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On certain abelian-by-nilpotent varieties

J. M. Brady, R. A. Bryce and John Cossey

We show that, whenever m, n are coprime, each subvariety of the

abelian-by-nilpotent variety A (N2 A B ) has a finite basis for

its laws. We further fehow that the just non-Cross subvarieties of

A (N2 A B ) are precisely those already known.

1. Introduction

In his papers [2, 3] Graham Higman has described techniques for

answering a range of questions regarding certain varieties of groups. Here

we work out the details which enable us to prove the following two results.

THEOREM 1.1. The subvarieties of A^d^ A !„) are finitely based

whenever m, n are aoprime.

(As usual A , N^, B are respectively the varieties of: abelian

groups of exponent dividing m , groups of class at most 2 and groups of

exponent dividing n . We shall follow the terminology of Hanna Neumann

[5]).

THEOREM 1.2. Let T be the variety generated by the non-abelian

group of order q3 and exponent q when q is an odd prime, and by the

dihedral group of order 8 when q is 2 . Then, whenever m, n are

aoprime, the just non-Cross subvarieties of ^ ( ^ 2 A B^) are precisely

^ (p\m, q\n) .

Recall that a just non-Cross variety is one not generated by a finite

group every proper subvariety of which is generated by a finite group. By

now Theorem 1.1 requires little motivation; and we refer the reader to
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Kovacs and Newman [4] for the motivation behind Theorem 1.2. In [3] Higman

asks another question relevant to the above varieties: if \? is a

subvariety of A (N2 A B ) where m, n are coprime, and fin) = \F (VJ | ,

is / : Z •+• Z so defined CREAM ? We believe we can give an affirmative

answer to this question; as the proof is long and tedious we shall, however,

not reproduce it here.

Since A (N2 A B ) has a finite basis for its laws [2, Theorem 3.1],

Theorem 1.1 is proved if the subvarieties of A (N2 A B ) satisfy the

descending chain condition, and to show this it is enough to prove

LEMMA 1.3. If {G- : i e Z } is an infinite sequence of critical

groups in A^ljU A JLJ 1 with m, n coprime, then for some i ,

Gi <

The description of the critical groups of A (j^ A B ) given in §2.7

of [3] will be taken as read. There Higman uses the description to show

that to prove CREAM for A B , where 13 is locally finite of exponent

prime to m , it suffices to show it for A B for each prime divisor p of

m . The same argument shows that it is enough to prove Theorems 1.1 and 1.2

for the case when m is prime: henceforth we assume m is a prime p .

To each non-nilpotent critical group in A (tĵ  A B ) , Higman

associates a unique irreducible linear group over GF(p) , the field of p

elements. The proof of the theorems now depends on a complete

classification of such irreducible linear groups; it is well known that

they have cyclic centre, so the classification is given by the following two

lemmas whose proofs are given in §2 (the second is a corollary of 2.k).

LEMMA 1.4. If {K. : i e Z } is an infinite sequence of groups of

class 2 and exponent dividing n with cyclic centres, then for some i, j

with i less than j , K. is isomorphic to a central factor of K. (i.e.
v j

K. is isomorphic to a subgroup of K. which together with its centralizer
•*- 3

in K. , this subgroup generates K.) .
0 3
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LEMMA 1.5. If K is a group of class 2 with cyclic centre and of

order prime to p 3 then all faithful irreducible representations of K

over GF(p) are linearly isomorphic.

Proof of Lemma 1.3. Let K. be the irreducible linear group

associated with G, for each i in Z . By Lemma l.k there exist i, j

with i less than j such that, as abstract group, K. is a subgroup of

K. with the centre z[K-) contained in z(x.) . Let M be the space
3 ^ 3

over GF(p) on which K- acts, and consider an irreducible component M

of M^ . Since each element of Z{K.) acts fixed-point-free on M , M

is faithful. Consequently even as linear group X. is contained in K. ,
•z- 0

by Lemma 1.5, and thus G. is a subgroup of G . . Lemma 1.3, and with it
<- 3

Theorem 1.1, is therefore proved.

2. Proofs of Lemmas 1.4 and 1.5

We begin by determining the structure of groups of class 2 with

cyclic centre. Since a nilpotent group is a direct product of groups of

prime power order, it suffices to consider ^-groups for some prime q .

