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1. INTRODUCTION

The purpose of this paper is to present certain results concerning the asymptotic
properties of the solutions of an equation
d
1.1 z=f(t,z), =—,
(1.0 (2, =
where f is a continuous complex-valued function of a real variable ¢ and a complex
variable z. Some results dealing with the asymptotic behaviour of the solutions of
(1.1) are established in [1], [2]. The principial tool used in these papers is the tech-
nique of Liapunov-like functions.

In the present paper, we give conditions under which a solution z(t) of (1.1) satisfies

00 {so]
j D() ]z(t)i“ dt < @ (in particular J iz(t) *dt < oo) ,
ty

31

where D(1) is a continuous nonnegative function. It is convenient to write the equation
(1.1) in the form

(1.2) z = G(t, 2) [h(z) + g(t, 2)] ,

where G is a real-valued function and g, h are complex-valued functions. We shall
assume that the function h is holomorphic and that the right-hand side of (1.2)is in
a suitable sense “‘close” to this function.

The paper consists of four sections. In Section 2 we recall the definition of the
Liapunov-like function W(z) and of the sets K(2), K(1), K(4,, %,) which were useful
in [1], [2]. For our further purposcs, we also quote some theorems from [1] con-
cerning the asymptotic behaviour of the solutions of (1.2). The fundamental results
are stated in Section 3. The fourth section is devoted to the equation

z=q(t, z) — p(t) z*.
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Applying the results of Section 3 to this equation we generalize some results of [3]

and [4].
2. NOTATION AND PRELIMINARIES

Throughout the paper we use the following notation:

C Set of all complex numbers

N Set of all positive integers

Re b Real part of a complex number b

Im b Imaginary part of a complex number b

b Conjugate of b

|b] Absolute value of b

Bdr Boundary of aset I <« C

Clr Closure ofaset I' « C

IntI”  Interior of a Jordan curve z = z(1), t € [«, B] whose points z form a set I';
I' will be called the geometric image of the Jordan curve z = z{1), te

e [a f]
I Interval [ 14, o0)
Q Simply connected region in C such that 0 € Q

C[a, c0) Class of all continuous real-valued functions defined on the interval [«, )
C(I')  Class of all continuous real-valued functions defined on the set I
C(r)  Class of all continuous complex-valued functions defined on the set I
(') Class of all complex-valued functions defined and holomorphic in the
region I'.
Suppose that ii(z) € #(Q) is a function such that h'(0) + 0 and h(z) = 0 <z = 0.
Following [1] we define

Zh,(o)_[i(i) for zeQ, z+0,

z h(z)

H(z) =
— w for z =

| 2 1'(0)

w(z) = z exp [JZ H(z%) dz*:l

W(z) = |w(z)| .
All of these functions are well-defined on Q. Let = be the system of all simply connected
regions I’ < Q with the property O e I'. For any I' € £ put

and

Ay = lim inf W(z),

M- o zel'm
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where
Iy ={zel: inf |z — z¥| <M 'Yfufzer:|z > M}.
z*eBdI”
Denote

Ao = sup AL
rez

Obviously 0 < 45 = o0.
For 0 < A < Jq define sets K(Z) < @ in the following way: choose I' € Z so that
L > 4 and put
R(A) ={zel:W(z)=1}.
According to [1], this definition is correct, and, denoting

R(0) = {0},

KA = U R for 0<iZi,
OSp<i

K(2y, 23) = U K for 052, <4, <4,

(<p<la

we have the following statement:

Theorem 2.1. K = K(J,) is a simply connected region and 2§ = J,. Every set K(2),
where 0 < A < Ay, is the geometric image of a certain Jordan curve, and,

K(2) = {zeK(k): W(z) = 2},
Int R(2) = {zeK(ko): W(z) < 2} .
Moreover,
K(2) = ItK(A) for 0<2i<ly,
K(14, 25) = K(4;) — €I K(%y) for 0<y <7, =<4,
and
K(0, %) = K() = {0} for 0<2s 4.

Now, for our further purposes, we recall Theorems 2.2, 2.3 and 2.5 of [1] Assume
that Ge C(I x (@ — {0})), g e CI x (2 — {0})), G(t, z) [A(z) + g(t, 2)] e C(I x Q)
and consider the equation

(2.1) 2= G(t,2) [h(z) + g(1, 2)] .

