a third party
who computes, via the SHE properties, the required function. The resulting ciphertext
is passed to an “Opener” who then decrypts the output and passes the computed value
back to the three parties. As such we are using SHE to perform a form of multi-party
computation, using SHE to perform the computation and a special third party, called an
Opener, to produce the final result.

Consider the above scenario in which the messages lie in {0, 1} and the function to
be computed is the majority function. Now assume that the third party and the protocol
are not synchronous. In such a situation the third party may be able to make a copy
of the first party’s ciphertext and submit it as his own. In such a situation the third
party forces the above protocol to produce an output equal to the first party’s input; thus
security of the first party’s input is lost. This example may seem a little contrived but
it is, in essence, the basis of the recent attack by Smyth and Cortier [28]] on the Helios
voting system; recall Helios is a voting system based on homomorphic (but not fully
homomorphic) encryption.

An obvious defence against the above attack would be to disallow input ciphertexts
from one party, which are identical to another party’s. However, this does not preclude a
party from using malleability of the underlying SHE scheme to produce a ciphertext cs,
such that ¢3 # ¢y, but Decrypt(cy, sk) = Decrypt(cs, sk). Hence, we need to preclude
(at least) forms of benign malleability, but to do so would contradict the fact that we
require a fully homomorphic encryption scheme.

To get around this problem we introduce the notion of CCA-embeddable homomor-
phic encryption. Informally this is an IND-CCA?2 public key encryption scheme &, for
which given a ciphertext ¢ one can publicly extract an equivalent ciphertext ¢’ for an
IND-CPA homomorphic encryption scheme £’. More formally

Definition 3. An IND-CPA homomorphic (possibly fully homomorphic) public key en-
cryption scheme &' = (KeyGen', Encrypt’, Decrypt’) is said to be CCA-embeddable
if there is an IND-CCA encryption scheme £ = (KeyGen, Encrypt, Decrypt) and an
algorithm Extract such that

— KeyGen produces two secret keys sk, sk”, where sk’ is in the keyspace of £'.
— Decrypt’ (Extract(Encrypt(m, pk), sk’), sk’') = m.
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— The ciphertext validity check for & is computable using only the secret key sk’
— CCAI security of £ is not compromised by leakage of sk’ .

As a simple example, for standard homomorphic encryption, is that ElGamal is CCA-
embeddable into the Cramer—Shoup encryption scheme [10]. We note that this notion of
CCA-embeddable encryption was independently arrived at by [7]] for standard (singu-
larly) homomorphic encryption in the context of providing a defence against the earlier
mentioned attack on Helios. See [7]] for a more complete discussion of the concept.

As a proof of concept for somewhat homomorphic encryption schemes we show
that, in the random oracle model, the somewhat homomorphic encryption schemes
considered in this paper are CCA-embeddable. We do this by utilizing the Naor—Yung
paradigm [22] for constructing IND-CCA encryption schemes, and the zero-knowledge
proofs of knowledge for semi-homomorphic schemes considered in [6]]. Note that our
construction is inefficient; we leave it as an open problem as to whether more specific
constructions can be provided for the specific SHE schemes considered in this paper.

CONSTRUCTION: Given an SHE scheme £’ = (KeyGen', Encrypt’, Decrypt’) we con-
struct the scheme & = (KeyGen, Encrypt, Decrypt) into which £’ embeds as follows,
where NIZKPoK = (Prove, Verify) is a suitable non-malleable non-interactive zero-
knowledge proof of knowledge of equality of two plaintexts:

KeyGen(1*) Encrypt(m, pk; )
— (pk,sk]) « KeyGen'(1%). - ¢} < Encrypt’(m, pky; 7).
— (pkj, skh) + KeyGen'(174). ¢y < Encrypt’(m, pkh; 75).
— pk < (pk], pky), sk < (ski,skb). X+ Prove(cy, ca;m, 1, 1h).

— Return (pk, sk). — ¢+ (c,dy, 2.
— Return c.
Extract(c)
— Parse cas (¢, ch, ). Decrypt(c, sk)
- Return ¢]. — Parse cas (¢}, ch, 2).

If Verify(X, ¢}, c5) = O return L.
— m < Decrypt’(c], sk}).
Return m.

All that remains is to describe how to instantiate the NIZKPoK. We do this using
the Fiat—Shamir heuristic applied to the Sigma-protocol in Figure [5l The protocol is
derived from the same principles as those in [6]], and security (completeness, soundness
and zero-knowledge) can be proved in an almost identical way to that in [[6]. The main
difference being that we need an adjustment to be made to the response part of the
protocol to deal with the message space being defined modulo two. We give the Sigma
protocol in the simplified case of application to the Gentry—Halevi variant, where the
message space is equal to {0, 1}. Generalising the protocol to the Full Space Smart—
Vercauteren variant requires a more complex “adjustment” to the values of ¢; and t5 in
the protocol. Notice that the soundness error in the following protocol is only 1/2, thus
we need to repeat the protocol a number of times to obtain negligible soundness error
which leads to a loss of efficiency.
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Prover Verifier
c1 = Encrypt’(m, pki; )
co = Encrypt’(m, pky; %) c1,c2
Y < {O’ 1}

a1 < Encrypt/(y, pk}; s1)
az < Encrypt’(y, pkh; s3) 4092,

< € e+ {0,1}
Z—yde-m

ti<+s1+e-rite-y-m

to+—sa2+e-r2t+e-y-m z7t17t2, Accept if and only if
Encrypt’(z,pki;t1) = a1 +e-c1

Encrypt’(z, pka;te) = as + e - co.

Fig. 5. ZKPoK of equality of two plaintexts
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