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Abstract

Let S be 2-torsion free semiprime inverse semiring satisfying A2 condition
of Bandlet and Petrich [1]. We investigate, when an additive mapping T on
S becomes centralizer.
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1. Introduction and preliminaries

Throughout this paper, S we will represent inverse semiring which satisfies A2

condition of Bandlet and Petrich [1]. S is prime if aSb = (0) implies either
a = 0 or b = 0 and S is semiprime if aSa = (0) implies a = 0. S is n-torsion
free if nx = 0, x ∈ S implies x = 0. Following Zalar [12], we canonically
define left(right) centralizer of S as an additive mapping T : S → S such that
T (xy) = T (x)y (xT (y)), ∀x, y ∈ S and T is called centralizer if it is both right
and left centralizer.

Bresar and Zalar [2] have proved that an additive mapping T on 2-torsion free
prime ring R which satisfies weaker condition T (x2) = T (x)x is a left centralizer.
Later, Zalar [12] generalized this result for semiprime rings. Motivated by the
work of Zalar [12], Vukman [10] proved that an additive mapping on 2-torsion
free semiprime ring satisfying T (xyz) = xT (y)x is a centralizer. In this paper,
our objective is to explore the result of Vukman [10] in the setting of inverse
semirings as follows: Let S be 2-torsion free semiprime inverse semiring and let

http://dx.doi.org/10.7151/dmgaa.1252


72 S. Sara, M. Aslam and M.A. Javed

T : S → S be additive mapping such that T (xyx) + xT (y)x́ = 0 holds ∀x, y ∈ S
then T is a centralizer.

To prove this result we will first generalize Proposition 1.4 of [12] in the frame-
work of inverse semirings.

By semiring we mean a nonempty set S with two binary operations ’+’ and ’.’
such that (S,+) and (S, .) are semigroups where +is commutative with absorbing
zero 0, i.e., a+ 0 = 0 +a = a, a.0 = 0.a = a ∀a ∈ S and a.(b+ c) = a.b+a.c, (b+
c)a = b.a+ c.a holds ∀ a, b, c ∈ S. Introduced by Karvellas [6], a semiring S is an
inverse semiring if for every a ∈ S there exist a unique element á ∈ S such that
a + á + a = a and á + a + á = á, where á is called pseudo inverse of a. Karvellas
[6] proved that for all a, b ∈ S, (a.b)́ = á.b = a.b́ and áb́ = ab.

In this paper, inverse semirings satisfying the condition that for all a ∈ S,
a + á is in center Z(S) of S are considered (see [4] for more details). Commu-
tative inverse semirings and distributive lattices are natural examples of inverse
semirings satisfying A2. In a distributive lattice pseudo inverse of every element
is itself. Also if R is commutative ring and I(R) is semiring of all two sided ideals
of R with respect to ordinary addition and product of ideals and T is subsemir-
ing of I(R) then set S1 = {(a, I) : a ∈ R, I ∈ T}. Define on S1 addition ⊕ and
multiplication � by (a, I)⊕ (b, J) = (a + b, I + J) and (a, I)� (b, J) = (ab, IJ).

It is easy to see S1 is an inverse semiring with A2 condition where (a, I )́ = (á, I).
By [4], commutator [.,.] in inverse semirings defines as [x, y] = xy+ýx. We will

make use of commutator identities [x, y+z] = [x, y]+[x, z], [xy, z] = [x, z]y+x[y, z]
and [x, yz] = [x, y]z + y[x, z] (see [4] for their proofs).

The following Lemmas are useful in establishing main result.

Lemma 1.1. For a, b ∈ S, a + b = 0 implies a = b́.

Proof. Let a + b = 0 which implies a + b + á + b́ = 0 or a + b + á + b́ + a = a or
a + b + b́ = a and by hypothesis, we get a = b́.

However, converse of Lemma 1.1. is not true for instance, in distributive
lattice D, for a ∈ D we have a = á but a + a = a.