Theorem 2.2. Let 6 = 0, § < Ao- Suppose there is an E(f) € C[t,, ) such that the
conditions

T
sup jE(&)dg’:x< 0,

toSsgt<®Js

Je* < &
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are fulfilled and
—G(1,2) Re {11'(0)[1 + %%Z?]} < E(r)

holds for t 2 t,, z € K(3, 9).
If a solution =(t) of (2.1) satisfies
z(t,) e K(y),
where t; 2 t, and de* <y < 9, then
Z(1) ¢ K(ye™™)
for all t 2 t; for which z(1) is defined.

Theorem 2.3. Suppose 6, =2 0, 3 < 4, s, €l for ne N and § < 0. Assume that
there are functions E,(1) € C[t,, 00) such that:

(i) for ne N the following conditions are fulfilled:

J‘ E(s)ds = —o

to

sup J.tE,,(éf) dé =%, < ©,

snEsEt<ow Jo

5,6 < 9
(i) for t 2 s,, z€ K(5,, 9), ne N the following inequality holds
6t 9y Re o 1 + 2L < £ .
h(z)
Denote

o = inf[5,e*].
nel

If a solution z(1) of (2.1) satisfies
z(t;) e K(%e ™),
where t; = sy, then for any ¢, 6 < & < A, there is a T = T(e, t;) > 0 independent

of z(t) such that
z(t) e K(¢)

fort=1t, +T.
Theorem 2.4. Let 6 > 0, 9, £ A, s, €1 for ne N. Suppose there are functions
E,(1) € C[t,, ) such that:
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(i) for ne N the following conditions are fulfilled:

j Ef(s)ds = — 0,
to

t
sup J E(&dE =, < 0,

spEsSt<o
e < 9,3
(i) for t 2 s,, z€ K(, 3,), ne N the following inequality holds

—G(t, 2) Re {h 0) [1 + g(’( ;)]} E(t).

9 -—sup[&e *.
neN

Denote

If a solution z(1) of (2.1) satisfies
z(t;) e K(¢e*', Ao) ,

where t; Z s,, then for any e, 0 < ¢ < 9, there exists a T = T{(e, tl) > 0 independent
of z(t) such that

z(t) ¢ C1K(e)
for allt Z t; + T for which z(i) is defined.

3. MAIN RESULTS

Consider the equation

(3.1) 2 = G(t, z) [h(z) + 9(1, 2)] ,
where Ge C(I x Q), ge C(I x Q), he #(Q). Assume that h'(0) + 0 and h(z) =
=0 <z = 0. Let W(z), Ay, K(2), K(2), K(4;. 4,) be defined as before.

Note. Suppose E(t) € C[t,, o), 0 < 3, < 2o,

infy, = 0.
’ neN

(3.2) 6(t, 2) Re {h ©) [1 ; "}(Iz ;)]} < E()
(03,..3) ~6(t, =) Re {h’(O) [1 + 9—%;?]} < E(1)
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holds for t = to, z€ K(7), ne N, then G(t,0) g(1, 0) = 0 for 1 = 1,.

Proof. Notice that h(Z) = h'(()) [Z + q(z)], where q(z) = o(lzl) as z - 0. Now,

G(1, z) Re {11’(0) [1 * %%E)Z“)]} B
zZ + q(2) } =

l ]2 + 2 Re [Z 4(2)] + ]q(z)’z

= G(1, 2) Re W(0) + G(1, z) Re {g(l :
Xo + Yy + ¢ Re q(z) + ¢ Im ¢(z)
|z + 2 Re[Z g(z)] + a(2)]*

where X = Rez, Y=1Imz, ¢ = ¢(t,X,Y) = Reg(t,z), ¥ = Y(t,X,Y) =
= Im g(t, z). Using (3.2) and (3.3), we get

= G(t, z) Re h'(0) + G(t, z)

eG(t, X + 1Y) [X¢ + Y¢¥ + ¢ Re g(z) + ¢ Im g(z)] <
< [E(1) — &G(1, z) Re h'(0)] {|2]* + 2 Re [Z q(2)] + |a(2)|*}
fort =1, z=X+iYeK(y,), ne N, where ¢ = 1 or ¢ = —1. Hence

eG(1, X + iY) I:X(X2 + Yo+ Y(XP + Y)Y+ l}e[i}(z) +
z

0 A s ) e e {i + 2RE[E0E)  l)

z z
Putting Y = 0 and letting X — 0+, we observe that G(z, 0) ¢(z, 0, 0) = 0. Similarly
G(1, 0) ¥(t, 0, 0) = 0. Therefore G(r, 0) g(t, 0) = 0.

