On Certain Class of Multivalent Functions Involving the Cho-Kwon-Srivastava Operator

Jamal Mohammad Shenan
Department of Mathematics, Alazhar University-Gaza, P. O. Box 1277, Gaza, Palestine
e-mail: shenanjm@yahoo.com

AbStract. In this paper a new subclass of multivalent functions with negative coefficients defined by Cho-Kwon-Srivastava operator is introduced. Coefficient estimate and inclusion relationships involving the neighborhoods of p-valently analytic functions are investigated for this class. Further subordination result and results on partial sums for this class are also found.

1. Introduction

Let S_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \quad(p \in N=\{1,2,3 \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the unit disk $U=\{z:|z|<1\}$. Also denote by T_{p} the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \quad\left(a_{p+k} \geq 0 ; p \in N=\{1,2,3 \ldots\}\right) . \tag{1.2}
\end{equation*}
$$

For functions

$$
\begin{equation*}
f_{j}(z)=z^{p}-\sum_{k=1}^{\infty} a_{p+k, j} z^{p+k}\left(a_{p+k, j} \geq 0 ; j=1,2\right), \tag{1.3}
\end{equation*}
$$

in the class T_{p}, the modified Hadamard product $f_{1} * f_{2}(z)$ of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z^{p}-\sum_{k=1}^{\infty} a_{p+k, 1} a_{p+k, 2} z^{p+k} . \tag{1.4}
\end{equation*}
$$

Received November 30, 2010; accepted September 23, 2011.
2010 Mathematics Subject Classification: 30C45, 30C50, 30C55.
Key words and phrases: Analytic function, p-valent functions, neighborhood of analytic functions, subordination.

Saitoh [9] introduced a linear operator:

$$
L_{p}(a, c): S_{p} \longrightarrow S_{p}
$$

defined by

$$
L_{p}(a, c) f(z)=\phi_{p}(a, c ; z) * f(z) \quad(z \in U)
$$

where

$$
\begin{equation*}
\phi_{p}(a, c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{p+k} \tag{1.5}
\end{equation*}
$$

and $(a)_{k}$ is the Pochhammer symbol defined by

$$
(a)_{k}=\frac{\Gamma(a+k)}{\Gamma(a)}= \begin{cases}1 ; & (\mathrm{k}=0) \\ a(a+1)(a+2) \ldots(a+k-1), & (k \in N)\end{cases}
$$

In 2004, Cho, Kwon and Srivastava [3] introduced the following linear operator $I_{p}^{\lambda}(a, c)$ analogous to $L_{p}(a, c)$:

$$
I_{p}^{\lambda}(a, c): S_{p} \longrightarrow S_{p}
$$

defined by
(1.6) $I_{p}^{\lambda}(a, c) f(z)=\phi_{p}^{\star}(a, c ; z) * f(z) \quad\left(z \in U ; a, c \in R \backslash Z_{0}^{-} ; \lambda>-p ; f \in A_{p}\right)$,
where ϕ_{p}^{\star} is the function defined in terms of the Hadamard product (or convolution) by the following condition:

$$
\begin{equation*}
\phi_{p}(a, c ; z) * \phi_{p}^{\star}(a, c ; z)=\frac{z^{p}}{(1-z)^{\lambda+p}} . \tag{1.7}
\end{equation*}
$$

We can easily find from (1.5), (1.6) and (1.7) and for the function $f(z) \in T_{p}$ that

$$
\begin{equation*}
I_{p}^{\lambda}(a, c) f(z)=z^{p}-\sum_{k=1}^{\infty} \frac{(\lambda+p)_{k}(c)_{k}}{k!(a)_{k}} z^{p+k} \quad(z \in U ; \lambda>-p) \tag{1.8}
\end{equation*}
$$

It is easily verified from (1.8) that

$$
\begin{equation*}
z\left(I_{p}^{\lambda}(a+1, c) f\right)^{\prime}(z)=a I_{p}^{\lambda}(a, c) f(z)-(a-p) I_{p}^{\lambda}(a+1, c) f(z) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
z\left(I_{p}^{\lambda}(a, c) f\right)^{\prime}(z)=(\lambda+p) I_{p}^{\lambda+p}(a, c) f(z)-\lambda I_{p}^{\lambda}(a, c) f(z) \tag{1.10}
\end{equation*}
$$

