ON CENTRALITY FUNCTIONS OF A GRAPH

G. Kishi

Graduate School of Coordinated Science
Tokyo Institute of Technology
Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan

Abstract: For a connected nondirected graph, a centrality function is a real valued function of the vertices defined as a linear combination of the numbers of the vertices classified according to the distance from a given vertex. Some fundamental properties of the centrality functions and the set of central vertices are summarized. Inserting an edge between a center and a vertex, the stability of the set of central vertices are investigated.

For a weakly connected directed graph, we can prove similar theorems with respect to a generalized centrality function based on a new definition of the modified distance from a vertex to another vertex.

1. Introduction

In many practical applications, it is often necessary to find the best location of facilities in networks or graphs. In this context, a real number $f(G, v)$ is associated with every vertex v of the graph G for the criterion of deciding what vertex is best. The criterion of optimality may be taken to be the minimization of the function $f(G, v)$ with respect to v.

One of the most important problems is to determine what kind of functions is suitable for the measure of centrality of vertices in a graph. It is well-known that the transmission number is an example of such functions. In this survey, the centrality function, a generalized form of the transmission number, is defined as a linear combination with real coefficients of the numbers of vertices classified according to the distance from a given vertex in a connected nondirected graph.

As a fundamental theorem, a necessary and sufficient condition for the function to satisfy the centrality axioms is stated in terms
of the coefficients.
Inserting an edge between a center and a vertex, the sets of central vertices settled before and after the edge inserting are generally different. Some stability theorens of the sets of central vertices are presented for a connected nondirected graph.

However the situation often arises where a nondirected graph will not be able to meet various requirements and what is then needed is to introduce a centrality function for a directed graph. For a weakly connected directed graph, a modified distance from a vertex to another vertex is defined as a two-dimensional vector of integer components showing the numbers of forward and backward edges contained in the shortest path with respect to a newly defined order relation. It is shown that the major results for a nondirected graph can be extended similarly to a directed graph with respect to a generalized centrality function based on the modified distance.

2. Transmission Number

Let G be a connected nondirected graph with the set of vertices V. A distance $d(u, v)$ between a pair of vertices u and v in G is defined as the minimum number of edges in a path connecting u and v. We now define $c_{0}(G, v)$ for every vertex v in G as follows :

$$
\begin{equation*}
c_{0}(G, v)=\sum_{w \in V} d(v, w) \tag{1}
\end{equation*}
$$

The number $c_{0}(G, v)$ is often refered to as the transmission number[1]. A central vertex v_{0} for which

$$
\begin{equation*}
c_{0}\left(G, v_{0}\right)=\operatorname{Min}_{V \varepsilon V} c_{0}(G, v) \tag{2}
\end{equation*}
$$

is called a median[1] of the graph G.

3. Centrality Function

Let $c(G, v)$ be a real valued function of vertices of G. Then the function is said to be a centrality function if $c(G, v)$ satisfies the following centrality axioms[2].

Centrality Axioms : If there exist no edges between a pair of vertices p and q in a connected nondirected graph G, the insertion of an edge between p and q yields the graph $G_{p q}$ and the difference

$$
\begin{equation*}
\Delta_{p q}(v)=c(G, v)-c\left(G_{p q}, v\right) \tag{3}
\end{equation*}
$$

for any vertex v in G.
Now the function $c(G, v)$ is called a centrality function if and only if
(i) $\quad \Delta_{\mathrm{pq}}(\mathrm{p})>0$
(ii) $\Delta_{p q}(p) \geq \Delta_{p q}(v)$ for any v satisfying

$$
\begin{equation*}
d(v, p) \leqq d(v, q) \tag{5}
\end{equation*}
$$

for any pair of vertices p and q which are not adjacent.
As a generalized form of the transmission number, we deal with a real valued function $c(G, v)$ as follows :

$$
\begin{equation*}
c(G, v)=\sum_{k=1}^{\infty} a_{k} n_{k}(v) \tag{6}
\end{equation*}
$$

where $n_{k}(v)$ stands for the number of vertices whose distances from v are k, and a_{k} 's are real constants.

