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ON CERTAIN CLASSES OF MULTIVALENT
FUNCTIONS INVOLVING A GENERALIZED

DIFFERENTIAL OPERATOR

Chellian Selvaraj and Kuppathai A. Selvakumaran

Abstract. Making use of a generalized differential operator we intro-
duce some new subclasses of multivalent analytic functions in the open
unit disk and investigate their inclusion relationships. Some integral pre-
serving properties of these subclasses are also discussed.

1. Introduction and preliminaries

Let Ap denote the class of functions f(z) of the form

(1) f(z) = zp +
∞∑

n=1

anz
p+n, (p ∈ N = {1, 2, 3, . . .}),

which are analytic and p-valent in the open unit disk U = {z : z ∈ C and
|z| < 1}. For functions f given by (1) and g given by

g(z) = zp +
∞∑

n=1

bnz
p+n,

the Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) = zp +
∞∑

n=1

anbnz
p+n.

Given two functions f and g, which are analytic in U, the function f is said
to be subordinate to g in U if there exists a function w analytic in U with

w(0) = 0, |w(z)| < 1 (z ∈ U),

such that
f(z) = g(w(z)) (z ∈ U).
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We denote this subordination by f(z) ≺ g(z). Furthermore, if the function g is
univalent in U, then f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Let P denote the class of analytic functions h(z) with h(0) = 1, which are
convex and univalent in U and for which R{h(z)} > 0 (z ∈ U).

Analogous to the operator defined recently by Selvaraj and Santhosh Moni
[6], we define an operator Dδ

λ,gf on Ap as follows:
For a fixed function g ∈ Ap given by

(2) g(z) = zp +
∞∑

n=1

bnz
p+n, (bn ≥ 0; p ∈ N = {1, 2, 3, . . .}),

Dδ
λ,gf(z) : Ap −→ Ap is defined by

D0
λ,gf(z) = (f ∗ g)(z),

D1
λ,gf(z) = (1− λ)(f ∗ g)(z) +

λ

p
z((f ∗ g)(z))′,

Dδ
λ,gf(z) = D1

λ,g(D
δ−1
λ,g f(z)).(3)

If f(z) ∈ Ap, then we have

(4) Dδ
λ,gf(z) = zp +

∞∑
n=1

(
1 +

λn

p

)δ

anbnz
p+n,

where δ ∈ N0 = N ∪ {0} and λ ≥ 0. It easily follows from (3) that

(5)
λz

p
(Dδ

λ,gf(z))′ = Dδ+1
λ,g f(z)− (1− λ)Dδ

λ,gf(z).

Throughout this paper, we assume that p, k ∈ N, εk = exp( 2πi
k ), and

(6) fδ
p,k(λ; g; z) =

1
k

k−1∑

j=0

ε−jp
k (Dδ

λ,gf(εj
kz)) = zp + · · · , (f ∈ Ap).

Clearly, for k = 1, we have

fδ
p,1(λ; g; z) = Dδ

λ,gf(z).

Making use of the operator Dδ
λ,gf(z), we now introduce and study the fol-

lowing subclasses of Ap of p-valent analytic functions.

Definition. A function f ∈ Ap is said to be in the class Sδ
p,k(λ; g;h), if it

satisfies

(7)
z(Dδ

λ,gf(z))′

pfδ
p,k(λ; g; z)

≺ h(z) (z ∈ U),

where h ∈ P and fδ
p,k(λ; g; z) 6= 0 (z ∈ U).
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Remark 1.1. If we let

δ = 0 and g(z) = zp
lFm(α1, . . . , αl;β1, . . . , βm; z),

then Sδ
p,k(λ; g;h) reduces to the function class Sl,m

p,k (α1;h) introduced and in-
vestigated by Zhi-Gang, Wang Yue-Ping Jiang, and H. M. Srivastava [10].

Remark 1.2. If we let

δ = 0 and g(z) = zp +
∞∑

n=1

(a)n

(c)n
zp+n,

then Sδ
p,k(λ; g;h) reduces to the function class Tp,k(a, c;h) introduced and in-

vestigated by N-Eng Xu and Ding-Gong Yang [7].

Remark 1.3. Let

g(z) = h(z) =
1 + z

1− z
.

