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Abstract 

In the solidification of a dilute binary alloy, a planar solid-liquid interface is 

often found to be unstable, spontaneously assuming a cellular structure. If the 

solute rejection coefficient is close to unity, then, near the stability threshold, 

the characteristic cell size may significantly exceed the diffusional width of the 

solidification zone. This situation enables one to derive an asymptotic nonlinear 

equation which directly describes the dynamics of the onset and stabilization of 

cellular structure: 

f T +V4f+V[(2—f)Vf]+cxf = 0, 

3Supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, 
Engineering, Mathematical, and Geosciences Division of the U.S. Department of Energy under con-
tract DE-AC03-76SF00098. 

40n leave from the Department of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Is- 
rael. 



1. Introduction 

Problems of linear stability in the physics of continuous media frequently 

lead to dispersion relations expressible as equations of the type 

	

C.) = (R—R)k 2 —k 4  k =Jkj 	 (1) 

near the stability threshold (Re ); here w and k are the growth rate and wave vec-

tor of a small harmonic perturbation: 

exp(wt +ik'.) 
	

(2) 

is a certain characteristic function, whose precise meaning depends on the 

problem context. Comparing (1) and (2), we obtain the following equation for 

the linear evolution of : 

	

+ (R—R~ 
)V2(b + V4(b = 0. 	 (3) 

At R > R Eq. (3) implies exponentiaL amplification of long-wave perturbations. 

In real situations, this unrestricted amplification of the perturbation is usually 

suppressed by nonlinear effects, which may correspond to certain nonlinear 

terms not appearing in Eq. (3): 

)V2 iD 	terms = 0. 	 (4) 

The spatial dimensionality of the characteristic function is often less than that 

of the initial problem. Hence, the construction of theclosed nonlinear equation 

(4) is an essential simplification of the problem. Indeed, a dimensionality-

lowering procedure of this kind frequently proves technically possible because, 

by (1), near the stability threshold we have 

(5) 

i.e., we are dealing with a process which varies slowly both in time and in space. 



The approach just described has recently found successful application in 

deriving equations for the nonlinear evolution of phase in certain biochemical 

oscillations [1,2], for propagating flame fronts [3], for the free surface of a liquid 

film [4], and for the plane form in Bénard-Marangoni convection [5,6]. Some of 

these equations were even rich enough to describe chaotic behavior in the 

relevant physical systems. 

The asymptotic technique 5  developed in the above-cited papers has also 

proved effective in deriving an equation for the nonlinear evaluation of solid-

liquid interfaces in crystal growth problems. 

It is known (see, e.g., Langer [8]) that, under certain conditions, when a 

dilute binary alloy is solidifying, a planar solid-liquid interface is found to be 

unstable, spontaneously assuming a cellular structure. The characteristic cell 

size may significantly exceed the diffusional width of the solidification zone. It 

will be shown below that this effect becomes more prominent, near the stability 

threshold, as the so-called solute rejection coefficient 1—K comes closer to 

unity. Thus, structure of the interface may be not only quasi-stationary but 

even quasi-planar. Thanks to this, one can lower the dimensionality of the 

relevant mathematical problem and obtain an explicit nonlinear equation which 

directly describes the dynamics of the onset and crystallization of the cellular 

structure. 

toi  

' N) 

5The techniques employed resemble those of Newell and Whitehead [7], who studied pockets of 
closely related modes in Rayleigh-Benard convection and obtained envelope equations for slow modu-
lation. The difference is that, whereas Newell and Whitehead perturb about a finite wave number, in 
our case one has to perturb about zero (see (5)). 
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2. Mathematical Model 

We start with a mathematical model originated by Mullins and Sekerka [9] 

to describe an experimental situation in which solidification is controlled so that 

the mean position of the interface (z = 0) moves at a constant speed V (Fig. 1). 

Following Wollkind and Segel [10], we assume that the thermal diusivity DT of 

the system is significantly greater than the diffusivity D of the solute. Then, if 

the latent heat is not too large, the heat generated on the interface may be 

neglected. Moreover, following Langer [8], we assume that the thermal 

thifusivities of the liquid and solid phases are equal. Under these simplifying 

assumptions, disturbances of the interface does not induce disturbance of the 

temperature field, which may be assumed fixed and equal to 

T = T 0  + Gz 
	

(6) 

Here z is the coordinate of the mean position of the interface (Fig. 1), T0 the 

temperature corresponding to the undisturbed planar interface and G the 

imposed temperature gradient. 