For the function defined by (6), the following theorem can be proved[3].

Theorem 1 : The function $c(G, v)$ defined by (6) is a centrality function for any graph G if and only if a_{k} 's satisfy
(i) $a_{1}<a_{2} \leq a_{3} \leq a_{4} \leq \cdots$
(ii) $2 a_{k} \geq a_{k-1}+a_{k+1}, \quad(k \geq 2)$

As an illustrative example, suppose

$$
a_{k}=k, \quad(k=1,2,3, \ldots)
$$

It is easily shown that

$$
\begin{equation*}
\sum_{k=1}^{\infty} k n_{k}(v)=\sum_{w \in V} d(v, w)=c_{0}(G, v) \tag{10}
\end{equation*}
$$

and a_{k} 's given by (9) satisfy (7) and (8). Thus we can conclude that the transmission number is a centrality function.

Let $c(G, v)$ defined by (6) be a centrality function for any connected nondirected graph G. A vertex v_{0} for which

$$
\begin{equation*}
c\left(G, v_{0}\right)=\operatorname{Min}_{v \in V} c(G, v) \tag{11}
\end{equation*}
$$

is called a center of G with respect to $c(G, v)$ or shortly a c-center. Let $S_{c}(G)$ be the set of all the c-centers of G.

4. Stability Theorems

If a c-center p and a vertex q in G are not adjacent, the insertion of an edge between p and q yields the graph $G_{p q}$ with its set of
all the c-centers $S_{c}\left(G_{p q}\right)$. Then two cases can occur, either

$$
\begin{equation*}
\text { Case A: } S_{c}\left(G_{p q}\right) \subseteq S_{c}(G) \cup\{q\} \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
\text { Case } B: S_{c}\left(G_{p q}\right) \nsubseteq S_{c}(G) \cup\{q\} \tag{13}
\end{equation*}
$$

for any vertex p in $S_{c}(G)$ and q in V. A graph for which case B occurs is said to be unstable with respect to $c(G, v)$.

Case A can be classified into two cases,

$$
\begin{equation*}
\text { Case A-1 : } \quad S_{c}\left(G_{p q}\right) \subseteq S_{c}(G) \text { and } p \varepsilon S_{c}\left(G_{p q}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Case A-2 : } S_{c}\left(G_{p q}\right) \nsubseteq S_{c}(G) \text { or } p \notin S_{c}\left(G_{p q}\right) \tag{15}
\end{equation*}
$$

for any vertex p in $S_{c}(G)$ and q in V.
A graph G is said to be stable if case A-l occurs. A quasistable graph is a graph for which case A-2 occurs.

We can then prove the following theorem[4].
Theorem 2 : For any centrality function $c(G, v)$ satisfying $a_{2}<a_{3}$, there exist a quasi-stable graph.

A quasi-stable graph with respect to the transmission number is shown in Fig. 1[4].

(a) G

(b) $G_{p q}$

Fig. I. Quasi-stable graph.

Theorem 3 : For any centrality function $c(G, v)$ satisfying $a_{2}=a_{3}$, all the connected nondirected graphs are stable.

Theorem 4 : Any connected nondirected graph is stable if and only if the centrality function $c(G, v)$ given by (6) satisfies $a_{2}=a_{3}$.

Theorem 5: For any centrality function $c(G, v)$ satisfying $a_{3}<a_{4}$, there exists an unstable graph.
(End)
An unstable graph with respect to the transmission number is shown in Fig. 2[3].

(a) G

(b) $G_{p q}$

Fig. 2. Unstable graph.

Theorem 6: For any centrality function satisfying $a_{3}=a_{4}$ all the connected nondirected graphs are quasi-stable or stable. (End)
Theorem 7 : Any connected nondirected graph is not unstable if and only if the centrality function given by (6) satisfies $a_{3}=a_{4}$.