Then S0
1,2(λ; g;h) = S∗s . The class S∗s of functions starlike with respect to

symmetric points has been studied by several authors (see [3], [5], [9]).

Definition. A function f ∈ Ap is said to be in the class Kδ
p,k(λ; g;h), if it

satisfies

(8)
z(Dδ

λ,gf(z))′

pϕδ
p,k(λ; g; z)

≺ h(z) (z ∈ U)

for some ϕ(z) ∈ Sδ
p,k(λ; g;h), where h ∈ P and ϕδ

p,k(λ; g; z) 6= 0 is defined as in
(6).

Definition. A function f ∈ Ap is said to be in the class Cδ
p,k(α, λ; g;h), if it

satisfies

(9) (1− α)
z(Dδ

λ,gf(z))′

pϕδ
p,k(λ; g; z)

+ α
(z(Dδ

λ,gf(z))′)′

p(ϕδ
p,k(λ; g; z))′

≺ h(z) (z ∈ U)

for some α (α ≥ 0) and ϕ(z) ∈ Sδ
p,k(λ; g;h), where h ∈ P and (ϕδ

p,k(λ; g; z))′ 6=
0.

We need the following lemmas to derive our results.

Lemma 1.4 ([1]). Let β (β 6= 0) and γ be complex numbers and let h(z) be
analytic and convex univalent in U with R{βh(z) + γ} > 0 (z ∈ U). If q(z) is
analytic in U with q(0) = h(0), then the subordination

q(z) +
zq′(z)

βq(z) + γ
≺ h(z) (z ∈ U)

implies that
q(z) ≺ h(z) (z ∈ U).
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Lemma 1.5 ([2]). Let h(z) be analytic and convex univalent in U and let w(z)
be analytic in U with R{w(z)} ≥ 0 (z ∈ U). If q(z) is analytic in U with
q(0) = h(0), then the subordination

q(z) + w(z)zq′(z) ≺ h(z) (z ∈ U)

implies that

q(z) ≺ h(z) (z ∈ U).

Lemma 1.6. Let f(z) ∈ Sδ
p,k(λ; g;h). Then

(10)
z(fδ

p,k(λ; g; z))′

pfδ
p,k(λ; g; z)

≺ h(z) (z ∈ U).

Proof. For f(z) ∈ Ap, we have from (6) that

fδ
p,k(λ; g; εj

kz) =
1
k

k−1∑
m=0

ε−mp
k Dδ

λ,gf(εm+j
k z)

=
εjp
k

k

k−1∑
m=0

ε
−(m+j)p
k Dδ

λ,gf(εm+j
k z)

= εjp
k f

δ
p,k(λ; g; z), (j ∈ {0, 1, . . . , k − 1})

and

(fδ
p,k(λ; g; z))′ =

1
k

k−1∑

j=0

ε
j(1−p)
k (Dδ

λ,gf(εj
kz))

′.

Hence

z(fδ
p,k(λ; g; z))′

pfδ
p,k(λ; g; z)

=
1
k

k−1∑

j=0

ε
j(1−p)
k z(Dδ

λ,gf(εj
kz))

′

pfδ
p,k(λ; g; z)

=
1
k

k−1∑

j=0

εj
kz(D

δ
λ,gf(εj

kz))
′

pfδ
p,k(λ; g; εj

kz)
(z ∈ U).(11)

Since f(z) ∈ Sδ
p,k(λ; g;h), we have

(12)
εj

kz(D
δ
λ,gf(εj

kz))
′

pfδ
p,k(λ; g; εj

kz)
≺ h(z) for j ∈ {0, 1, . . . , k − 1}.

Noting that h(z) is convex univalent in U, from(11) and (12) we conclude that
(10) holds true. �
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2. A set of inclusion relationships

Theorem 2.1. Let h(z) ∈ P with

(13) R{h(z)} > 1− 1
λ

(z ∈ U;λ > 1).

If f(z) ∈ Sδ+1
p,k (λ; g;h), then f(z) ∈ Sδ

p,k(λ; g;h) provided fδ
p,k(λ; g; z) 6= 0

(z ∈ U).

Proof. By using (5) and (6), we have
(14)

(1−λ)fδ
p,k(λ; g; z)+

λz

p
(fδ

p,k(λ; g; z))′ =
1
k

k−1∑

j=0

ε−jp
k (Dδ+1

λ,g f(εj
kz)) = fδ+1

p,k (λ; g; z).