Lemma 1.2. If x, y, z ∈ S then following identities are valid:

(1) [xy, x] = x[y, x], [x, yx] = [x, y]x, [x, xy] = x[x, y], [yx, x] = [y, x]x

(2) y[x, z] = [x, yz] + [x, y]ź, [x, y]z = ý[x, z] + [x, yz]

(3) x[y, z] = [xy, z] + [x, z]ý, [x, z]y = [xy, z] + x́[y, z].

Proof. (1) [xy, x] = xyx + x́xy = x(yx + x́y) = x[y, x].
(2) y[x, z] = (y+ ý+y)(xz+ źx) = (y+ ý)xz+(y+ ý)źx+yxz+yźx = x(y+ ý)z+
(y + ý)źx + yxz + yźx = xyz + xýz + yźx + yxz = xyz + yźx + xýz + yxz =
[x, yz] + [x, y]ź.

Proof of the other identities can be obtained using similar techniques.
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In the following, we extend Lemma 1.1 of Zalar [12] in a canonical fashion.

Lemma 1.3. Let S be a semiprime inverse semiring such that for a, b ∈ S, axb =
0, ∀x ∈ S then ab = ba = 0.

Definition 1.4. A mapping f : S × S → S is biadditive if f(x1 + x2, y) =
f(x1, y)+f(x2, y) and f(x, y1 +y2) = f(x, y1)+f(x, y2), ∀x, y, x1, x2, y1, y2 ∈ S.

Example. Define mappings f, g : S1 × S1 → S1 by f((a, I), (b, J)) = (ab, IJ)
and g((a, I), (b, J)) = ([a, b], IJ). Then f and g are biadditive.

Also, if (D,∧,∨) is a distributive lattice then h : D × D → D defined by
h(a, b) = a,∀a, b ∈ D is a biadditive mapping.

Lemma 1.5. Let S be semiprime inverse semiring and f, g : S×S → S are biad-
ditive mappings such that f(x, y)wg(x, y) = 0, ∀ x, y, w ∈ S, then f(x, y)wg(s, t) =
0, ∀ x, y, s, t, w ∈ S.

Proof. Replace x with x + s in f(x, y)wg(x, y) = 0, we get f(s, y)wg(x, y) +
f(x, y)wg(s, y) = 0. By Lemma 1.1, we have f(x, y)wg(s, y) = f(s, y)ẃg(x, y).
This implies
(f(x, y)wg(s, y))z(f(x, y)wg(s, y)) = (f(s, y)ẃg(x, y))z(f(x, y)wg(s, y)) = 0
and semiprimeness of S implies that f(x, y)wg(s, y) = 0. Now replacing y with
y + t in last equation and using similar approach we get the required result.

Lemma 1.6. Let S be a semiprime inverse semiring and a ∈ S some fixed
element. If a[x, y] = 0 for all x, y ∈ S, then there exists an ideal I of S such that
a ∈ I ⊂ Z(S) holds.

Proof. By Lemma 1.2, we have [z, a]x[z, a] = zax[z, a] + ázx[z, a] = za([z, xa] +
[z, x]á) + á([z, zxa] + [z, zx]á) = za[z, xa] + za[z, x]á + á[z, zxa] + a[z, zx]a = 0.

Using semiprimeness of S and then Lemma 1.1, we get a ∈ Z(S). By Lemma
1.2, we have zaw[x, y] = za([x,wy] + [x,w]ý) = 0,∀x, y, z, w ∈ S. By similar
argument, we can show that zaw ∈ Z(S) and hence SaS ⊂ Z(S). Now it is easy
to see that ideal generated by a is central.

Lemma 1.7. Let S be semiprime inverse semiring and a, b, c ∈ S such that

(1) axb + bxc = 0

holds for all x ∈ S then (a + c)xb = 0 for all x ∈ S.

Proof. Replace x with xby in (1), we get

(2) axbyb + bxbyc = 0, x, y ∈ S.
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Post multiplying (1) by yb gives

(3) axbyb + bxcyb = 0, x, y ∈ S.