Theorem 3.1. Assume that 0 < 3 < o, « > 0. Suppose there is a function E(t) e
€ C[to, o) such that

(3.4) f °° exp [cx f E@) di] ds <

and that

(3.5) G(t, 2) Re {h © [1 + g(‘( ;)]} < B()

holds for t 2 1,, z€ K(0,9). For ae(0,1) suppose in addition that any initial
value problem (3.1), z(z) = 0, where © 2 t,, possesses the unique solution (z(t) = 0).
If a solution z(t) of (3.1) satisfies

(3.6) z()eK(9) for t=1ty,
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where t; Z t,, then

r |z dr < o0 .
ty

Proof. Let z(f) be any solution of (3.1) satisfying (3.6). If « € (0, 1) we may assume
that z(1) # O for t 2 1,. For t = t, we have

d2~—£wzw7= e[w(z) w(z) 2] =
L) = L [4e) 430 = 2 Re[w(@)503) 2

= 2 Re {w(z) ;;’G) [z7' + r(2)] 2} =2W*z) Re[W(0) h™'(2) 2] ,
where z = z(r). Therefore
W(z) = W(z) Re [ (0) h(2) 2] =
= G(1, z) W(z) Re {I'(0) h™'(z) [h(z) + 9(1, 2)]} =

=y ware frof 1 + 2]

for t = t;. This together with (3.5) yields
L) = 2 W E0) ) 5 2 E) W)

for t = t;. Hence

%{W“(Z(Q) exb[—ajt E(¢) dg]} <0, 121,

ty

Integrating this inequality from ¢, to ¢, we obtain

W%AM%p[ﬁjlﬂ@@]—Wﬂd@)é&

Thus

W%@§WW&WPMHM+tgm

tt

Integration over [t,, f] gives

Jtl W*(z(s)) ds £ W*(z(t,)) Jtl exp ;ac r E(¢) dg] ds, 121,.

ty

Consequently,

f W(z(1)) dt £ W(z(t,)) exp [—oc f“ E(¢) dé] r exp [a j E(&) df] ds .

to to to
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This inequality together with (3.4) implies

J'w W(z(t)) dt < oo .

o]

and Cl K(9) < K(%) is a compact set, there exists a constant L > 0 such that

Since

W(z) =

>

W(z) 2 L|z| for zeCIK(9).
Accordingly

r 20 dr < L"ﬂfr Wo(=(1) dt < o .

121

Theorem 3.2. Assume that 0 < 8 < Ay, o = 1. Suppose there are functions D(t),
E(1) € C[t,, ), E(1) 2 0, such that

r P [“ J D(¢) dc] ds < o,
j :’° {j t E(e) exp [“ L D(n) dn] df} ds <,

and that
(3.7) G(t,z) Re K'(0) < D(1),
(3.8) W(z) G(1, z) Re [g(t, z) };T(%)] < E(1)

hold for t = to, z€ K(0, 9).
If a solution z(1) of (3.1) satisfies
(3.6) () e K(9) for tz=t,

where t; = to, then

J |z()]* dt < oo
121

Proof. Let z() be any solution of (3.1) satisfying (36) Put 4 = {t = t; :z(t) e
e K(0,9)}, My = {t = 1, : z() e K(9)} = [1y, 0). We have
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for te 4. Let T = t, be such a number that z(t) = 0. Then

(o) — i M) O [J, ]

tot+ F— T tortt t—7

o[-

t—7
= ‘G(T, 0) g(z, ())I .

Similarly
W_((2) = ~[6(x. 0) 9(z. 0)] .

Hence W(z(1)) exists if and only if G(z, 0) g(z, 0) = 0. In this case W(z(t)) = 0.
Let ;= {t = t,:2(t) = 0, G(t,0)g(t,0) = 0}. The set M, — (M U M) is
at most countable. For t € /# '

S Woz) = @ () W(z) = o Gt 2) WH(2) Re {h’(O) [1 ; 9-(’—2—)]}
dt h(z)

holds. Notice that h(z) = z g(z), where q e #(Q) and ¢(z) # 0 for z € Q. Using

(3.7) and (3.8), we obtain

% W(z) < « D() WH(z) + o« W '(z) E(i) <

< o D(t) W*(z) + «9* L E(t) for te. v .M,
and

E—t W(z) — o D(1) W(z)| < «|G(t, z) Re h'(0) — D(1)] W*(z) +

exp [ j z¥) dz*]

B() = ][ g; {Wa(z(t)) exp [~—oc J : D(s) ds]} whenever 1€ .4 U My,

0 whenever te Mo — (M U M).