Also by specializing the parameter λ, a and c we obtain from (1.8)

$$
I_{p}^{1}(p+1,1) f(z)=f(z), \quad I_{p}^{1}(p, 1) f(z)=\frac{z f^{\prime}(z)}{p}
$$

and

$$
I_{p}^{n}(a, a) f(z)=D^{n+p-1} f(z) \quad(n>-p)
$$

where D^{n+p-1} is the well-known Ruscheweyh derivative of order $n+p-1$.
Now making use of Cho-Kwon-Srivastava operator $I_{p}^{\lambda}(a, c)$ defined by (1.8), we introduced the following subclass $H_{p}(a, b, c, \lambda, \beta)$ of p -valent analytic function.

Definition 1. A function $f(z) \in T_{p}$ is said to be in the class $H_{p}(a, b, c, \lambda, \beta)$ if it satisfies the following inequality:

$$
\begin{gather*}
\left|\frac{1}{b}\left(\frac{z\left(I_{p}^{\lambda}(a, c) f(z)\right)^{\prime}}{I_{p}^{\lambda}(a, c) f(z)}-p\right)\right|<\beta \tag{1.11}\\
(z \in U ; p \in N ; \lambda>-p ; b \in C \backslash\{0\} ; \quad 0<\beta \leq 1) .
\end{gather*}
$$

It may be noted that for suitable choice of a, b, c and λ the class $H_{p}(a, b, c, \lambda, \beta)$ extends several classes of analytic and p-valent functions such as
(i) $\quad H_{p}(p+1, b, 1,1, \beta)=S_{p}(b, \beta)=\left\{f(z) \in A_{p}:\left|\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)\right|<\beta\right\}$

$$
(z \in U ; p \in N ; 0<\beta \leq 1)
$$

(ii) $H_{p}(p, b, 1,1, \beta)=C_{p}(b, \beta)=\left\{f(z) \in A_{p}:\left|\frac{1}{b}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1-p\right)\right|<\beta\right\}$

$$
(z \in U ; p \in N ; 0<\beta \leq 1)
$$

Where the classes $S_{p}(b, \beta)$ and $C_{p}(b, \beta)$ are the well know classes of starlike and convex p-valent functions of complex order. The classes $S_{p}(1, \beta)=S_{p}^{*}(\beta)$ and $C_{p}(1, \beta)=K_{p}^{*}(\beta)$ are the classes of starlike and convex p-valent functions introduced by Owa [5] and studied by Patil and Thakare [6].

Now following the earlier investigation by Goodman [4], Ruscheweyh [8], Altintas and Owa [1], Raina and Srivastava [7], Aouf [2] and others, we define the δ-neighborhood of a function $f(z) \in T_{p}$ by (see, for example, [5, p. 1668])

$$
\begin{equation*}
N_{\delta}(f)=\left\{g: g \in T_{p}, g(z)=z^{p}-\sum_{k=1}^{\infty} b_{p+k} z^{p+k} \text { and } \sum_{k=1}^{\infty}(k+p)\left|a_{p+k}-b_{p+k}\right| \leq \delta\right\} \tag{1.12}
\end{equation*}
$$

In particular, if

$$
h(z)=z^{p} \quad(p \in N),
$$

we immediately have

$$
\begin{equation*}
N_{\delta}(h)=\left\{g: g \in T_{p}, g(z)=z^{p}-\sum_{k=1}^{\infty} b_{p+k} z^{p+k} \text { and } \sum_{k=1}^{\infty}(k+p)\left|b_{p+k}\right| \leq \delta\right\} \tag{1.13}
\end{equation*}
$$

2. Coefficient estimates

Theorem 1. Let the function $f(z) \in T_{p}$ be defined by (1.2). Then $f(z) \in$ $H_{p}(a, b, c, \lambda, \beta)$ if and only if

$$
\begin{gather*}
\sum_{k=1}^{\infty}\{k+\beta|b|\} \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} a_{p+k} \leq \beta|b| \tag{2.1}\\
\left(z \in U ; p \in N ; a, c \in R \backslash Z_{0}^{-} ; \lambda>-p ; b \in C \backslash\{0\} ; 0<\beta \leq 1\right) .
\end{gather*}
$$