The diffusion of the solute in the liquid phase is described by an equation 

Ct=VC+DV.12C z(x,t) 	 (7) 

where C is the concentration of the solute, z = cD the equation of the liquid-solid 

interface. 

The temperature at the interface depends both on the curvature of the 

interface ii and on the solute concentration C; on the assumption that C is 

small: 

T = Tm (0)+(dTm (0)/dC)C Tm (0)F 	(z = I). 	 (8) 

Here Tm  = Tm  (C) is the equilibrium melting temperature of the planar interface. 

C = 0 corresponds to the pure solvent. F is the capillarity constant, 



5 

zz 
(1+)3/2 	

(9) 

It follows from (6) and (8) that 

T0 Tm (0)+(dTm (0)/dC)Co 	 (10) 

where CO is the solute concentration at the planar interface. 

Eliminating the temperature from (6) and (8), we obtain the following direct 

relationship between the solute concentration at the interface and its geometry: 

Tm (0)Fv+ G 
C=C0+ dTm(0)/dC 	

(11) 

Conservation of the solute at the interface yields the equation 

V(K-1)C = D - 	 (12) 

where 

is the unit vector normal to the interface and 

v 

is the normal speed at which the interface is moving. K is the distribution 

coefficient, defined as the ratio of the equilibrium concentration of solute on the 

solid side of the interface to that on the liquid side (K< 1). 

Thus, 

C-KC0 	as 	z -'. 	 (13) 

Eq. (7), together with conditions (11)-(13), fully define the mathematical prob-

lem for the unknown functions C and . 



The basic solution, corresponding to the undisturbed planar interface 

(0), is 

C(b)=KC0 +(1_K)Coexp(_Vz /D) z ~t0. 	 (14) 

S., 

3. linear Stability Analysis 

We ñrst transform to nondiniensional variables and parameters: 

Vz/D= , Vx/D=. , V2t/D=T, 

	

Dv/V= , C/C0 = C Vc/D=, 	 (15) 

GD 	
- w(K-1) 	

FVTm(0) 
vco(dTm (0)/dc) - 	 ' DC0(dTm (0)/dC) 

 

In terms of these variables, problem (11)-(13) becomes 

= 1+(K-1)'+W(K-1) 	 , 	 =; (16) 

as 

(b) = K+(1—K)exp(—z) . 	 (17) 

Linear analysis of the stability of the basic solution (17) yields the following 

dispersion relation (Wolikind and Segel [10]): 

w= (1_W_k 2)(V1/4+k2+, +K_112) —K 	
(18) 

("exp(J+ik)) 

Fig. 2 exhibits the position of the neutral stability curves for various values of K. 

At small W.  - W (W = 1), in the instability region: 	
tj 

kJW—W,K-'(W—W) 2 . (19) 

Thus, the disturbed structure of the interface turns out here to be both quasi-

stationary and quasi-one-dimensional. For such values of the parameters, the 
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dispersion relation (18) simplifies to 

.(w—W)k 2 —k 4 —K 	(w=1). 	 (20) 

This expression highlights the role of each of the parameters (Fig. 3). At W < W 

instability sets in only at sufficiently small values of the distribution coefficient 

K. 

4. Nonlinear Asymptotic Analysis 

For the sequel, it is convenient to transform to a curvilinear coordinate sys-

tem attached to the disturbed interface: 

 

Problem (16) then becomes 

= (1 +)+ 	'--(1 

 

(0) = 1+5(l—K);'--(1—K)W , 	(oo)K. 

We put 

W = W(i—) 	(K1) . 	 (23) 

Our previous estimates (19) now suggest the following definitions of scaled vari-

ables and parameters: 

= 	, 	= 	, 	= 	, K = 	 (24) 

In terms of these variables, we shall look for a solution of problem (22) in the 

form 

C = , 2+ (1—ic6 2)exp(—c) + 

U = U0+FU1+t2U2+ 
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= F(yr,) = e (F° +F'+ 2 + 	) . 	( 25) 

The problem in the zeroth approximation is 

u?+u&=O, 
(26) 

u °(0)+u° (0) = 0 u°(0)+ WC F°  = 0 , u 0 (oo) = 0. 

