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ABSTRACT.  In his study of the smoothings of p. 1. manifolds, R. Thorn

considered the homotopy groups of a certain space   L     of p.l. homeomorphisms

on an 72-simplex.    N. H. Kuiper showed in  1965 that the higher homotopy groups

of  L     were in general nontrivial.   The main result in this paper is that

770(l") = 77,(1. 2) = 0.

The proof of this result is based on a theorem of S. S. Cairns in 1944 on

eformation of rt

Part I of this paper.

the deformation of rectilinear complexes in   R     and a theorem established in

I.   Introduction.    In this part of the paper, we shall consider certain spaces

L     of piecewise linear homeomorphisms on an 72-simplex.   These spaces, besides

being natural objects to study in geometric topology, arise naturally in various

places in differential topology.   For instance, in terms of the homotopy groups of

these spaces, R. Thorn formulated a sufficient condition for the existence of a

differentiable structure on a triangulated topological manifold [9L

The spaces   L     and their homotopy groups are defined as follows:   Let  s

be a fixed 72-simplex in the Euclidean space  Rn.   For a simplicial subdivision

K  of s   ,  we shall let  L{K) be the space of all homeomorphisms from  s     onto77' r r 77

5     which are linear on each simplex of  K and are pointwise fixed on  Bd (s   ).77 r r 77

L{K) is equipped with the compact open topology.   The space  L     is then defined

to be the union  of the  L(K)'s  obtained from all possible subdivisions   K of s   .

Their homotopy groups  n,{L  ) ate defined to be the inductive limit of  n,{L{K))'s

with respect to the directed system of all subdivisions   K of s  .

There are, of course, various other ways to topologize the spaces   L   .   The

resulting homotopy groups will be quite different from ours.   For instance, it has

been established that with the compact open topology, all the spaces   L     are

contractible [3].   However, with the homotopy groups defined above, to deform a

loop in  L     into another loop, our definition forces the deformation to be carried

out with respect to a fixed subdivision  K  of s  .
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There are many open questions concerning the homotopy properties of these

spaces but very few results are known.   An outstanding exception is N. H.

Kuiper's result in 1965.   Using Milnor's 7-sphere, he showed that the homotopy

groups of  L     ate in general not trivial, in fact, the direct sum  nfL   ) + 77 (L) +

nfLf) + 77,(L   ) 4 0  [7].   However, nothing further about these groups has been

shown.   Our main result in this paper is that  77 (L) = 77  (L) = 0.

In the following, we shall let  S be a fixed 2-simplex in the plane.   A sim-

plicial subdivision   K of S  is called a proper subdivision if   K has only three

vertices on   Bd ÍS).   The proof of our main result is based primarily on the fol-

lowing two theorems.

Theorem LI  (Cairns).    For any proper subdivision   K of S,   nALÍK)) = 0.

Theorem 1.2.    For any proper subdivision  K of S,  nALÍK)) = 0.

Theorem 1.1 is a classical result of S. S. Cairns (UJ, [2] see also Proposi-

tion 2.I9 of [5]).   Theorem 1.2 is the main theorem of Part I of this paper [5].   To

establish our main result, we need only prove the following theorem.

Theorem  1.3.    Let   K be an arbitrary simplicial subdivision of S  (not neces-

sarily proper).   For each compact subset  A   of the space  LÍK),  there exist sub-

divisions  K     K    of S such that

1. K     is a proper subdivision of S.   K     is a common subdivision of K and

K..   (Note that we may therefore consider LÍKf and LÍK) as subspaces of

LiKfA
2. The set  A   may be deformed in  LÍKf into a set   A    contained in  LÍK  ).

Furthermore, if the identity element  e  of  LÍK) is contained in A,  the de-

formation of A   into A    described above will always keep the element e fixed.

For if we let the compact set  A  be the set consisting of a single element of

an arbitrary  LÍK),  Theorem 1.3 combined with Theorem 1.1 proves at once that

nfL A = 0.   Similarly, if we let   4   be the image of a loop in an arbitrary   L(K)

based at  e.   Theorem 1.3 combines with Theorem 1.2 to prove at once that

nfL  ) = 0.   The remaining part of this paper will be devoted to the proof of

Theorem 1.3.

II.   Outline of the proof.   We shall first make some trivial observations.   Let

K be a simplicial subdivision of S.   For any simplicial subdivision  K    of  K,

note that the space   LÍK) may be considered in a natural way as a subspace of

LÍK ).   The following lemma may also be proved easily.

Lemma 2.1.    Let   K be a simplicial subdivision of S.   Let f:  S —, S  be any

map whose restriction to each simplex of  K  is linear and whose restriction to



ON CERTAIN HOMOTOPY PROPERTIES. II 237

Bd iS)  is the identity map.   Then the map f £ L{K) if and only if f is infective

on St iv, K) for each vertex v  of  K.