The result is sharp.
Proof. Let the function $f(z) \in T_{p}$ be defined by (1.2) and belongs to $H_{p}(a, b, c, \lambda, \beta)$. Then in view of (1.8) and (1.11) we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(I_{p}^{\lambda}(a, c) f(z)\right)^{\prime}}{I_{p}^{\lambda}(a, c) f(z)}-p\right\}>-\beta|b| \quad(z \in U) \tag{2.2}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{-\sum_{k=1}^{\infty} \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} k a_{p+k} z^{k}}{1-\sum_{k=1}^{\infty} \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} a_{p+k} z^{k}}\right\}>-\beta|b| \quad(z \in U) . \tag{2.3}
\end{equation*}
$$

Setting $z=r(0 \leq r<1)$ in (2.3), we have that the expression in the denominator of the left-hand side of (2.3) is positive for $r=0$ and also for all $r(0<r<1)$. Thus by letting $r \longrightarrow 1^{-}$through real values, (2.3) leads us to the desired assertion (2.1) of Theorem 1.
Conversely, by applying the hypothesis (2.1) and letting $|z|=1$, we find from (1.11) that

$$
\begin{aligned}
\left|\frac{z\left(I_{p}^{\lambda}(a, c) f(z)\right)^{\prime}}{I_{p}^{\lambda}(a, c) f(z)}-p\right| & =\left|\frac{\sum_{k=1}^{\infty} \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} k a_{p+k} z^{k}}{1-\sum_{k=1}^{\infty} \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} a_{p+k} z^{k}}\right| \\
& \leq \frac{\sum_{k=1}^{\infty} \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} k a_{p+k}}{1-\sum_{k=1}^{\infty} \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} a_{p+k}} \\
& \leq \frac{\beta|b|\left\{1-\sum_{k=1}^{\infty} \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} a_{p+k}\right\}}{1-\sum_{k=1}^{\infty} \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} a_{p+k}}=\beta|b| .
\end{aligned}
$$

Hence by maximum modulus principle we have $f(z) \in H_{p}(a, b, c, \lambda, \beta)$, which evidently completes the proof of Theorem.

Our first inclusion relation involving $N_{\delta}(h)$ is given in the following theorem.
3. Inclusion relationships involving δ-neighborhoods for the class $H_{p}(a, b, c, \lambda, \beta)$.

Theorem 2. Let

$$
\begin{equation*}
\delta=\frac{a(p+1) \beta|b|}{c(\lambda+p)(1+\beta|b|)} \quad(p>|b|), \tag{3.1}
\end{equation*}
$$

then

$$
\begin{equation*}
H_{p}(a, b, c, \lambda, \beta) \subset N_{\delta}(h) \tag{3.2}
\end{equation*}
$$

Proof. Let $f(z) \in H_{p}(a, b, c, \lambda, \beta)$. Then, in view of Theorem 1, we have

$$
\begin{equation*}
\{1+\beta|b|\} \frac{c(\lambda+p)}{a} \sum_{k=1}^{\infty} a_{p+k} \leq \sum_{k=1}^{\infty}\{k+\beta|b|\} \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} a_{p+k} \leq \beta|b| \tag{3.3}
\end{equation*}
$$

which readily yields

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{p+k} \leq \frac{a \beta|b|}{c(\lambda+p)(1+\beta|b|)} \tag{3.4}
\end{equation*}
$$

Making use of (2.1) again, in conjunction with (3.4), we get

$$
\sum_{k=1}^{\infty}(k+p) \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} a_{p+k}+\sum_{k=1}^{\infty}(\beta|b|-p) \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} a_{p+k} \leq \beta|b|
$$

or

$$
\begin{aligned}
\frac{c(\lambda+p)}{a} \sum_{k=1}^{\infty}(k+p) a_{p+k} & \leq \beta|b|+(p-\beta|b|) \frac{c(\lambda+p)}{a} \sum_{k=1}^{\infty} a_{p+k} \\
& \leq \beta|b|+\frac{\beta|b|(p-\beta|b|)}{(1+\beta|b|)}=\frac{(1+p) \beta|b|}{(1+\beta|b|)} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{k=1}^{\infty}(k+p) a_{p+k} \leq \frac{a(p+1) \beta|b|}{c(\lambda+p)(1+\beta|b|)} \quad(p>|b|) \tag{3.5}
\end{equation*}
$$

which, by means of (1.13), establishes the inclusion (3.1) asserted by Theorem 2.