Let f(z) ∈ Sδ+1
p,k (λ; g;h) and

(15) w(z) =
z(fδ

p,k(λ; g; z))′

pfδ
p,k(λ; g; z)

.

Then w(z) is analytic in U, with w(0) = 1, and from (14) and (15) we have

(16) 1− λ+ λw(z) =
fδ+1

p,k (λ; g; z)

fδ
p,k(λ; g; z)

.

Differentiating (16) with respect to z and using (15), we get

(17) w(z) +
zw′(z)

p
λ (1− λ) + pw(z)

=
z(fδ+1

p,k (λ; g; z))′

pfδ+1
p,k (λ; g; z)

.

From (17) and Lemma 1.6 we note that

(18) w(z) +
zw′(z)

p
λ (1− λ) + pw(z)

≺ h(z) (z ∈ U).

In view of (13) and (18), we deduce from Lemma 1.4 that

(19) w(z) ≺ h(z) (z ∈ U).

Suppose that

q(z) =
z(Dδ

λ,gf(z))′

pfδ
p,k(λ; g; z)

.

Then q(z) is analytic in U, with q(0) = 1, and we obtain from (5) that

(20) fδ
p,k(λ; g; z)q(z) =

1
λ
Dδ+1

λ,g f(z) +
(

1− 1
λ

)
Dδ

λ,gf(z).

Differentiating both sides of (20) with respect to z, we get

(21) zq′(z) +
(
p
( 1
λ
− 1
)

+
z(fδ

p,k(λ; g; z))′

fδ
p,k(λ; g; z)

)
q(z) =

z(Dδ+1
λ,g f(z))′

λfδ
p,k(λ; g; z)

.
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Now, we find from (14), (15) and (21) that

(22) q(z) +
zq′(z)

p
λ (1− λ) + pw(z)

=
z(Dδ+1

λ,g f(z))′

pfδ+1
p,k (λ; g; z)

≺ h(z) (z ∈ U),

since f(z) ∈ Sδ+1
p,k (λ; g;h). From (13) and (19) we observe that

R

{
p

λ
(1− λ) + pw(z)

}
> 0.

Therefore, from (22) and Lemma 1.5 we conclude that

q(z) ≺ h(z) (z ∈ U)

which shows that f(z) ∈ Sδ
p,k(λ; g;h). �

Theorem 2.2. Let h(z) ∈ P with

(23) R{h(z)} > 1− 1
λ

(z ∈ U;λ > 1).

If f(z) ∈ Kδ+1
p,k (λ; g;h) with respect to ϕ(z) ∈ Sδ+1

p,k (λ; g;h), then f(z) ∈
Kδ

p,k(λ; g;h) provided ϕδ
p,k(λ; g; z) 6= 0 (z ∈ U).

Proof. Let f(z)∈Kδ+1
p,k (λ; g;h). Then there exists a function ϕ(z)∈Sδ+1

p,k (λ; g;h)
such that

(24)
z(Dδ+1

λ,g f(z))′

pϕδ+1
p,k (λ; g; z)

≺ h(z) (z ∈ U).

An application of Theorem 2.1 yields ϕ(z) ∈ Sδ
p,k(λ; g;h) and Lemma 1.6 leads

to

(25) ψ(z) =
z(ϕδ

p,k(λ; g; z))′

pϕδ
p,k(λ; g; z)

≺ h(z) (z ∈ U).

Let

q(z) =
z(Dδ

λ,gf(z))′

pϕδ
p,k(λ; g; z)

.

By using (5), q(z) can be written as follows

(26) ϕδ
p,k(λ; g; z)q(z) =

1
λ
Dδ+1

λ,g f(z) +
(

1− 1
λ

)
Dδ

λ,gf(z).

Differentiating both sides of (26) with respect to z and using (14) (with f
replaced by ϕ), we get

(27) q(z) +
zq′(z)

p
λ (1− λ) + pψ(z)

=
z(Dδ+1

λ,g f(z))′

pϕδ+1
p,k (λ; g; z)

.
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Now, from (24) and (27) we find that

(28) q(z) +
zq′(z)

p
λ (1− λ) + pψ(z)

≺ h(z) (z ∈ U).