THEOREM 2.1. (cf. M.F. Newman [6]). A finite class 2 q-group with

cyclic centre is a central product either of two-generator subgroups with

cyclic centre or of two-generator subgroups with cyclic centre and a cyclic

subgroup.

Proof. Suppose that K satisfies the hypotheses. The proof is by

induction on the minimal number of generators for K • It K requires

either one or two generators, there is nothing to prove. Hence suppose

that K cannot be generated by two elements and that the result is true

for such groups with fewer generators: note that K is then not abelian.

Choose an arbitrary set of generators for K , say K = x, y3 Uj ...

Since K' , the derived group of K , is a cyclic q-group and K' is

generated by all the commutators [x, y], [x, u], ... it follows that K'

is generated by one of them, say by [x, y] . We will show that K is

generated by {x3 y3 u', ...} where it1, ... all centralize x and y :

for there is an integer r such that

i
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[x, u] = [x, yf = [x, / ]

whence [x, uy~r] = 1 , and an integer s such that

[y, uy~r] = [y, x]8 = [y, x8]

whence [y, uy~ x~ J = 1 . Then u' = uy~ x~ commutes with x, y and

<x, y, u > = (x, y, u' > . Similarly one replaces the other elements of the

given generating set.

In this way we have K expressed as a central product of <x, y) and

a subgroup Ki on fewer generators; <x, y) and K\ both have cyclic

centres, and so induction concludes the proof. Note that the amalgamations

of the centres of the central factors must be as large as possible.

Our need now is to determine all two-generator groups of class 2 with

cyclic centre.

THEOREM 2.2. The q-groups of class 2 on two generators with ay alia

centre comprise the following list:

Q(a, e; f2g < a; : (a3 b : a
q = bq = 1 , aq = [a3 b]) ;

i a 6 B 2B-a

e; re < a < 2g; : (a, b •. S = bq = 1 , S = [a, b]q

[a, b, a] = [a, b, b] =
and if q = 2 we have as well

6+1 c.6+1 06
D : a — D = 1 j a - L < 3 J £ ? J

2B
= fc , [a, fc, a] = [a, b, b] =

Proof. Let X be a two generator group of class 2 with cyclic

centre. Choose a generating pair {a, b) for X where the order of a is

qa , that of b , q6(a > 6) and that of [a, b] , <?B .

X r A -i X
If aq 6 Zf;W then 1 = <r , & = [a, b]q whence X 2 3 . Treat

fc similarly, so that

Z(X) ={aq , bq , [a, fc]) .

Since Z("^ is cyclic, two cases arise.
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Case 1. Z(X) = \cfl I . There exists an integer r such that

[a, b] = a H

>>• 6+X 26

whence [a, b]^ = a * ; c o n s e q u e n t l y 1 = a ^ and <7a||rq s o t h a t

a > 23 and qa"2 6 | | r . Write r = qa~2^s (qfo) and choose t so that

at = 1 (mod q ) ; then

[a, 6*] = [a, bf = a«a .

Since {a, b } is a generating set for X we may as well assume that a, b

as given satisfy

(*) [a, b] = aq

3 6
Now there is an integer u such that b^ = a"^ so that, for all

integers u ,

B B B vft ) wq6n

We aim to choose u so that (pa p = 1 , and th i s can certainly be done

if the congruence

, a •>

5 0 (mod qa)

can be solved for v . In case q is odd this can always be done; and

when q = 2 it can be done in all cases except a = 2 , 3 = 1 , w ^ 0

(mod 2) (this exception corresponding to the quaternion group Qg ).

Notice that a, ba satisfy the relation (*) . Hence X is a homomorphic

image of Q(a, &) and since Q(a, $) has cyclic centre and its derived

group has the same order as that of X , the kernel of the homomorphism is

1 .

Case 2. Z(X) = < [a, b] > . By copying the earlier argument one

deduces that a £ 23 and that b may be changed so that
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2g-a g
[a, bf = S .

g 6
Again one looks for v so that [baV)^ = 1 , and if [a, b]u = b^ , v
must sat isfy

u* v[q2&-a + {{)] = 0

When q is odd such a v always exists; and if q = 2 one may be found

in all cases except a = $ + 1 . Hence one gets either Q(<x, $) or R($)

COROLLARY 2.3. Define Q(&) = Q(&, &) and let C = \o : aq = 1 /

fa i W • Form the central product D(a, $) of Q(&) and C with the

amalgamation

a
«

= [a, b] .