Applying Lemma 1.1 on (2) and using it in (3), we have

(4) bx(b́yc + cyb) = 0, x, y ∈ S.

Replace x with ycx in (4), we get

(5) bycx(b́yc + cyb) = 0, x, y ∈ S.

Pre multiplying (4) by cy gives

(6) cybx(b́yc + cyb) = 0 , x, y ∈ S.

Adding pseudo inverse of (5) and (6) we get

(b́yc + cyb)x(b́yc + cyb) = 0, x, y ∈ S.

Using semiprimeness of S and Lemma 1.1, we get byc = cyb, y ∈ S. By using last
relation in (1) we get the required result.

2. Main results

Theorem 2.1. Let S be a 2-torsion free semiprime inverse semiring and T :
S → S be an additive mapping which satisfies T (x2) + T (x)x́ = 0, ∀x ∈ S. Then
T is a left centralizer.

Proof. Take,

(7) T (x2) + T (x)x́ = 0, x ∈ S.

Linearization of (7) gives

(8) T (xy + yx) + T (x)ý + T (y)x́ = 0, x, y ∈ S.

Replace y with xy + yx in (8), we get

(9) T (x2y + yx2) + 2T (xyx) + T (xy)x́ + T (yx)x́ + T (x)yx́ + T (x)xý = 0.

Using Lemma 1.1 in (8) and using it in (9), we have

(10) T (x2y + yx2) + 2T (xyx) + T (x)yx́ + T (y)x́2 + T (x)yx́ + T (x)xý = 0.
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Using Lemma 1.1 in (7) and using it in (10) we get

(11) T (x2y + yx2) + 2T (xyx) + T (x)yx́ + T (y)x́2 + T (x)yx́ + T (x2)ý = 0.

Replace x with x2 in (8) we get

(12) T (x2y + yx2) + T (x2)ý + T (y)x́2 = 0.

Using (12) in (11), we get

2T (xyx) + 2T (x)yx́ = 0.

As S is 2-torsion free, so we have

(13) T (xyx) + T (x)yx́ = 0.

Linearization (by x = x + z) of (13) gives

(14) T (xyz + zyx) + T (x)yź + T (z)yx́ = 0.

Replace x with xy, z with yx and y with z in (14), we get

(15) T (xyzyx + yxzxy) + T (xy)zyx́ + T (yx)zxý = 0.

Replace y with yzy in (13), we get

(16) T (xyzyx) + T (x)yzyx́ = 0.

Replace x with y and y with xzx in (13), we get

(17) T (yxzxy) + T (y)xzxý = 0.

By adding (16) and (17), we get

(18) T (xyzyx + yxzxy) + T (x)yzyx́ + T (y)xzxý = 0.

Using Lemma 1.1 in (15) and using the result in (18), we get

(19) T (xy)zyx + T (yx)zxy + T (x)yzyx́ + T (y)xzxý = 0.

Now if we define biadditive function f : S × S → S by f(x, y) = T (xy) + T (x)ý,
then (19) can be written as

(20) f(x, y)zyx + f(y, x)zxy = 0.

From (8) and Lemma 1.1, we have

(f(x, y))́ = f(y, x).
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Thus (20) can be rewritten as

f(x, y)zyx + f(x, y)zxý = 0, or

f(x, y)z[x, y] = 0, x, y, z ∈ S.

Using Lemma 1.5 and then Lemma 1.3, we have f(x, y)[s, t] = 0, x, y, s, t ∈ S.
Now fix x, y then by Lemma 1.6, there exist ideal I ⊂ Z(S) such that f =
f(x, y) ∈ I ⊂ Z(S). This implies that bf, fb ∈ Z(S),∀b ∈ S, thus we have

(21) xfy = xyf = fxy = yfx and

(22) xf2y = f2xy = yf2x = f2yx.

Replace y with f2y in (8), we get

2T (xf2y + f2yx) + 2T (x)f2ý + 2T (f2y)x́ = 0.