Combining (23), (25) and (28), we deduce from Lemma 1.5 that

q(z) ≺ h(z) (z ∈ U)

which shows that f(z) ∈ Kδ
p,k(λ; g;h) with respect to ϕ(z) ∈ Sδ

p,k(λ; g;h). �

Corollary 2.3. Let 0 < α ≤ 1, −1 ≤ B < A ≤ 1 and

(29) h(z) =
(

1 +Az

1 +Bz

)α

(z ∈ U).

If λ ≤
[
1− ( 1−A

1−B

)α]−1

, then Sδ+1
p,k (λ; g;h) ⊂ Sδ

p,k(λ; g;h) and Kδ+1
p,k (λ; g;h) ⊂

Kδ
p,k(λ; g;h).

Proof. The analytic function h(z) defined by (29) is convex univalent in U (see
[8]), h(0) = 1 and h(U) is symmetric with respect to real axis. Thus h(z) ∈ P
and

0 ≤
(

1−A

1−B

)α

< R{h(z)} <
(

1 +A

1 +B

)α

(z ∈ U; 0 < α ≤ 1;−1 < B < A ≤ 1).

Hence, by using Theorems 2.1 and 2.2 we have the corollary. �

Corollary 2.4. Let 0 < α ≤ 1 and

(30) h(z) = 1 +
2
π2

(
log
(

1 +
√
αz

1−√αz
))2

(z ∈ U).

If λ ≤ π2

8

(
arctan

√
α
)−2, then Sδ+1

p,k (λ; g;h) ⊂ Sδ
p,k(λ; g;h) and Kδ+1

p,k (λ; g;h) ⊂
Kδ

p,k(λ; g;h) (z ∈ U).

Proof. The function h(z) defined by (30) is in the class P (cf. [4]) and satisfies
h(z) = h(z). Therefore,

R{h(z)} > h(−1) = 1− 8
π2

(
arctan

√
α
)2 ≥ 1

2
(z ∈ U; 0 < α ≤ 1).

Hence, by Theorems 2.1 and 2.2 we have the desired result. �

Theorem 2.5. Let 0 ≤ α1 < α2. Then

Cδ
p,k(α2, λ; g;h) ⊂ Cδ

p,k(α1, λ; g;h).

Proof. Let f(z)∈Cδ
p,k(α2, λ; g;h).Then there exists a function ϕ(z)∈Sδ

p,k(λ; g;h)
such that

(31) (1− α2)
z(Dδ

λ,gf(z))′

pϕδ
p,k(λ; g; z)

+ α2

(z(Dδ
λ,gf(z))′)′

p(ϕδ
p,k(λ; g; z))′

≺ h(z) (z ∈ U).
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Suppose that

(32) q(z) =
z(Dδ

λ,gf(z))′

pϕδ
p,k(λ; g; z)

.

Then q(z) is analytic in U, with q(0) = 1. Differentiating both sides of (32) we
get

(33) q(z) +
ϕδ

p,k(λ; g; z)

(ϕδ
p,k(λ; g; z))′

q′(z) =
(z(Dδ

λ,gf(z))′)′

p(ϕδ
p,k(λ; g; z))′

.

Now, using (31), (32) and (33) we deduce that

(34) q(z) + w(z)zq′(z) ≺ h(z),

where

w(z) = α2

(
z(ϕδ

p,k(λ; g; z))′

ϕδ
p,k(λ; g; z)

)−1

.

In view of Lemma 1.6 and α2 > 0, we observe that w(z) is analytic in U and
R{w(z)} > 0. Consequently, in view of (34), we deduce from Lemma 1.5 that

(35) q(z) ≺ h(z).

Since 0 ≤ α1
α2

< 1 and since h(z) is convex univalent in U, we deduce from (31)
and (35) that

(1− α1)
z(Dδ

λ,gf(z))′

pϕδ
p,k(λ; g; z)

+ α1

(z(Dδ
λ,gf(z))′)′

p(ϕδ
p,k(λ; g; z))′

=
α1

α2

(
(1− α2)

z(Dδ
λ,gf(z))′

pϕδ
p,k(λ; g; z)

+ α2

(z(Dδ
λ,gf(z))′)′

p(ϕδ
p,k(λ; g; z))′

)
+
(

1− α1

α2

)
q(z)

≺ h(z).