Then Q(a, &) = (ae, b> . Also when q = 2 and a = B + 1 R(&) = (ba, be)

in 0(3+1, g; and this is the unique copy of R(Q) in 0(0+1, &) .

Proof. This first statement requires showing that ao, b satisfy the

appropriate relations, and that |<ao , b>'| = q ; we omit the details.

o

For the second case write („ ) = 2 u , so that u is odd, and

choose v so that uv = 1 (mod 2a) . Put a\ - ba , b\ = buo : aj, b\

each have order 2 , and

2 6 "^2 ) P6"1 ? e P 6

a? = {a, b] 2 = [a, b]2 = o2 = b2 .

H e n c e ( a ! , bx) = flfgj .

Finally note that if D is a subgroup of D = 0(3+1, $) isomorphic

to R(&) , then D has index 2 in 0 . Now \D : $(0 ) | = h ,

\D : $(0^| = 8 (where $ as usual denotes the Frattini subgroup); and

since $(D) 5 DQ , *(0Q) 5 <b(D) whence <t(D) = *(0Q] • It follows that

there are 7 a priori choices for D , and noting that the canonic

generators a', b' for DQ have order 2 a and a'b' does also, one
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discards 6 of these. (Since u, V are odd and a2, b2, a2 € $(o ) ,

<ai, 2>!> = <a, 2?> .)

REMARK. If K , a group of class 2 with cyclic centre, is written as

a central product of Q(a, $j's , R(&)'s and perhaps one cycle, it is, up

to isomorphism, uniquely determined by the number of times each central

factor in this decomposition is repeated. For, each automorphism of Z(Q) ,

where Q is a Q(a, &) or an R($) or cyclic, is the restriction of an

automorphism of Q ; and hence no matter how the amalgamations are

performed one gets the same group.

The crucial result of this section is:

THEOREM 2.4. Let K be a group of class 2 with cyclic centre and

E a field whose characteristic does not divide the order of K . Then the

faithful irreducible representations of K over E are linearly

isomorphic.

The proof of this fact requires a number of steps: we first show that

it is sufficient to establish the result for algebraically closed fields,

and then that only the groups of Theorem 2.2 really matter.

THEOREM 2.5. Let X be a finite group, E a field and Tlj T2

faithful irreducible representations of X over E . T\, T2 are linearly

E*
i8omorphtc vf and only if some composition faator of Tj is linearly

E*
isomorphic to a composition factor of T2 (where E* denotes the

algebraic closure of E) .

E*
Proof. The 'only i f part is trivial, so suppose Tj has a

composition factor T\j linearly isomorphic to a composition factor T2l

E*
of T2 • Since X is finite, Tjj and T2i may be written in some

finite extension field F of E . Choose F so that \F : E\ > dim Tn ;

the first part of the proof of (29-7) in Curtis and Reiner D ] can then be

routinely amended to show that Tn and 2*21 a r e linearly isomorphic

F F
F-representations. That is Tj , T2 have a linearly isomorphic

composition factor.

Now F may be chosen as a splitting field for X and also as a

finite, normal extension of E , so that (70.15) of [?] tells us that

F F
T\ , T2 are completely reducible, say
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Tl* = Ti i © . .. © T.^ , T2 = T2X © . .. © T2n ,

and that T^, Tp. are all faithful representations of X . Now there

exists U e GL(dim Tn, F) such that

Tn(X)U = T2i(X) .

Define the automorphism a of X by

T2\(xa) = Tn(x)
U , x e X ,

and the representation T3 of X over F by

2Va;; = 3*1 (scT1) , a; e X .

Clearly T3 is faithful and irreducible. It is easy to calculate that

F FT2 , T3 have the composition factor T2i in common. Consequently T2, T3

are equivalent by (29.6) of [7] (being irreducible) . But T$(X) = Ti(X) so

tha t Ti, T2 are l inear ly isomorphic as required.

In order to reduce the problem to the case when K i s one of the

groups of Theorem 2.2 we need the following manifestation of a well known

resu l t (adapt the proof of [7 , (51.3)]) .

