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Abstract. In this paper a new subclass of multivalent functions with negative coefficients

defined by Cho-Kwon-Srivastava operator is introduced. Coefficient estimate and inclusion

relationships involving the neighborhoods of p-valently analytic functions are investigated

for this class. Further subordination result and results on partial sums for this class are

also found.

1. Introduction

Let Sp denote the class of functions of the form

(1.1) f(z) = zp +
∞∑
k=1

ap+kz
p+k (p ∈ N = {1, 2, 3...}),

which are analytic and p-valent in the unit disk U = {z : |z| < 1}. Also denote by
Tp the class of functions of the form

(1.2) f(z) = zp −
∞∑
k=1

ap+kz
p+k (ap+k ≥ 0; p ∈ N = {1, 2, 3...}).

For functions

(1.3) fj(z) = zp −
∞∑
k=1

ap+k,j z
p+k (ap+k,j ≥ 0; j = 1, 2),

in the class Tp, the modified Hadamard product f1 ∗ f2(z) of f1(z) and f2(z) is
defined by

(1.4) (f1 ∗ f2)(z) = zp −
∞∑
k=1

ap+k,1 ap+k,2 z
p+k.
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Saitoh [9] introduced a linear operator:

Lp(a, c) : Sp −→ Sp

defined by
Lp(a, c)f(z) = ϕp(a, c; z) ∗ f(z) (z ∈ U),

where

(1.5) ϕp(a, c; z) =
∞∑
k=0

(a)k
(c)k

zp+k,

and (a)k is the Pochhammer symbol defined by

(a)k =
Γ(a+ k)

Γ(a)
=

{
1; (k=0),
a(a+ 1)(a+ 2)...(a+ k − 1), (k ∈ N).

In 2004, Cho, Kwon and Srivastava [3] introduced the following linear operator
Iλp (a, c) analogous to Lp(a, c):

Iλp (a, c) : Sp −→ Sp

defined by

(1.6) Iλp (a, c)f(z) = ϕ⋆p(a, c; z) ∗ f(z) (z ∈ U ; a, c ∈ R\Z−
0 ; λ > −p; f ∈ Ap),

where ϕ⋆p is the function defined in terms of the Hadamard product (or convolution)
by the following condition:

(1.7) ϕp(a, c; z) ∗ ϕ⋆p(a, c; z) =
zp

(1− z)λ+p
.

We can easily find from (1.5), (1.6) and (1.7) and for the function f(z) ∈ Tp that

(1.8) Iλp (a, c)f(z) = zp −
∞∑
k=1

(λ+ p)k(c)k
k!(a)k

zp+k (z ∈ U ; λ > −p).

It is easily verified from (1.8) that

(1.9) z(Iλp (a+ 1, c)f)′(z) = aIλp (a, c)f(z)− (a− p)Iλp (a+ 1, c)f(z)

and

(1.10) z(Iλp (a, c)f)
′(z) = (λ+ p)Iλ+p

p (a, c)f(z)− λIλp (a, c)f(z).

Also by specializing the parameter λ, a and c we obtain from (1.8)

I1p(p+ 1, 1)f(z) = f(z), I1p(p, 1)f(z) =
zf ′(z)

p
,
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and
Inp (a, a)f(z) = Dn+p−1f(z) (n > −p),

where Dn+p−1 is the well-known Ruscheweyh derivative of order n+ p− 1.

Now making use of Cho-Kwon-Srivastava operator Iλp (a, c) defined by (1.8), we
introduced the following subclass Hp(a, b, c, λ, β) of p-valent analytic function.

Definition 1. A function f(z) ∈ Tp is said to be in the class Hp(a, b, c, λ, β) if it
satisfies the following inequality:

(1.11)

∣∣∣∣∣1b
(
z(Iλp (a, c)f(z))

′

Iλp (a, c)f(z)
− p

)∣∣∣∣∣ < β,

(z ∈ U ; p ∈ N ; λ > −p; b ∈ C\{0}; 0 < β ≤ 1).

It may be noted that for suitable choice of a, b, c and λ the class Hp(a, b, c, λ, β)
extends several classes of analytic and p-valent functions such as

(i) Hp(p+1, b, 1, 1, β) = Sp(b, β) =

{
f(z) ∈ Ap :

∣∣∣∣1b
(
zf ′(z)

f(z)
− p

)∣∣∣∣ < β

}
(z ∈ U ; p ∈ N ; 0 < β ≤ 1).