Using (22), we get

(23) 2T (yf2x + f2xy) + 2T (x)f2ý + 2T (f2y)x́ = 0.

By Lemma 1.1, (8), (7) and (23), we have

2T (y)f2x + 2T (f2x)y + 2T (x)f2ý + 2T (f2y)x́ = 0, or

2T (y)f2x + T (f2x + f2x)y + 2T (x)f2ý + T (f2y + f2y)x́ = 0, or

2T (y)f2x + T (f2x + xf2)y + 2T (x)f2ý + T (f2y + yf2)x́ = 0, or

2T (y)f2x + T (f2)xy + T (x)f2y + 2T (x)f2ý + T (f2)yx́ + T (y)f2x́ = 0, or

2T (y)f2x + T (y)f2x́ + T (f2)xy + T (x)f2y + 2T (x)f2ý + T (f2)yx́ = 0, or

T (y)f2x + T (f)fxy + T (x)f2ý + T (f)fyx́ = 0, or

(24) T (y)f2x + T (x)f2ý + T (f)fy(x́ + x) = 0.

Now replace x with xy and y with f2 in (8) and then using (21) and (22), we get

2T (fxfy + fyfx) + 2T (xy)f́2 + 2T (f2)x́y = 0.

By Lemma 1.1, (8) and (7), we have

2T (fx)fy + 2T (fy)fx + 2T (xy)f́2 + 2T (f2)x́y = 0, or

T (fx + fx)fy + T (fy + fy)fx + 2T (xy)f́2 + 2T (f2)x́y = 0
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T (fx + xf)fy + T (fy + yf)fx + 2T (xy)f́2 + 2T (f2)x́y = 0

T (f)xfy + T (x)ffy + T (f)yfx + T (y)ffx + 2T (xy)f́2 + 2T (f2)x́y = 0

T (f)xfy + T (x)f2y + T (f)fxy + T (y)f2x + 2T (xy)f́2 + 2T (f)fx́y = 0

T (f)fxy + 2T (f)fx́y + T (f)fxy + T (x)f2y + T (y)f2x + 2T (xy)f́2 = 0

T (f)fy(x́ + x) + T (x)f2y + T (y)f2x + 2T (xy)f́2 = 0.

Using Lemma 1.1 in (24) and using the result in last equation, we get

2T (x)f2y + 2T (xy)f́2 = 0, or

(25) T (x)f2y + T (xy)f́2 = 0, or

(T (x)ý + T (xy))f2 = 0 or f3 = 0 which implies

f2Sf2 = f4 = (0)⇒ f2 = 0.

Thus fSf = f2S = (0)⇒ f = 0. Therefore T (xy) + T (x)ý = 0 and then Lemma
1.1 implies that T is a left centralizer.

Theorem 2.2. Let S be a 2-torsion free semiprime inverse semiring and let
T : S → S be an additive mapping such that

(26) T (xyx) + xT (y)x́ = 0, ∀x, y ∈ S.

Then T is a centralizer.

Proof. First we show that

[[T (x), x], x] = 0.

Linearization of (26) gives

(27) T (xyz + zyx) + xT (y)ź + zT (y)x́ = 0, ∀x, y, z ∈ S.

Replace y with x and z with y in last equation, we get

(28) T (x2y + yx2) + xT (x)ý + yT (x)x́ = 0.

Replace z with x3 in (27), we get

(29) T (xyx3 + x3yx) + xT (y)x́3 + x3T (y)x́ = 0.
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Replace y with xyx in (28), we get

(30) T (x3yx + xyx3) + xyxT (x)x́ + xT (x)xyx́ = 0.

Replace y with x2y + yx2 in (26), we have

(31) T (x3yx + xyx3) + xT (x2y + yx2)x́ = 0.

Using Lemma 1.1 in (30) and using the result in (31), we get

(32)
xyxT (x)x + xT (x)xyx + xT (x2y + yx2)x́ = 0, or

x[T (x), x]yx + xý[T (x), x]x = 0.