Putting (i) $\lambda=c=1, a=p+1$ and (ii) $\lambda=c=1, a=p$ in Theorem 2, we obtain the following results.

Corollary 1. Let

$$
\begin{equation*}
\delta=\frac{(p+1) \beta|b|}{(1+\beta|b|)} \quad(p>|b|) \tag{3.6}
\end{equation*}
$$

then

$$
\begin{equation*}
S_{p}(b, \beta) \subset N_{\delta}(h) \tag{3.7}
\end{equation*}
$$

Corollary 2. Let

$$
\begin{equation*}
\delta=\frac{p \beta|b|}{(1+\beta|b|)} \quad(p>|b|) \tag{3.8}
\end{equation*}
$$

then

$$
\begin{equation*}
C_{p}(b, \beta) \subset N_{\delta}(h) \tag{3.9}
\end{equation*}
$$

4. δ-neighborhoods for the class $H_{p}^{(\alpha)}(a, b, c, \lambda, \beta)$.

In this section, we determine the neighborhood for the class $H_{p}^{(\alpha)}(a, b, c, \lambda, \beta)$, which define as follows. A function $f(z) \in T_{p}$ is said to be in the class $H_{p}^{\alpha}(a, b, c, \lambda, \beta)$ if there exists a functional $g(z) \in H_{p}(a, b, c, \lambda, \beta)$ such that

$$
\left|\frac{f(z)}{g(z)}-1\right|<p-\alpha \quad(z \in U ; 0 \leq \alpha<p)
$$

Theorem 3. Let $g(z) \in H_{p}(a, b, c, \lambda, \beta)$ and

$$
\begin{equation*}
\alpha=p-\frac{\delta c(\lambda+p)(1+\beta|b|)}{(p+1)[c(\lambda+p)(1+\beta|b|)-a \beta|b|]}, \tag{4.1}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{\delta}(g) \subset H_{p}^{(\alpha)}(a, b, c, \lambda, \beta) \tag{4.2}
\end{equation*}
$$

Proof. Let $f(z) \in N_{\delta}(g)$. We find from (1.12)

$$
\begin{equation*}
\sum_{k=1}^{\infty}(p+k)\left|a_{p+k}-b_{p+k}\right| \leq \delta \tag{4.3}
\end{equation*}
$$

which readily implies that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|a_{p+k}-b_{p+k}\right| \leq \frac{\delta}{(p+1)} \quad(p \in N) \tag{4.4}
\end{equation*}
$$

Next, since $g(z) \in H_{p}(a, b, c, \lambda, \beta)$, we have from Theorem 1

$$
\begin{equation*}
\sum_{k=1}^{\infty} b_{p+k} \leq \frac{a \beta|b|}{c(\lambda+p)(1+\beta|b|)} \tag{4.5}
\end{equation*}
$$

so that

$$
\begin{align*}
\left|\frac{f(z)}{g(z)}-1\right| & \leq \frac{\sum_{k=1}^{\infty}\left|a_{p+k}-b_{p+k}\right|}{1-\sum_{k=1}^{\infty} b_{p+k}} \leq \frac{\delta c(\lambda+p)(1+\beta|b|)}{(p+1)[c(\lambda+p)(1+\beta|b|)-a \beta|b|]} \tag{4.6}\\
& =(p-\alpha)
\end{align*}
$$

provided that α is given by (4.1). Thus $f(z) \in H_{p}(a, b, c, \lambda, \beta)$. This evidently proves Theorem 3.

Putting (i) $\lambda=c=1, a=p+1$ and (ii) $\lambda=c=1, a=p$ in Theorem 3, we obtain the following results.

Corollary 3. Let $g(z) \in S_{p}(b, \beta)$ and

$$
\begin{equation*}
\alpha=p-\frac{\delta(1+\beta|b|)}{(p+1)}, \tag{4.7}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{\delta}(g) \subset S_{p}^{(\alpha)}(b, \beta) \tag{4.8}
\end{equation*}
$$

Corollary 4. Let $g(z) \in C_{p}(b, \beta)$ and

$$
\begin{equation*}
\alpha=p-\frac{\delta(1+\beta|b|)}{1+p+\beta|b|}, \tag{4.9}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{\delta}(g) \subset C_{p}^{(\alpha)}(b, \beta) . \tag{4.10}
\end{equation*}
$$