(ii) Hp(p, b, 1, 1, β) = Cp(b, β) =

{
f(z) ∈ Ap :

∣∣∣∣1b
(
zf ′′(z)

f ′(z)
+ 1− p

)∣∣∣∣ < β

}
(z ∈ U ; p ∈ N ; 0 < β ≤ 1).

Where the classes Sp(b, β) and Cp(b, β) are the well know classes of starlike and
convex p-valent functions of complex order. The classes Sp(1, β) = S∗

p(β) and
Cp(1, β) = K∗

p (β) are the classes of starlike and convex p-valent functions intro-
duced by Owa [5] and studied by Patil and Thakare [6].

Now following the earlier investigation by Goodman [4], Ruscheweyh [8], Al-
tintas and Owa [1], Raina and Srivastava [7], Aouf [2] and others, we define the
δ-neighborhood of a function f(z) ∈ Tp by (see, for example, [5, p. 1668])

(1.12) Nδ(f)={g : g ∈ Tp, g(z)=z
p−

∞∑
k=1

bp+kz
p+k and

∞∑
k=1

(k+p)|ap+k−bp+k| ≤ δ}

In particular, if
h(z) = zp (p ∈ N),

we immediately have

(1.13) Nδ(h) = {g : g ∈ Tp, g(z) = zp −
∞∑
k=1

bp+kz
p+k and

∞∑
k=1

(k + p)|bp+k| ≤ δ}.
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2. Coefficient estimates

Theorem 1. Let the function f(z) ∈ Tp be defined by (1.2). Then f(z) ∈
Hp(a, b, c, λ, β) if and only if

(2.1)
∞∑
k=1

{k + β|b|} (λ+ p)k(c)k
(1)k(a)k

ap+k ≤ β|b|,

(z ∈ U ; p ∈ N ; a, c ∈ R\Z−
0 ; λ > −p; b ∈ C\{0}; 0 < β ≤ 1).

The result is sharp.

Proof. Let the function f(z) ∈ Tp be defined by (1.2) and belongs to Hp(a, b, c, λ, β).
Then in view of (1.8) and (1.11) we have

(2.2) Re

{
z(Iλp (a, c)f(z))

′

Iλp (a, c)f(z)
− p

}
> −β|b| (z ∈ U),

or, equivalently,

(2.3) Re


−

∞∑
k=1

(λ+p)k(c)k
(1)k(a)k

kap+kz
k

1−
∞∑
k=1

(λ+p)k(c)k
(1)k(a)k

ap+kzk

 > −β|b| (z ∈ U).

Setting z = r (0 ≤ r < 1) in (2.3), we have that the expression in the denominator
of the left-hand side of (2.3) is positive for r = 0 and also for all r(0 < r < 1). Thus
by letting r −→ 1− through real values, (2.3) leads us to the desired assertion (2.1)
of Theorem 1.
Conversely, by applying the hypothesis (2.1) and letting |z| = 1, we find from (1.11)
that

∣∣∣∣∣z(Iλp (a, c)f(z))′Iλp (a, c)f(z)
− p

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

∞∑
k=1

(λ+p)k(c)k
(1)k(a)k

kap+kz
k

1−
∞∑
k=1

(λ+p)k(c)k
(1)k(a)k

ap+kzk

∣∣∣∣∣∣∣∣
≤

∞∑
k=1

(λ+p)k(c)k
(1)k(a)k

kap+k

1−
∞∑
k=1

(λ+p)k(c)k
(1)k(a)k

ap+k

≤
β|b|

{
1−

∞∑
k=1

(λ+p)k(c)k
(1)k(a)k

ap+k

}
1−

∞∑
k=1

(λ+p)k(c)k
(1)k(a)k

ap+k

= β|b|.
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Hence by maximum modulus principle we have f(z) ∈ Hp(a, b, c, λ, β), which evi-
dently completes the proof of Theorem. 2

Our first inclusion relation involving Nδ(h) is given in the following theorem.

3. Inclusion relationships involving δ-neighborhoods for the class
Hp(a, b, c, λ, β).

Theorem 2. Let

(3.1) δ =
a(p+ 1)β|b|

c(λ+ p)(1 + β|b|)
(p > |b|),

then

(3.2) Hp(a, b, c, λ, β) ⊂ Nδ(h).