5. Stable Graphs

The theorems in the preceding section show that a centrality function with which all the graphs are stable or quasi-stable is rather trivial one. Characterizing stable or quasi-stable graphs with respect to a given centrality function is an important problem to be solved. The following theorem[2] is basic with respect to the centrality function specified as the transmission number.

Theorem 8 : If a graph G forms a tree, then G is stable with respect to the transmission number.
(End)
Let $H_{k}(k=0,1,2, \ldots)$ be the collection of all the connected graphs of nullity k. Then Theorem 8 shows that any graph of H_{0} is stable. Since H_{2} contains an unstable graph shown in Fig. 2, we may ask if there exists an unstable or a quasi-stable graphs in H_{1}. Counting the number m of edges in the only loop contained in any graph of H_{1}, we can define a subset $H_{1}(m)$ as the collection of graphs contain-
ing the single loop of length m.
Recent results with respect to the transmission number include the following two theorems[5].

Theorem 9: For any $m \leq 4$, all the graphs of $H_{1}(m)$ are stable. For any $m \geq 5, H_{1}(m)$ contains a quasi-stable graph.

Theorem 10: For $m=7, H_{1}(\mathrm{~m})$ contains an unstable graph. For $\mathrm{m} \leqq 6, \mathrm{H}_{1}$ (m) contains no unstable graphs.

The graph shown in Fig. 3 is an example of unstable graph of $m=7$.

(a) G

(b) $G_{p q}$

Fig. 3. Unstable graph.

6. Centrality Functions for A Directed Graph

The definitions and the theorems discussed so far can be extended for a directed graph[6]. Let us begin with some preliminary definitions.

Let R^{2} be the two dimensional real space defined by

$$
\begin{equation*}
R^{2}=\{(x, y) \mid x, y \in R\} \tag{16}
\end{equation*}
$$

where R is the set of real numbers. For the simplicity, a vector $(x, y) \varepsilon R^{2}$ is expressed by $x+y \omega \varepsilon R^{2}$, where ω is the symbol specifying the second component.

A natural order and the vector addition can be defined in R^{2} as follows.
(i) $\quad x+y \omega>0$ if and only if $y>0$

$$
\begin{equation*}
\text { or } y=0 \text { and } x>0 \tag{17}
\end{equation*}
$$

(ii) $(x+y \omega)+\left(x^{\prime}+y^{\prime} \omega\right)=\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right) \omega$ where $0=0+0 \omega$
Let N^{2} be the subset of R^{2} similarly defined with the set of nonnegative integer N. It is obvious that R^{2} is an ordered abelian group, while N^{2} is an ordered semigroup contained in R^{2}.

Let a directed graph G be weakly connected. A path P between two vertices u and v may be oriented as from u to v. We can then define a vector (a_{p}, b_{p}) of integer component associated with the path P where
a_{p} and b_{p} are the number of coincide and opposite edges in the path P, respectively. Since (a_{p}, b_{p}) can be interpreted as an element $a_{p}+b_{p} \omega$ in N^{2}, we can define a generalized length of the path P such that

$$
\begin{equation*}
L_{u v}(P)=a_{p}+b_{p} \omega \tag{19}
\end{equation*}
$$

The modified distance from vertex u to vertex v in a weakly connected graph is given by

$$
\begin{equation*}
D(u, v)=\operatorname{Min}_{p} L_{u v}(p) \tag{20}
\end{equation*}
$$

where P is an arbitrary path connecting u and v.
Naturally $D(u, v)$ does not fulfil the reflective law, but still satisfies

$$
\begin{equation*}
D(u, v) \leq D(u, w)+D(w, v) \tag{21}
\end{equation*}
$$

Similar to the centrality axioms for a nondirected graph, a centrality function $C(G, v)$ whose values are in R^{2} can be defined in terms of the modified distance.