THEOREM 2.6. Let X, Y be finite groups and B = X * Y ; E an

arbitrary field and M an EH-module. Let Mi be an absolutely

irreducible submodule of M . Then M is irreducible if and only if

M = Mi # M2 for any irreducible submodule M2 of My .

COROLLARY 2.7. If X, Y are groups each of which has oust one linear

isomorphism class of faithful irreducible representations over an

algebraically closed field E , then every central product of X and Y

with cyclic centre has the same property, (Note that this includes the case

X x Y 3 X, Y of coprime orders.)

Proof. If H i s a central product of X and .? then there is an

epimorphism H = X x Y •+> H . Let M, N be faithful irreducible modules

over E for H ; M, N therefore can be regarded as irreducibles of H .

Consequently, by the theorem, M = Mi ff M2 , H = Ni # N2 where Wj , Ni

are fai thful irreducibles of X and M2, H2 faithful irreducibles of Y .
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Now if T-, U. are the representations for X, Y afforded by
1r 1r

W., N- (i = 1, 2) respectively, then there exist non-singular linear

transformations V, W such that

TX(X)
V= T2(X) , tlx(Y)

W = V2(Y) .

Put V = F ® V and one easily checks that

V
= T2(X)U2(Y)

as required.

Theorem 2.5 and Corollary 2.7 have therefore reduced the proof of

Theorem 2.1* to the case when K is either Q(a, &) , R(&) or cyclic, and

E is algebraically closed; the result is well known for cyclic groups and

we treat the remainder in a number of steps starting with

K = Q(&){= Q(&, &)) .

LEMMA 2.8. All faithful irreducibles of the groups Q($) over a

field whose characteristic is not q are linearly isomorphic.

Proof. As we have observed we assume the ground field E to be

closed. Construct representations T. of the subgroup A = (a, [a, b] > of

Q(&) as follows: the kernel of each T. is <a> , and

^[[b, a]) = C , i 6 {1 q6-1} , q\i,

g
where £ is a primitive q th root of 1 . For each i and each

x e Q(&) - A , the representations T. and T. : h •* 2". ( a T 1 ^ of A

are distinct, therefore inequivalent, and hence each induced representation

T^^ is irreducible ([7, (U5.2)1]). Moreover if i 4 3 , the

(x)
representations T- and T. are distinct, therefore inequivalent, for

1 3

each x e Q(&) , and so T.®(6) and T.^16'' are inequivalent ([?, (1*5-6)]

The number of these T^^'s is (<?6-l) - (q6"1-!) = qB~X(q-1) . We show

now that this accounts for all faithful irreducibles of Q(&) over E .

LEMMA 2.9. Let X be a q-group of class 2 with cyclic centre of
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order q

of X is

The number of faithful absolutely irreducible representations
B-l,

Proof. We may assume X non-abelian as otherwise the result is well

known. Notice that the unique minimal normal subgroup (the monolith) oX

of X is the socle of X' . If elements x, y of X are conjugate

modulo OX , then there exists t 6 X and z e aX such that

xz = y

tu
-1

Now there exists u e X such that z = [x, u] whence x = y"" , and
x, y are conjugate. Moreover a central element cannot be conjugate
modulo OX to a non-central element. It follows that if N is the number
of non-central conjugacy classes of X , the number of conjugacy classes in

X/oX i s N + \Z(X)/oX\ = N + q8"1 . Hence the number of faithful
absolutely irreducible representations of X is

[N+q J - (N+q ) - q (q-1) as required.

Continuing with the proof of Lemma 2.8 we find that a basis for the

modules underlying the T. may be constructed as follows: if {I.} is

a basis for the 4-module T • , {I. ® b3 : 0 5 j 5 q -l} is a basis for

T. The matrices representing a, b are then easily determined:

1,
Ti

Ti
r2i

It is immediately clear that the T. are faithful and linearly

isomorphic.