5. Subordination results

The function $f(z)$ is said to be subordinate to $g(z)$ in U written $f(z) \prec g(z)$, if there exist a function $w(z)$ analytic in U such that $w(0)=0$, and $|w(z)|<1$, such that $f(z)=g(w(z))$.
Definition 2. A sequence $\left\{b_{p+k}\right\}_{k=0}^{\infty}$ of complex numbers is said to be a subordinating factor sequence if for any regular and convex function

$$
g(z)=\sum_{k=0}^{\infty} c_{p+k} z^{p+k}
$$

with $c_{p}=1, z \in U$,

$$
\begin{equation*}
\sum_{k=0}^{\infty} b_{p+k} c_{p+k} z^{p+k} \prec g(z) \quad(z \in U) . \tag{5.1}
\end{equation*}
$$

In 1961, wilf [10] gave following necessary and sufficient conditions for a sequence to be a subordinating factor sequens:

Lemma 1. The sequence $\left\{b_{p+k}\right\}_{k=0}^{\infty}$ is a subordinating factor sequens if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+2 \sum_{k=0}^{\infty} b_{p+k} z^{p+k}\right\}>0 \quad(z \in U) . \tag{5.2}
\end{equation*}
$$

Theorem 4. Let $f(z) \in H_{p}(a, b, c, \lambda, \beta)$ of the form (1.2) and

$$
g(z)=\sum_{k=0}^{\infty} c_{p+k} z^{p+k}, \quad c_{p}=1
$$

be regular and convex function in U, then

$$
\begin{equation*}
\frac{c(\lambda+p)(1+\beta|b|)}{2[c(\lambda+p)(1+\beta|b|)+a \beta|b|]}(f * g) \prec g(z), \tag{5.3}
\end{equation*}
$$

where

$$
(z \in U ; p \in N ; \lambda>-p ; b \in C \backslash\{0\} ; 0<\beta \leq 1)
$$

Moreover,

$$
\begin{equation*}
\operatorname{Re}\{f(z)\}>(-1)^{p} \frac{\{a \beta|b|+c(\lambda+p)(1+\beta|b|)\}}{c(\lambda+p)(1+\beta|b|)} \tag{5.4}
\end{equation*}
$$

and the subordinating result (5.3) is sharp for the maximum factor

$$
\begin{equation*}
\frac{c(\lambda+p)(1+\beta|b|)}{2[c(\lambda+p)(1+\beta|b|)+a \beta|b|]} . \tag{5.5}
\end{equation*}
$$

Proof. Let $f(z) \in H_{p}(a, b, c, \lambda, \beta)$ of the form (1.2) and

$$
g(z)=\sum_{k=0}^{\infty} c_{p+k} z^{p+k}, \quad c_{p}=1
$$

be regular and convex function in U. To show subordination result (5.3), we need to show that

$$
\left\{\frac{c(\lambda+p)(1+\beta|b|) a_{p+k}}{2[c(\lambda+p)(1+\beta|b|)+a \beta|b|]}\right\}_{k=0}^{\infty}
$$

is a subordinating factor with $a_{p}=1$ which in view of Lemma 1 is true if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\sum_{k=0}^{\infty} \frac{c(\lambda+p)(1+\beta|b|) a_{p+k} z^{p+k}}{[c(\lambda+p)(1+\beta|b|)+a \beta|b|]}\right\}>0 \quad(z \in U) \tag{5.6}
\end{equation*}
$$

Since

$$
\{k+\beta|b|\} \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} \geq\{1+\beta|b|\} \frac{c(\lambda+p)}{a}>0 \quad(k \geq 1)
$$