+ a9 *|G(t, z) g(t, z) h'(0)]

la(2)] !

for te U M.
Define

B(1) satisfies the estimates

(3.9) B(1) < a1 E(1) exp [_ . J’ " D(s) ds] ,

T

1B(1)] < (|G 2) Re W(0) — ()| W) +
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exp | (%) dz ,
qu(z)l | = RCH

for t € 4. Thus B(t) is continuous for te # U 4. Let .#, be the set of all t = #;
for which B(z) is discontinuous. Since #, < My — (4 U M), the set A, is at

most countable. Moreover, B(t) is bounded on any compact subinterval of [1,, o).
Therefore

+ 9 71G(t, z) g(1, 2) W' (0)|

J " B(s)ds = W=() exp[—-a f D(s) ds] — W(=(1y))

ty
for t = 1,.
Integration of (3.9) yields

Wo(z(1)) exp I:—oc j 0 ds] — Wi(e(t)) <

ty

< a7t _r E(s) exp :-ocr D(¢) dq’] ds

121 . t;

for t = t,. Hence

j " We(9) ds < wie(i) | exp [oz J " D(©) dc] ds +

t1 ot 1y

o [ e rosudo
= W(z(t,)) exp [— o j : D(¢) dé] J. : exp [a J‘to D(&) dé] ds +

+ 0§ ! f U: E(&) exp [ocL D(n) dn] dg“} ds < 0.

The rest of the proof is the same as that of Theorem 3.1.

Theorem 3.3. Assume that 0 < 8 < Ao, % < ©, ¢ = 1, Re h'(0) # 0. Suppose
there are nonnegative functions D(t), E(t) € C[to, ) such that

r D(t)dt = o,

to

(3.10) r E(1)dt < o0,

to
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and that
G(1,z) 2 D(1),

~ sen [Re W(0)] W(:) G, =) Re [go, 2) ;—(L‘;)] < B(1)
hold for 1 = 1o, z € K(0, 9).
If a solution =(1) of (3.1) satisfies
(3.6) 2(t)eK(9) for 121,
where t; = 1,, then
JwMOMMMU<w

and
lim z(1) = 0.

t— o0

Proof. Without loss of generality we may assume that o = 1. Proceeding similarly
as in the proof of Theorem 3.2 and defining

4 W(z(r)) whenever el U /A

0 whenever te iy — (H O M),

we observe that

fmm=m@ywwmﬁgq

and
— sgn [Re #/(0)] B(t) £ — D(t) |Re h'(0)| W((2(r)) + E(2)

for ¢ = 1,. Integrating this inequality over [#,, t] and letting { — oo, we infer, in
view of (3.10) and 0 < W(z) < 9, that

fmwwmmw.

tr

Therefore

(3.11) lim inf W(z(£)) = lim inf |2(1)] = 0.
t— o =0

Let Re h'(0) < 0. For ne N choose s, = 1, such that
Et)dt < ———In(n+1), neN.
J 20s =gy )

By using Theorem 2.3 with 8, = 8/(n + 1), E,(r) = D(t) Re h'(0) + (n + 1) E(1)/9,
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we obtain
(3.12) lim z(1) = 0.

t—= o0
We shall prove that (3.12) holds also if Re #’(0) > 0. Suppose this is not the case. Then
lim sup W(z(1)) = > 0.
i~ oo

For n e N define s, = 1, such that

n =

2n

JwE(t)dt <P

Sn

Using Theorem 2.4 with 6 = fe™!/2, 9, = 9, E,(t) = —D(t) Re h'(0) + 2e E(1)/B
we get
lim inf W(z(1)) > 0,
- o0

which contradicts (3.11). This proves (3.12).
Now, there exists a positive constant Lsuch that

W) = =) |exp [ f :m (%) dz*]

for ¢t = t;. Therefore

r D(1) |z(1)] dt < L7 .ro D(1) W(z(1)) dt < oo .

ty 31

> LI()

4. APPLICATION TO THE EQUATION z= ¢(1, z) — p(t)22

In this section we propose establishing certain results concerning the asymptotic
behaviour of the equation