We now use Corollary 2.3 to complete the proof of Theorem 2.1*. Notice

that Q(a, BJ is a subgroup of D(a, $) in such a way that the monoliths
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coincide. The regular representation of D(a, $) restricted to Q(a, $)

contains a copy of the regular of Q(a, $) . Consequently every faithful

irreducible of Q(a, 8) arises by restricting a faithful irreducible of

D(a, $) ; moreover it follows from Theorem 2.6 that if M is a faithful

irreducible D(a, (5,)-module then Mn/a. is irreducible and, since all
H\ a)

subspaces of M admit C , M^, ,, is irreducible. It is therefore easy

to write down the matrices representing the irreducibles of Q(a, $) and

see that they form a single linear group.

The case of R($) is similar: note that by Corollary 2.7 all

faithful irreducibles of D($+l, $) are linearly isomorphic; and since

there is precisely one copy of R($) in DCB+1, $) , by Corollary 2.3, all

faithful irreducibles of R($) are linearly isomorphic. The proof of

Theorem 2.k is therefore complete.

It remains to prove Lemma l.U.

Proof of Lemma 1.4. The two-generator groups with cyclic centre in

No A B are finite in number; call them L\, ..., L say. By Theorem 2.1
==rl jy

each K. is a central product of L.'s , possibly not uniquely;
v j

nevertheless with a fixed decomposition of K. as such a central product

containing r. . copies of £. associate the i\?-tuple [r., , ..., r. ) .

It is well known that the set of all ^-tuples with ordering by components

is partially well ordered. Consequently for some £ < j , x1... S r .*

(l < I 5 N) . Thus K. is a central factor of K. , proving Lemma l.U
1- 3

(see the Remark following the proof of Corollary 2.3).

3. The proof of Theorem 1.2

Let V_ < A [Ng A B ) be just non-Cross and let _X be the closed class

of linear groups associated with ^ a la Higman [Z, §U] : U/2L} = £ . Now

_X is infinite and every proper closed subclass is finite; and each group

in X is a direct product of groups described in Theorem 2.1, There are

but finitely many cyclic groups and two generator groups with cyclic centre

in £2 A B and consequently arbitrarily large central powers of one of

them, say Q , occur in X . Since each group in )C has at most one cyclic
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central factor, Q is not cyclic.

Write

^o " \Cn • n € '

where C is a central product with cyclic centre of n copies

Qi, . • . , Q of Q ; then X is the closure of X .

LEMMA 3 . 1 . For each n > 1 , C contains, as linear factor, the

central product of n - 1 copies of Q(l) .

Proof. We show f i r s t that C contains, as l inear factor , the

cen t ra l product with cyclic centre of groups S\ S each isomorphic

to a Q(ct, 1) or to R(l) . For, i f {a., b •} i s a canonic generating set

for Q. consider H. = (a., bfl \ and set K = HiH2.--H • One easi ly

checks tha t the centre z(#.) of H- is l a . , [a., b.]" ) and that

Notice a lso tha t Z(K ) i s the Fra t t in i subgroup $(# ) of K .

Now l e t A? be a fai thful irreducible module for C over GF(p) and

consider an i r reduc ib le component M of My . Since the kernel of M

must avoid K ' i t i s easy to see that

ker MQ < z (# n ) = ®iK
n) •

M is a faithful and irreducible module for P = K /ker M . P has

cyclic centre, derived group exponent q , and it requires 2n generators

since 4>(p } = ${K }/ker M . Hence P is a central product as asserted

in the first sentence of the proof.

Suppose now that Sj, . . . , S have as canonic generating sets

{a.' , b.' } ; we write a- for the order of a•' and suppose
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2 ot. fi i U . If o. > 1 (i > 1 we have that the subgroup
U ir

i'^ , a^' , b^'f has cyclic centre \ai'^ J and is a central

, cc2-ct.v
product of (ai'1 %) and (a-' , b.' > . Corollary 2.3 then yields that

\<Zl » a-i •> b^') is a central product of \ai'" J and a subgroup

J. isomorphic to Q(l) . Clearly J = J2---J (where J. = S. if

cr. = 1 ) is a central product with cyclic centre of n - 1 copies of Q{1) .

Since 2(jJ 5 Z[Pn) , In is a component of P , and the lemma is proved.

Finally note that Higman [Z, Ex. U.10] has shown that if Q = Q(X) ,

YQ = iC : n e Z } , where C is a central product with cyclic centre of

n copies of Q and ]f is the closure of Y , then U/Yyl = A T and that

this is just non-Cross. Hence, under the assumptions on i , UjX) = A T

as required.
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