Hence. 

U0  = — WF°exp(—t) 	 (27) 

As this stage the zeroth approximation is defined only up to an as yet unknown 

factor W F° . To determine this factor, we proceed to the next (first) approxima-

tion. 

u +u<. = —u& — Fexp(—c) 
 

u'(0)+u(0)O u'(0)+WF'F&+WF° , u'(oô)O. 

The solution is 

 

From boundary condition at 

(1 — W)F&0 or Wl. 	 (30) 

Thus, although we have obtained a numerical value for W, the function.F° is still 

undefined. We therefore go on to the second approximation: 

= 

— (FE°  )2exp(—) +2F°4 +F&u. 	
(31) 

u2(0) 3-u.(0) = #cu°(0)--F. +(FE° ) 2 +FE°ue° (0) 

u2 (0) + WCF2 =flFC1,+  WC F' +icWF°  u2 (oo) = 0. 	
(32) 

i 

The solution is 



u 2  = [—F2 +F'+flF +21cF° +F& +PF&EE  — (FP)2—F°F& ]exp(—c) + 

+ [flFE°EEE 	 (33) 

F 	 #Ftl 
 

Condition at 	yields the desired equation for F°: 

F. +PF9EEE + [(1—F°)F?]E+icF° = 0. 	 (34) 

Via the transformation 

F4 =(1/2)f , r=4 	, 	 c=(1/4)a 	(35) 

Eq. (34) can be brought to the following one-parameter form, which is more con-

venient for analysis: 

f-f +fTt-CE +[(2—f)f i]Z +af = 0. 	 (36) 

Considerations of symmetry and invariance show that, in the three-dimensional 

case, the equation for f = f 	must have the form 

f.,.+V4f+V[(2—f)Vf]+af=0. 	 (37) 

5. Some Basic Properties of Equation (36) 

The structure of Eq. (36) immediately yields certain qualitative conclusions 

about the evolution of the disturbances. First, it is clear that, since a >0, the 

mean positionof the interface always returns to its undisturbed state. Thus, it 

suffices to consider the case in which, through the entire time interval, 

= 0. 	 (36) 

The initial amplification of small disturbances is due to the positive sign of 2—f. 

On sections of the interface where f is positive, the instability will become 

weaker as the amplitude increases. Wherever f is negative, however, the insta- 

I 

bility will become stronger. This is apparently the explanation for the 
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characteristic profile of the experimentally observed solidification front: the 

sections of the front convex toward higher temperatures have considerably 

lower curvature than those convex toward lower temperatures (Fig, 1). 

It is interesting that Eq. (36) is a limiting case of the equation 

f+f+[(2—'yf +ff)f]+af 0 (39) 

which describes the evolution of a plane form of the Rayleigh-Bénard convection 

in nearly insulated liquid layer [11]. Parameter 7  is proportional to d/2/dT, 

where =(T) is the temperature dependent viscosity of the liquid. Eq. (39) 

reduces to Eq. (36) for 7>> 1. 

Fig. 4 shows the results of numerical solution of the initial-value problem 

for Eq. (39) with a = 1.01 and y= 5 [11]. The equation was solved in the interval 

0-<'!!~ llir with periodic boundary conditions. The initial condition assumed was 

the antisymmetric perturbation f(0E) = (-15)exp[—(-15) 2/ 10]. With the pas-

sage of time, a steady cellular structure developed, quite similar to that shown 

in Fig. 1. It would be of interest to do some numerical experiments with the 

two-dimensional equation (37) and to see whether it generates hexagonal struc-

tures of the solidification front. 
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Figure Captions 

Fig. 1. 	Diagram illustrating directional-solidification experiment. 	 19 

Fig. 2. 	Neutral stability curves for different K values. (ôW(kK)/äKzO). 

Fig. 3. 	Rate of stability parameter w vs. disturbance wavenumber k. 

(W< we ). 

Fig. 4. 	Stationary cellular structures generated by Eq. (39). 
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