(4.1) z = q(1,z) — p(t) 2%,

where pe C(I), ge C(I x C). Some results of this type are given in [1], [2]. The
special case of (4.1) is studied in [3], [4], where M. Réb has obtained results des-
cribing the asymptotic properties of the Riccati differential equation

z = g(1) — p(t) 22
with complex-valued coefficients p, g.
If a, beC, y(t) e C[ty, ©), Y(t) > 0, then (4.1) can be written in the form

2) z’:t//(t)[(};—a)(z~a)(z~b)+g~(l/;(’;;~)-£%zz+

+(5~E)(z—a)(z~b)].
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Suppose a # b and denote ¢ = a — b. Substituting z; =z — a or z, = z — b,
we get

(4.21) 2y = Gy(t, zy) [171(21) + g4(1, z)]
(4.2,) 2y = Go(t, z2) [1a(z2) + 92(t, 22)]

respectively, where
Gy(t, z,) = Y(1), hy(zy) = —éz,(z, + o),
a(t, z; +a) _ p(t)
¥(1) 0]
Galts 22) = Y(1), ha(zs) = —za(zs — <)

alt,z; + b) _ p(1)
¥(1) ()

g1(t, z;) = (z1 + a)® + ez4(z, + ¢),

g,(t, z,) = (z2 4+ b)* + Czy(z, — ¢) .

Put
Q; = {z;€C:2Re[ez,] > —|c*},

Q, = {z;eC:2Re[iz,] < |c?}.

I

L. First we shall consider the equation (4.2) on the set I x ,. We find out that
W(z,) = ’c[ ‘zll |Z1 + c[”l, Ao = ]c! and K(4,) = ;. Moreover, we have

R() ={z,e :]cl lz,] = A'zl + c‘}

for 0 £ A < 4. Notice that

l21 + c[ > —'C‘l:
]c! + A
for z; € K(1), where 0 < 1 < 2,, and

2] > Jd2

1c[+ A

for z; € K(4, 4g), where 0 < 4 < 4.
Suppose that there is an H(t) € C[#,, o) such that
la(1, 2, + a) + ab p(t) — (a + b) p(t) (z; + a)| = H(1)

for t = ty, z; € 4.
1° Assume that

(4.3) Re[cp()] >0 for t=1,,

(4.4) J " Re [ep(t)]dt = 0

to
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and
(4.5) j H(f)dt < .
to
Let s, = 1, be such that
J. H(f)dt < Me"‘ , neN.
. 4n
Put Y{1) =1 and

=He_1 for neN.
n

We have
we o+ 505
- Re {[q(l ot a)—atp(t)—(a + B) p(i) 2] - (—;C} ;
O ke &
~ e e s+ )+ b = (04 800 s+ ) -
~ Re[e p(9] £ HO) l*l“lH R UE
< H() | ]HJS ] "= Reert = £ 10 = Ree o0

for t = s,, zy € K(0,, Ao), neN.

Using Theorem 2.3 (with 9 =4, = |¢|, G(1,2) =1, Ef) =4 H(1)[8, —
— Re [¢ p(1)]), we get the following assertion:

If a solution z,(1) of (4.2,) satisfies the condition

|z5(t,)| < exp[ c lj‘ (1) dt] |z:(11) + ¢,

where ty = s, then

limz () =0.

>0

2° Suppose that (4.3), (4.4) and (4.5) hold. Put

vy = “E L.
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Then

W(z1) w(i) Re I:gl(t oF (01))}

— W(z) Re {[q(t o+ a)+ abp(i) — (a + b) p(t) (21 + a)]

fIA

1( C)}
l l lzli l l l,_ <
< 1~1 ] H(1) Sl le S H(i) < 4 H()

for t = 1o, z; € K(0, 4).