on using Theorem 1, we have for $|z|=r<1$,

$$
\begin{aligned}
& \operatorname{Re}\left\{1+\frac{c(\lambda+p)(1+\beta|b|)}{[c(\lambda+p)(1+\beta|b|)+a \beta|b|]} \sum_{k=0}^{\infty} a_{p+k} z^{p+k}\right\} \\
= & R e\left\{1+\frac{c(\lambda+p)(1+\beta|b|)}{[c(\lambda+p)(1+\beta|b|)+a \beta|b|]} z^{p}\right. \\
& \left.+\frac{1}{[c(\lambda+p)(1+\beta|b|)+a \beta|b|]} \sum_{k=0}^{\infty} c(\lambda+p)(1+\beta|b|) a_{p+k} z^{p+k}\right\} \\
\geq & 1-\frac{c(\lambda+p)(1+\beta|b|)\left|z^{p}\right|}{[c(\lambda+p)(1+\beta|b|)+a \beta|b|]}-\frac{\sum_{k=1}^{\infty} a\{k+\beta|b|\} \frac{(\lambda+p)_{k}(c)_{k}}{(1)_{k}(a)_{k}} a_{p+k}\left|z^{p+k}\right|}{[c(\lambda+p)(1+\beta|b|)+a \beta|b|]} \\
\geq & 1-\frac{c(\lambda+p)(1+\beta|b|) r^{p}}{[c(\lambda+p)(1+\beta|b|)+a \beta|b|]}-\frac{a \beta|b| r r^{p+1}}{[c(\lambda+p)(1+\beta|b|)+a \beta|b|]} \\
\geq & 1-\frac{c(\lambda+p)(1+\beta|b|)}{[c(\lambda+p)(1+\beta|b|)+a \beta|b|]}-\frac{a \beta|b|}{[c(\lambda+p)(1+\beta|b|)+a \beta|b|]}=0 .
\end{aligned}
$$

This evidently proves the inequality (5.6) and hence the subordination result (5.3). taking $g(z)=\sum_{k=0}^{\infty} z^{p+k}$ in the subordination result (5.3), we easily get the result (5.4), and for the function

$$
f(z)=z^{p}-\frac{a \beta|b|}{c(\lambda+p)(1+\beta|b|)} z^{p+1} \in H_{p}(a, b, c, \lambda, \beta),
$$

it can be verified that $\frac{c(\lambda+p)(1+\beta|b|)}{[c(\lambda+p)(1+\beta|b|)+a \beta|b|]}$ is a maximum factor for the subordination result (4.3).

6. Partial sums

In this section, we determine inequalities involving partial sums of $f(z) \in T_{p}$ where the partial sums of $f(z) \in T_{p}$ of the form (1.2) is defined as follows:

$$
\begin{equation*}
f_{0}(z)=z^{p} \text { and } f_{n}(z)=z^{p}-\sum_{k=1}^{n} a_{p+k} z^{p+k} \quad\left(a_{p+k} \geq 0 ; n \geq 1\right) \tag{6.1}
\end{equation*}
$$

Theorem 5. Let the function $f(z) \in T_{p}$ be defined by (1.2) belongs to $H_{p}(a, b, c, \lambda, \beta)$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{f_{n}(z)}\right\}>1-\frac{1}{\psi_{n+1}(p, a, b, c, \lambda, \beta)} \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}(z)}{f(z)}\right\}>\frac{\psi_{n+1}(p, a, b, c, \lambda, \beta)}{1+\psi_{n+1}(p, a, b, c, \lambda, \beta)} \tag{6.3}
\end{equation*}
$$

where

$$
\begin{gather*}
\psi_{n+1}(p, a, b, c, \lambda, \beta)=\{n+1+\beta|b|\} \frac{(\lambda+p)_{n+1}(c)_{n+1}}{(1)_{n+1}(a)_{n+1} \beta|b|} \tag{6.4}\\
\left(z \in U ; p \in N ; a, c \in R \backslash Z_{0}^{-} ; \lambda>-p ; b \in C \backslash\{0\} ; 0<\beta \leq 1\right) .
\end{gather*}
$$

Proof. Let the function $f(z) \in T_{p}$ be defined by (1.2) belongs to $H_{p}(a, b, c, \lambda, \beta)$, then from Theorem 1 and using

$$
\begin{equation*}
\psi_{n+1}(p, a, b, c, \lambda, \beta)>\psi_{n}(p, a, b, c, \lambda, \beta)>1 \tag{6.5}
\end{equation*}
$$

we get
(6.6) $\sum_{k=1}^{n} a_{p+k}+\psi_{n+1}(p, a, b, c, \lambda, \beta) \sum_{k=n+1}^{\infty} a_{p+k}<\sum_{k=1}^{\infty} \psi_{k}(p, a, b, c, \lambda, \beta) a_{p+k} \leq 1$.