Thus f(z) ∈ Cδ
p,k(α1, λ; g;h) which completes the proof of Theorem 2.5. �

3. Integral operator

Theorem 3.1. Let h(z) ∈ P and

R{h(z)} > max
{

0,−R(c)
p

}
(z ∈ U),

where c is a complex number such that R(c) > −p. If f(z) ∈ Sδ
p,k(λ; g;h), then

the function

(36) F (z) =
c+ p

zc

∫ z

0

tc−1f(t)dt

is also in the class Sδ
p,k(λ; g;h), provided that F δ

p,k(λ; g; z) 6= 0 (0 < |z| < 1)
where F δ

p,k(λ; g; z) is defined as in (6).
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Proof. Let f(z) ∈ Sδ
p,k(λ; g;h). Then from (36) and R(c) > −p, we note that

F (z) ∈ Ap and

(37) (c+ p)Dδ
λ,gf(z) = cDδ

λ,gF (z) + z(Dδ
λ,gF (z))′.

Also, from the above, we have

(c+ p)fδ
p,k(λ; g; z) =

1
k

k−1∑

j=0

ε−jp
k

(
cDδ

λ,gF (εj
kz) + εj

kz(D
δ
λ,gF (εj

kz))
′
)

= cF δ
p,k(λ; g; z) + z(F δ

p,k(λ; g; z))′.(38)

Let

w(z) =
z(F δ

p,k(λ; g; z))′

pF δ
p,k(λ; g; z)

.

Then w(z) is analytic in U, with w(0) = 1, and from (38) we observe that

(39) pw(z) + c = (c+ p)
fδ

p,k(λ; g; z)

F δ
p,k(λ; g; z)

.

Differentiating both sides of (39) with respect to z and using Lemma 1.6, we
obtain

(40) w(z) +
zw′(z)

pw(z) + c
=
z(fδ

p,k(λ; g; z))′

pfδ
p,k(λ; g; z)

≺ h(z).

In view of (40), Lemma 1.5 leads to w(z) ≺ h(z). If we let

q(z) =
z(Dδ

λ,gF (z))′

pF δ
p,k(λ; g; z)

,

then q(z) is analytic in U, with q(0) = 1, and it follows from (37) that

(41) F δ
p,k(λ; g; z)q(z) =

c+ p

p
Dδ

λ,gf(z)− c

p
Dδ

λ,gF (z).

Differentiating both sides of (41), we get

zq′(z) +
z(F δ

p,k(λ; g; z))′

F δ
p,k(λ; g; z)

q(z) = (c+ p)
z(Dδ

λ,gf(z))′

pF δ
p,k(λ; g; z)

− c
z(Dδ

λ,gF (z))′

pF δ
p,k(λ; g; z)

or equivalently,

(42) zq′(z) +
(
pw(z) + c

)
q(z) = (c+ p)

z(Dδ
λ,gf(z))′

pF δ
p,k(λ; g; z)

.
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Now, from (39) and (42) we deduce that

q(z) +
zq′(z)

pw(z) + c
=

c+ p

pw(z) + c

z(Dδ
λ,gf(z))′

pF δ
p,k(λ; g; z)

=
z(Dδ

λ,gf(z))′

pfδ
p,k(λ; g; z)

≺ h(z), because f(z) ∈ Sδ
p,k(λ; g;h).(43)

Combining, R{h(z)} > max{0,−R(c)
p } and w(z) ≺ h(z) we have R{pw(z) +

c} > 0 (z ∈ U).
Therefore, from (43) and Lemma 1.5 we find that q(z) ≺ h(z), which shows

that F (z) ∈ Sδ
p,k(λ; g;h). �

By applying similar method as in Theorem 3.1, we have:

Theorem 3.2. Let h(z) ∈ P and

R{h(z)} > max
{

0,−R(c)
p

}
(z ∈ U; R(c) > −p).

If f(z) ∈ Kδ
p,k(λ; g;h) with respect to ϕ(z) ∈ Sδ

p,k(λ; g;h), then the function

F (z) =
c+ p

zc

∫ z

0

tc−1f(t)dt

belongs to the class Kδ
p,k(λ; g;h) with respect to

G(z) =
c+ p

zc

∫ z

0

tc−1g(t)dt,

provided that Gδ
p,k(λ; g; z) 6= 0 (0 < |z| < 1).
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