Proof. Let f(z) ∈ Hp(a, b, c, λ, β). Then, in view of Theorem 1, we have

(3.3) {1 + β|b|} c(λ+ p)

a

∞∑
k=1

ap+k ≤
∞∑
k=1

{k + β|b|} (λ+ p)k(c)k
(1)k(a)k

ap+k ≤ β|b|,

which readily yields

(3.4)
∞∑
k=1

ap+k ≤ aβ|b|
c(λ+ p)(1 + β|b|)

.

Making use of (2.1) again, in conjunction with (3.4), we get

∞∑
k=1

(k + p)
(λ+ p)k(c)k
(1)k(a)k

ap+k +
∞∑
k=1

(β|b| − p)
(λ+ p)k(c)k
(1)k(a)k

ap+k ≤ β|b|,

or

c(λ+ p)

a

∞∑
k=1

(k + p)ap+k ≤ β|b|+ (p− β|b|)c(λ+ p)

a

∞∑
k=1

ap+k

≤ β|b|+ β|b|(p− β|b|)
(1 + β|b|)

=
(1 + p)β|b|
(1 + β|b|)

.

Hence

(3.5)

∞∑
k=1

(k + p)ap+k ≤ a(p+ 1)β|b|
c(λ+ p)(1 + β|b|)

(p > |b|),

which, by means of (1.13), establishes the inclusion (3.1) asserted by Theorem 2. 2
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Putting (i) λ = c = 1, a = p + 1 and (ii) λ = c = 1, a = p in Theorem 2, we
obtain the following results.

Corollary 1. Let

(3.6) δ =
(p+ 1)β|b|
(1 + β|b|)

(p > |b|),

then

(3.7) Sp(b, β) ⊂ Nδ(h).

Corollary 2. Let

(3.8) δ =
pβ|b|

(1 + β|b|)
(p > |b|),

then

(3.9) Cp(b, β) ⊂ Nδ(h).

4. δ-neighborhoods for the class H
(α)
p (a, b, c, λ, β).

In this section, we determine the neighborhood for the class H
(α)
p (a, b, c, λ, β),

which define as follows. A function f(z) ∈ Tp is said to be in the class
Hα

p (a, b, c, λ, β) if there exists a functional g(z) ∈ Hp(a, b, c, λ, β) such that∣∣∣∣f(z)g(z)
− 1

∣∣∣∣ < p− α (z ∈ U ; 0 ≤ α < p).

Theorem 3. Let g(z) ∈ Hp(a, b, c, λ, β) and

(4.1) α = p− δc(λ+ p)(1 + β|b|)
(p+ 1)[c(λ+ p)(1 + β|b|)− aβ|b|]

,

then

(4.2) Nδ(g) ⊂ H(α)
p (a, b, c, λ, β).

Proof. Let f(z) ∈ Nδ(g). We find from (1.12)

(4.3)
∞∑
k=1

(p+ k)|ap+k − bp+k| ≤ δ,
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which readily implies that

(4.4)
∞∑
k=1

|ap+k − bp+k| ≤
δ

(p+ 1)
(p ∈ N).

Next, since g(z) ∈ Hp(a, b, c, λ, β), we have from Theorem 1

(4.5)
∞∑
k=1

bp+k ≤ aβ|b|
c(λ+ p)(1 + β|b|)

,

so that

∣∣∣∣f(z)g(z)
− 1

∣∣∣∣ ≤
∞∑
k=1

|ap+k − bp+k|

1−
∞∑
k=1

bp+k

≤ δc(λ+ p)(1 + β|b|)
(p+ 1)[c(λ+ p)(1 + β|b|)− aβ|b|]

= (p− α),

(4.6)

provided that α is given by (4.1). Thus f(z) ∈ Hp(a, b, c, λ, β). This evidently
proves Theorem 3. 2

Putting (i) λ = c = 1, a = p + 1 and (ii) λ = c = 1, a = p in Theorem 3, we
obtain the following results.

Corollary 3. Let g(z) ∈ Sp(b, β) and

(4.7) α = p− δ(1 + β|b|)
(p+ 1)

,

then

(4.8) Nδ(g) ⊂ S(α)
p (b, β).