Set

$$
\begin{equation*}
g_{1}(z)=\psi_{n+1}(p, a, b, c, \lambda, \beta)\left\{\frac{f(z)}{f_{n}(z)}-\left(1-\frac{1}{\psi_{n+1}(p, a, b, c, \lambda, \beta)}\right)\right\} \tag{6.7}
\end{equation*}
$$

which is analytic in U and $g_{0}(z)$. If (6.5) holds we find that

$$
\begin{aligned}
\left|\frac{g_{1}(z)-1}{g_{1}(z)+1}\right| & =\left|\frac{\psi_{n+1}(p, a, b, c, \lambda, \beta) \sum_{k=n+1}^{\infty} a_{p+k} z^{k}}{2+2 \sum_{k=1}^{n} a_{p+k} z^{k}+\psi_{n+1}(p, a, b, c, \lambda, \beta) \sum_{k=n+1}^{\infty} a_{p+k} z^{k}}\right| \\
& \leq \frac{\psi_{n+1}(p, a, b, c, \lambda, \beta) \sum_{k=n+1}^{\infty} a_{p+k}}{2-2 \sum_{k=1}^{n} a_{p+k}-\psi_{n+1}(p, a, b, c, \lambda, \beta) \sum_{k=n+1}^{\infty} a_{p+k}} \\
& \leq 1,
\end{aligned}
$$

which readily yields that $\operatorname{Re}\left(g_{1}(z)\right)>0$, and hence from (6.6) assertion (6.2) of Theorem 5 is obtained.
Similarly, if we set

$$
\begin{align*}
g_{2}(z) & =\left(1+\psi_{n+1}(p, a, b, c, \lambda, \beta)\right)\left\{\frac{f_{n}(z)}{f(z)}-\frac{\psi_{n+1}(p, a, b, c, \lambda, \beta)}{1+\psi_{n+1}(p, a, b, c, \lambda, \beta)}\right\} \tag{6.8}\\
& =\left\{1-\frac{\left(1+\psi_{n+1}(p, a, b, c, \lambda, \beta)\right) \sum_{k=n+1}^{\infty} a_{p+k} z^{k}}{1+\sum_{k=1}^{\infty} a_{p+k} z^{k}}\right\}
\end{align*}
$$

and making use of (6.5), we find that

$$
\begin{aligned}
\left|\frac{g_{2}(z)-1}{g_{2}(z)+1}\right| & =\left|\frac{\left(1+\psi_{n+1}(p, a, b, c, \lambda, \beta)\right) \sum_{k=n+1}^{\infty} a_{p+k} z^{k}}{2+2 \sum_{k=1}^{n} a_{p+k} z^{k}-\left(1+\psi_{n+1}(p, a, b, c, \lambda, \beta)\right) \sum_{k=n+1}^{\infty} a_{p+k} z^{k}}\right| \\
& \leq \frac{\left(1+\psi_{n+1}(p, a, b, c, \lambda, \beta)\right) \sum_{k=n+1}^{\infty} a_{p+k}}{2-2 \sum_{k=1}^{n} a_{p+k}-\left(\psi_{n+1}(p, a, b, c, \lambda, \beta)-1\right) \sum_{k=n+1}^{\infty} a_{p+k}} \\
& \leq 1,
\end{aligned}
$$

which proves the assertion (6.3).

References

[1] O. Altinatas, S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Appl. Math. Letters, 13(3)(2000), 63-67.
[2] M. K. Aouf, Neighborhoods of certain analytic functions with negative coefficients, Comput, Math. Appl., 47(2004), 1667-1673.
[3] N. E. Cho, O. S. Koen, and H. M. Srivastava, Inclusion relationships and argument properties for certain subclass of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292 (2004), 470-483.
[4] A. W. Goodman, Univalent functions and non-analytic curves, Proc. Amer. Math. Soc., 8(1957), 598-601.
[5] S. Owa. On the distortion Theorems, Kyungpook Math. J., 18(1978), 53-59.
[6] B. A. Patel and N. K. Thakare, On convex and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roumanie(N. S.), 27(75)(1983), 145-160.
[7] R. K. Raina, H. M. Srivastava, Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequal. Pure. Appl. Math., 7(1)(2006), Art. 5, 1-6.
[8] Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(1981), 521-527.
[9] H. Saitoh, A Linear operator and applications of the first order differential subordinations, Math. Japan., 44(1996), 31-38.
[10] H. S. Wilf, Subordinating factor sequence for convex maps of the unit circle, Proc. Amer. Math. Soc., 12(1961), 689-693.