Centrality Axioms : If there exist no edges between a pair of vertices p and q in a weakly connected directed graph G, the insertion of edges from p to q and from q to p yields two graphs $G^{\prime} p q$ and $G^{\prime \prime}{ }_{p q}$, respectively. Let us define

$$
\left.\begin{array}{l}
\Delta_{p q}^{\prime}(v)=C(G, v)-C\left(G_{p q}^{\prime}, v\right) \tag{22}\\
\Delta_{p q}^{\prime \prime}(v)=C(G, v)-C\left(G_{p q}^{\prime \prime}, v\right)
\end{array}\right\}
$$

for any vertex v in G.
Now the function $C(G, v)$ is called a centrality function if and only if

$$
\begin{align*}
& \text { (i) } \Delta_{p q}^{\prime}(p)>0, \quad \Delta_{p q}^{\prime \prime}(p) \geqq 0 \tag{23}\\
& \text { (ii) } \Delta_{p q}^{\prime}(p) \geqq \Delta_{p q}^{\prime}(v) \text { and } \Delta_{p q}^{\prime \prime}(p) \geqq \Delta_{p q}^{\prime \prime}(v) \\
& \\
& \text { for any } v \text { satisfying } \tag{24}\\
& D(v, p) \leqq D(v, p)
\end{align*}
$$

for any pair of vertices p and q which are not adjacent.
We will deal with the function defined by

$$
\begin{equation*}
C(G, v)=\sum_{1<\mu \varepsilon \mathbb{N}^{2}} \alpha_{\mu} n_{\mu}(v) \tag{25}
\end{equation*}
$$

where $\alpha_{\mu}\left(\varepsilon R^{2}\right)$ does not depend on G and $n_{\mu}(v)$ denotes the number of vertices whose modified distance from v are $\mu\left(\varepsilon N^{2}\right)$.

Corresponding to Theorem 1 , we now obtain the following theorem.
Theorem 11 : The function defined by (25) is a centrality function if α_{μ} 's satisfy

$$
\begin{align*}
& \text { (i) } \alpha_{1}<\alpha_{2}, \quad \alpha_{\mu_{1}} \leq \alpha_{\mu_{2}} \tag{26}\\
& \text { (ii) } \alpha_{\mu_{2}}-\alpha_{\mu_{1}} \geq \alpha_{\mu_{2}+\delta}-\alpha_{\mu_{1}+\delta} \tag{27}
\end{align*}
$$

where $1 \leqq \mu_{1}<\mu_{2}$ and $1 \leqq \delta$.
For a directed graph, we can also prove some stability theorems corresponding to those for a nondirected graph.

7. Conclusion

It has been supposed to be true that any connected nondirected graph is stable with respect to the transmission number [2]. The theorems given here show that the conjecture is false.

Theorem 4 and 6 show that centrality functions with which all the nondirected graphs are stable or quasi-stable are rather trivial. Characterizing stable or quasi-stable graphs with respect to a given centrality function is an interesting problem.

The definitions and theorems of centrality functions for a nondirected graph can be extended for a directed graph, employing the concept of modified distance which seems to be useful in the theory of directed graphs.

References

[1] Christofides, N. : "Graph theory, an algorithmic approach", Academic Press, London, 1975
[2] Sabidussi, G. : "The centrality index of a graph", Theory of graphs, International Symposium, Rome, pp. 369-372, 1966
[3] Kajitani, Y. and Maruyama, T. : 'Functional extention of centrality in a graph", Trans. IECE Japan, vol. 59, pp. 531-538, July 1976 (in Japanese)
[4] Kishi, G. and Takeuchi, M. : "On centrality functions of a nondirected graph", Proc. of the 6th Colloq. on Microwave Comm., Budapest, Aug. 1978
[5] Kajitani, Y. : "Centrality of vertices in a graph", Proc. 1979 International Colloq. on Circuits \& Systems, Taipei, July 1979
[6] Kishi, G. and Takeuchi, M. : "Centrality functions of directed graphs", Tech. Rep. CST 77-106, Technical Group on Circuit and System Theory, IECE Japan, Dec. 1977 (in Japanese)