Applying Theorem 3.3 (with 9 = 4, =
we obtain the following statement:

If a solution z,(t) of (4.2)) satisfies

2Re[ez(t)] > —|c|* for tz1t,,

e, D(1) = G(t, 2) = ¥(1). E() = 4 H(1)),

where t; = t,, then
j Re [¢ (1] |z4(5)] dr < o0
£y

and
lim z,(f) =

t— o0
1I. Consider the equation (4.2,) on the set I x Q,. In this case we have W(z,) =
= ]cl ]22( |22 - cl_‘, lo = lcl and K(4o) = Q,. Further,
R(3) = {z,€Q;:|¢| |z| = 4|z, — ([}
for 0 < 4 < ;. Notice that
2
|z = ¢ > e
!cl + 4
for z, € K(%), where 0 < 4 £ 1, and,
lzzl' > ’C /4
]c[ + 4
for z, e K(2, 2y), where 0 £ 4 < A,.
Suppose there is an H(1) € C[1,, o) such that
la(t. z, + b) + ab p(1) = (a + b) p(t) (z, + b)| < H(1)

for t = t4, z, € Q,.
30
Define S = t, so that

e ).
“ 1)
L H(t)dt < .
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Then

—Re{h;(O)[l+€2—(5’~Z—2)]}é —U- - Re[e p(9] <

hz(zz) '~zi Lz -

< 1) |{ H——— | - rele ] =

= 2 ) - Re[e (0]

holds for 1 = S ad z, € K(, )
Making use of Theorem 2.2 (with 9 = Ao = |c
G(t, z) = 1), we get:

If a solution z,(t) of (4.2,) satisfies
|<| |z2(t1)| > del|z,(ty) — ¢

[6 — Re [c p(1)],

where t; = S, then
lef [z2(0)] > 8]za(1) = ¢
for all t = t; for which z,(1) is defined.
4° Suppose that (4.3), (4.4) and (4.5) hold. Putting
Re|c plt
() = ————~—[M2( )] )

we obtain

—W(z,) ¥(f) Re l:gz(z, z,) ,2(0)] I l |ZZ] H() IC[

hy(z2)] !Zz - c‘ ’Z2l IZZ - ci B

< —U-# H(z) < 4 H(r)

|22 =

for t = 1,, z, EK(O, AO).

Applying Theorem 3.3 (with 8 = 4, = iCl, D(t) = G(t, z) = Y(1), E(t) = 4 H(r))
we get the following assertion:

If a solution z,(t) of (4.2,) satisfies
2Re[éz(t)] < |e|* for tz1y,

where t; 2 t,, then
j‘ Re [¢ p(1)] |zz(t)| dt < o
ty
and

lim z,(f) = 0.

t— 0
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By virtue of 1°, 2°, 3°, 4° we can prove the following generalization of Theorem 5
of [3] and Theorem 6 of [4]:

Theorem 4.1. Suppose there exist a, b€ C and H(t) € C[t,, ©) such that
lq(t, z) + ab p(t) — (a + b) p(1) z[ SH{) for t21t,, zeC,
Re[(a —b)p()] >0 for t=1,,

r Re [(a — b) p(i)] dt = o

and

(4.5) J " H(i) di < oo.

Then each solution z(1) of (4.1) de;ned Jor t = oo satisfies either
(4.6) limz() = a, f " Re [(a - b) p()] |2(1) — a| di < oo
i o

@ g =5, [ Rl BRI - b ar < oo

Let S = t, be such that

r H(1) di < (4e)* |a — b].

s

Then each solution z(1) of (4.1) satisfying
lz(t,) — a] <exp| — _de 00H(t) dt lz(tl) — b[ ,
]a - bl s

where t; = S, is defined for all t 2 1, and

limz(t) = a.

t—= w0
Proof. Denote ¢ = a — b. Suppose there is a solution z(z) of (4.1) such that
Re{e[22(1,) —a—b]} =0, neN,
where

lim 7, = oo.

Using 1°, 3°, it can be easily verified that there exists an L > 0 with the following
property:
fz(t) - a! lz(t) - bl =L
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for sufficiently large t € I. For these t's we get

A1) —a| _ o) = | o ¢ e
il = b ") =) {(z-a)(z_bﬂq(” (1) 1}—

< |2(1) — 4 {[c] la(1, 2) + ab p(t) — (a + b) p(1) 2| _
= |z(r) — b |z — a||z — b|

- Re[e pu)]}» <

< z(t)_——_a cl — Refe
={;,)_l}l{LH(t> Refe (]}

o[ - el

Hence

Integration and the limiting process ¢t — oo yield

lim (1) :—(ﬂ =

o l2() = b

>

which contradicts our initial supposition. Consequently, there is a © 2 t, such that
either

Re{¢e[2z() —a—b]} >0 for t21
or

Re{¢[2z(f) —a — b]} <O for 12=1.

In view of 2° and 4° the solution z(1) satisfies either (4.6) or (4.7). The rest of the proof
results from 1°.
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