Corollary 4. Let g(z) ∈ Cp(b, β) and

(4.9) α = p− δ(1 + β|b|)
1 + p+ β|b|

,

then

(4.10) Nδ(g) ⊂ C(α)
p (b, β).
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5. Subordination results

The function f(z) is said to be subordinate to g(z) in U written f(z) ≺ g(z), if
there exist a function w(z) analytic in U such that w(0) = 0, and |w(z)| < 1, such
that f(z) = g(w(z)).

Definition 2. A sequence {bp+k}∞k=0 of complex numbers is said to be a subordi-
nating factor sequence if for any regular and convex function

g(z) =
∞∑
k=0

cp+kz
p+k,

with cp = 1, z ∈ U,

(5.1)

∞∑
k=0

bp+kcp+kz
p+k ≺ g(z) (z ∈ U).

In 1961, wilf [10] gave following necessary and sufficient conditions for a sequence
to be a subordinating factor sequens:

Lemma 1. The sequence {bp+k}∞k=0 is a subordinating factor sequens if and only
if

(5.2) Re

{
1 + 2

∞∑
k=0

bp+kz
p+k

}
> 0 (z ∈ U).

Theorem 4. Let f(z) ∈ Hp(a, b, c, λ, β) of the form (1.2) and

g(z) =
∞∑
k=0

cp+kz
p+k, cp = 1

be regular and convex function in U , then

(5.3)
c(λ+ p)(1 + β|b|)

2[c(λ+ p)(1 + β|b|) + aβ|b|]
(f ∗ g) ≺ g(z),

where
(z ∈ U ; p ∈ N ; λ > −p; b ∈ C\{0}; 0 < β ≤ 1).

Moreover,

(5.4) Re{f(z)} > (−1)p
{aβ|b|+ c(λ+ p)(1 + β|b|)}

c(λ+ p)(1 + β|b|)
,

and the subordinating result (5.3) is sharp for the maximum factor

(5.5)
c(λ+ p)(1 + β|b|)

2[c(λ+ p)(1 + β|b|) + aβ|b|]
.
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Proof. Let f(z) ∈ Hp(a, b, c, λ, β) of the form (1.2) and

g(z) =
∞∑
k=0

cp+kz
p+k, cp = 1

be regular and convex function in U . To show subordination result (5.3), we need
to show that {

c(λ+ p)(1 + β|b|)ap+k

2[c(λ+ p)(1 + β|b|) + aβ|b|]

}∞

k=0

is a subordinating factor with ap = 1 which in view of Lemma 1 is true if

(5.6) Re

{
1 +

∞∑
k=0

c(λ+ p)(1 + β|b|)ap+kz
p+k

[c(λ+ p)(1 + β|b|) + aβ|b|]

}
> 0 (z ∈ U).

Since

{k + β|b|} (λ+ p)k(c)k
(1)k(a)k

≥ {1 + β|b|} c(λ+ p)

a
> 0 (k ≥ 1),

on using Theorem 1, we have for |z| = r < 1,

Re

{
1 +

c(λ+ p)(1 + β|b|)
[c(λ+ p)(1 + β|b|) + aβ|b|]

∞∑
k=0

ap+kz
p+k

}

=Re

{
1 +

c(λ+ p)(1 + β|b|)
[c(λ+ p)(1 + β|b|) + aβ|b|]

zp

+
1

[c(λ+ p)(1 + β|b|) + aβ|b|]

∞∑
k=0

c(λ+ p)(1 + β|b|)ap+kz
p+k

}

≥1− c(λ+ p)(1 + β|b|)|zp|
[c(λ+ p)(1 + β|b|) + aβ|b|]

−

∞∑
k=1

a {k + β|b|} (λ+p)k(c)k
(1)k(a)k

ap+k|zp+k|

[c(λ+ p)(1 + β|b|) + aβ|b|]

≥1− c(λ+ p)(1 + β|b|)rp

[c(λ+ p)(1 + β|b|) + aβ|b|]
− aβ|b|rp+1

[c(λ+ p)(1 + β|b|) + aβ|b|]

≥1− c(λ+ p)(1 + β|b|)
[c(λ+ p)(1 + β|b|) + aβ|b|]

− aβ|b|
[c(λ+ p)(1 + β|b|) + aβ|b|]

= 0.