Using Lemma 1.7 in (32), we have

(x[T (x), x] + [T (x), x]x́)yx = 0, or

(33) [[T (x), x], x]yx = 0.

Replace y with y[T (x), x] in (33), we have

(34) [[T (x), x], x]y[T (x), x]x = 0.

Post multiplication (33) with [T (x), x] gives

(35) [[T (x), x], x]yx[T (x), x] = 0.

Adding pseudo inverse of (35) and (34), we have [[T (x), x], x]y[[T (x), x], x] = 0
and then semiprimeness of S implies that

(36) [[T (x), x], x] = 0, ∀x ∈ S or

[T (x), x]x + x́[T (x), x] = 0 or

[T (x), x]x + (x + x́)[T (x), x] = x[T (x), x], or

[T (x), x]x + [T (x), x](x + x́) = x[T (x), x], or

(37) [T (x), x]x = x[T (x), x], ∀x ∈ S.
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Linearization of (36) gives

(38)
[[T (x), x], y] + [[T (x), y], x] + [[T (y), y], x] + [[T (y), x], y]

+ [[T (x), y], y] + [[T (y), x], x] = 0.

Replace x with x́ in (38) and using again (38) and the fact that (T (x))́ = T (x́)
we have

(39)
2[[T (x), x], y] + 2[[T (x), y], x] + [[T (y), y], x + x́] + [[T (y), x], y + ý]

+ [[T (x), y], y + ý] + 2[[T (y), x], x] = 0.

Adding (38) in (39) and then using (38) again, we get

2[[T (x), x], y] + 2[[T (x), y], x] + 2[[T (y), x], x] = 0, ∀x, y ∈ S.

(40) [[T (x), x], y] + [[T (x), y], x] + [[T (y), x], x] = 0, ∀x, y ∈ S.

Replace y with xyx in (40), we have

[[T (x), x], xyx] + [[T (x), xyx], x] + [[T (xyx), x], x] = 0, or

Using Lemma 1.1 in (26) and using it in last equation, we get

[[T (x), x], xyx] + [[T (x), xyx], x] + [[xT (y)x, x], x] = 0.

Using Lemma 1.2, we have

[[T (x), x], x]yx + x[[T (x), x], yx] + [[T (x), xy]x, x] + [xy[T (x), x], x]

+ [[xT (y), x]x, x] = 0.

Using (36) and Lemma 1.2, we get

x[[T (x), x], y]x + [[xT (y), x]x, x] + [[T (x), xy], x]x + x[y[T (x), x], x] = 0.

Again using Lemma 1.2, and (36) we have

x[[T (x), x], y]x + x[[T (y), x], x]x + [T (x), x][y, x]x

+ x[[T (x), y], x]x + x[y, x][T (x), x] = 0.

Using (40) in last equation, we get

[T (x), x][y, x]x + x[y, x][T (x), x] = 0

[T (x), x](yx + x́y)x + x(yx + x́y)[T (x), x] = 0
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[T (x), x]yx2 + [T (x), x]x́yx + xyx[T (x), x] + x́2y[T (x), x] = 0.

Using (37), we get

[T (x), x]yx2 + x2ý[T (x), x] + x́[T (x), x]yx + xy[T (x), x]x = 0.

Using (32), we have

(41) [T (x), x]yx2 + x2ý[T (x), x] = 0.

Pre multiply (41) by x gives

(42) x[T (x), x]yx2 + x3ý[T (x), x] = 0.

Using Lemma 1.1 in (32) and using it in (42), we get

(43) xy[T (x), x]x2 + x3ý[T (x), x] = 0.

Pre multiply last equation by T (x), we get

(44) T (x)xy[T (x), x]x2 + T (x)x3ý[T (x), x] = 0.

Replace y with T (x)y in (43), we get

(45) xT (x)y[T (x), x]x2 + x3T (x)ý[T (x), x] = 0.

Adding pseudo inverse of (45) and (44), we get

(46) [T (x), x]y[T (x), x]x2 + [T (x), x3]ý[T (x), x] = 0.