This evidently proves the inequality (5.6) and hence the subordination result (5.3).

taking g(z) =
∞∑
k=0

zp+k in the subordination result (5.3), we easily get the result

(5.4), and for the function

f(z) = zp − aβ|b|
c(λ+ p)(1 + β|b|)

zp+1 ∈ Hp(a, b, c, λ, β),
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it can be verified that c(λ+p)(1+β|b|)
[c(λ+p)(1+β|b|)+aβ|b|] is a maximum factor for the subordination

result (4.3). 2

6. Partial sums

In this section, we determine inequalities involving partial sums of f(z) ∈ Tp
where the partial sums of f(z) ∈ Tp of the form (1.2) is defined as follows:

(6.1) f0(z) = zp and fn(z) = zp −
n∑

k=1

ap+kz
p+k (ap+k ≥ 0; n ≥ 1).

Theorem 5. Let the function f(z) ∈ Tp be defined by (1.2) belongs to
Hp(a, b, c, λ, β), then

(6.2) Re

{
f(z)

fn(z)

}
> 1− 1

ψn+1(p, a, b, c, λ, β)
,

and

(6.3) Re

{
fn(z)

f(z)

}
>

ψn+1(p, a, b, c, λ, β)

1 + ψn+1(p, a, b, c, λ, β)
,

where

(6.4) ψn+1(p, a, b, c, λ, β) = {n+ 1 + β|b|} (λ+ p)n+1(c)n+1

(1)n+1(a)n+1β|b|
.

(z ∈ U ; p ∈ N ; a, c ∈ R\Z−
0 ; λ > −p; b ∈ C\{0}; 0 < β ≤ 1).

Proof. Let the function f(z) ∈ Tp be defined by (1.2) belongs to Hp(a, b, c, λ, β),
then from Theorem 1 and using

(6.5) ψn+1(p, a, b, c, λ, β) > ψn(p, a, b, c, λ, β) > 1,

we get

(6.6)

n∑
k=1

ap+k + ψn+1(p, a, b, c, λ, β)

∞∑
k=n+1

ap+k <

∞∑
k=1

ψk(p, a, b, c, λ, β)ap+k ≤ 1.

Set

(6.7) g1(z) = ψn+1(p, a, b, c, λ, β)

{
f(z)

fn(z)
−
(
1− 1

ψn+1(p, a, b, c, λ, β)

)}
,
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which is analytic in U and g0(z). If (6.5) holds we find that

∣∣∣∣g1(z)− 1

g1(z) + 1

∣∣∣∣ =
∣∣∣∣∣∣∣∣

ψn+1(p, a, b, c, λ, β)
∞∑

k=n+1

ap+kz
k

2 + 2
n∑

k=1

ap+kzk + ψn+1(p, a, b, c, λ, β)
∞∑

k=n+1

ap+kzk

∣∣∣∣∣∣∣∣
≤

ψn+1(p, a, b, c, λ, β)
∞∑

k=n+1

ap+k

2− 2
n∑

k=1

ap+k − ψn+1(p, a, b, c, λ, β)
∞∑

k=n+1

ap+k

≤ 1,

which readily yields that Re(g1(z)) > 0, and hence from (6.6) assertion (6.2) of
Theorem 5 is obtained.
Similarly, if we set

g2(z) = (1 + ψn+1(p, a, b, c, λ, β))

{
fn(z)

f(z)
− ψn+1(p, a, b, c, λ, β)

1 + ψn+1(p, a, b, c, λ, β)

}
,

=

1−
(1 + ψn+1(p, a, b, c, λ, β))

∞∑
k=n+1

ap+kz
k

1 +
∞∑
k=1

ap+kzk

 ,

(6.8)

and making use of (6.5), we find that

∣∣∣∣g2(z)− 1

g2(z) + 1

∣∣∣∣ =
∣∣∣∣∣∣∣∣

(1 + ψn+1(p, a, b, c, λ, β))
∞∑

k=n+1

ap+kz
k

2 + 2
n∑

k=1

ap+kzk − (1 + ψn+1(p, a, b, c, λ, β))
∞∑

k=n+1

ap+kzk

∣∣∣∣∣∣∣∣
≤

(1 + ψn+1(p, a, b, c, λ, β))
∞∑

k=n+1

ap+k

2− 2
n∑

k=1

ap+k − (ψn+1(p, a, b, c, λ, β)− 1)
∞∑

k=n+1

ap+k

≤ 1,

which proves the assertion (6.3). 2
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