By applying Lemma 1.7 in (46), we get

([T (x), x]x́2 + [T (x), x3])y[T (x), x] = 0

([T (x), x]x́2 + [T (x), x]x2 + x[T (x), x2])y[T (x), x] = 0

([T (x), x]x́2 + [T (x), x]x2 + x[T (x), x]x + x2[T (x), x])y[T (x), x] = 0.
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Using (37) and the fact that S is inverse semiring, we have

x[T (x), x]xy[T (x), x] = 0.

And then semiprimeness of S implies that

(47) x[T (x), x]x = 0, ∀x ∈ S.

Replace y with yx in (32) and using (47) we have

(48) x[T (x), x]yx2 = 0.

Replace y with yT (x) in (48), we get

(49) x[T (x), x]yT (x)x2 = 0.

Post multiplying (48) by T (x), we get

(50) x[T (x), x]yx2T (x) = 0.

Adding pseudo inverse of (50) in (49), we get

x[T (x), x]y[T (x), x2] = 0

x[T (x), x]y([T (x), x]x + x[T (x), x]) = 0.

Using (37) and the fact that S is 2-torsion free, we have

(51) x[T (x), x] = 0 = [T (x), x]x, x ∈ S.

As (40) obtained from (36), we can get following from (51)

(52) [T (x), x]y + [T (x), y]x + [T (y), x]x = 0.

Post multiplying (52) by [T (x), x] and using (51), we get [T (x), x]y[T (x), x] =
0, ∀y ∈ S which implies that

(53) [T (x), x] = 0.

Replace y with xy + yx in (26), we have

(54) T (x2yx + xyx2) + xT (xy + yx)x́ = 0.

Replace z with x2 in (27), we get

(55) T (xyx2 + x2yx) + xT (y)x́2 + x2T (y)x́ = 0.
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Using Lemma 1.1 in (54) and using the result in (55) we get

x(T (xy + yx) + x́T (y) + T (y)x́)x = 0.

Now if we define biadditive function g : S × S → S by g(x, y) = T (xy + yx) +
T (y)x́ + x́T (y) then last equation can be written as

(56) xg(x, y)x = 0.

As (40) obtained from (36), we can obtain following from (56)

(57) xg(x, y)z + xg(z, y)x + zg(x, y)x = 0, ∀x, y, z ∈ S.

Post multiplication (57) by g(x, y)x and using (56) we get

(58) xg(x, y)zg(x, y)x = 0.

Linearization of (53) gives

(59) [T (x), y] + [T (y), x] = 0.

Replace y with xy + yx in above equation and using (53) we get

[T (xy + yx), x] + x[T (x), y] + [T (x), y]x = 0.

Using Lemma 1.1 in (59) and using the result in last equation, we get

x́[T (y), x] + [T (y), x]x́ + [T (xy + yx), x] = 0.

Using Lemma 1.2 in last equation, we get

[x́T (y), x] + [T (y)x́, x] + [T (xy + yx), x] = 0, or

[x́T (y) + T (y)x́ + T (xy + yx), x] = 0, or

(60) [g(x, y), x] = 0.

which gives

(61) g(x, y)x = xg(x, y), x, y ∈ S.

By (58) and (61), g(x, y)xzg(x, y)x = 0 this and (61) implies

(62) xg(x, y) = 0 = g(x, y)x.

Linearization of (62) gives g(x, y)z + g(z, y)x = 0.
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Post multiplying last equation by g(x, y) and using (62), we get g(x, y)zg(x, y) = 0
and this implies g(x, y) = 0, x, y ∈ S. Put x = y, we get

(63) 2T (x2) + x́T (x) + T (x)x́ = 0.

From (53) we can get T (x)x = xT (x), using this and the fact that S is 2-torsion
free, in (63), we get

T (x2) + x́T (x) = 0 and T (x2) + T (x)x́ = 0.

And therefore by Theorem 2.1, it follows that T is right and left centralizer. This
completes the proof.
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