Proof.   Since the map / is injective on the star of each vertex, it must be a

covering map.    But the triangle  S is simply connected, hence / must be a homeo-

morphism.   See, for example, Theorem 6.5.12 of [4J.

Henceforth, let   K be an arbitrarily given simplicial subdivision of S.   Theo-

rem 1.3 will be proven in the following three steps.

Step I.    For each / £ ¡AK), certain numbers   8 > 0 are to be defined (called

the allowable distances for /) such that

a. If  5  is an allowable distance for /,  each positive number  8   < 8 will al-

so be an allowable distance for /.

b. For each / £ L{K), there is a neighborhood  N of / in   L{K) and a num-

ber  8 > 0 such that  S is an allowable distance for each g   in  N.

Notation 2.2.    For a sufficiently small positive number 8, we shall let   Ts

be the (solid) triangle lying inside  S and concentric to  S such that the distance

between the corresponding sides of  Tg and 5  equals to 8.

We shall also let  B § be the circular strip Cl fo - 7'j) where Cl i%) means

the closure of X with respect to S.

Step II.   Let  S be a given positive number and let

W = [f £ L{K)\ 8  is an allowable distance for /}.

We shall construct a subdivision  Kg  of  K such that  W  may be deformed in

L{KS) by a homotopy  F:  W x / — L{Kg) where   F{  , 0):  W —» L{K^)  is the inclu-

sion map, and, for each / £ F{W, l), f \ B g = identity map.

Moreover, if the identity element  e belongs to  IV,  the deformation  F  may be

constructed in such a way that  Fie, t) = e  for each /  in  /.

Remark 2.-'$.   Suppose  A   is a compact subset of  L{K).   By Step i and the

compactness of  A,  there exists a positive number 8 which is an allowable dis-

tance for every / in A.   Then by Step II, a subdivision   Kg  as described above

may be constructed and the corresponding homotopy  F will give rise to a defor-

mation carrying A   in   L(Kg) into a compact set  A    such that, for each /    £ A ,

f   | ß g = identity map.

Step III.   We shall then construct a proper subdivision   K    out of  Kg  such

that if  K    is a common subdivision of  K,   and   Kg,  the set  A    (considered as a

subset of  L{KA) is actually contained in the subspace   L{Kl).

Note that this is sufficient for finishing the proof of Theorem 1.3, for the de-

formation of  A  to A    was indeed carried out in the space  L{K2) (since  L(Kg)

C L{K  )), and hence, the subdivisions   K,, K2  and the set  A    do have all the

properties given in the conclusion of Theorem 1.3.
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III.   Establishing Step I.

Definition 3.1.    If /     and  /     are two rectilinear cell complexes (in the sense

of [8, p. 74] or [6, p. 5]) with   j/, | = |/2| = S, we shall let  ] , C J2  be the cell

complex which is the common subdivision  \o (~) r\   a £ J      t £ J A of /,   and  /,.

If / is a (rectilinear) cell subdivision of S (i.e., J is a cell complex with

l/l = S), a cell o of J is called an inner cell (or an inner simplex if / happens

to be a simplicial subdivision) provided that   o is not contained in  Bd(i).

Finally, for each small positive number   S,  we shall let  RÍS) be the cell sub-

division of  5  obtained by letting  Tg  be a 2-cell and by cutting up the region  Bg

into three more 2-cells by connecting each vertex of   77 g  to the closest vertex of

S by a 1-cell.

Now let a simplicial subdivision   K oí S be given.

Notation 3.2.   We shall henceforth let   a  be a fixed positive number such that

1. All the inner vertices of  K ate contained in  Int(77a).

2. If  q  is an inner 1-simplex of  K with both vertices on   Bdv>7, then  q n

Int(TaV 0-
¡Notation 3.3.    In the following, we shall always let  /   be the cell complex

K O Ría).

Now, let / e LÍK) be given.   We shall first define an allowable neighborhood

with respect to / of each vertex  v lying on   Bd ÍS).   The allowable distances for

/ will then be obtained from the allowable neighborhoods.

Consider a vertex  v  of   K  lying on   Bd ÍS).   Let  v., v -, • • • » v,   be all the

vertices of  /   such that each simplex (tz, v.) is an inner 1-cell of  /.   Note that

v., t'-, •••,(),   must then lie on   Bd-(Ta)  (the set theoretic boundary, hence, the

triangle enclosing   Ta).   We shall assume that these  k vertices are enumerated

consecutively in the clockwise order.   We shall also let  hv h2, • • • , h be the

1-cells  of   /    lying  °n   Bd(Ta)   such that each  h. has some  v. as one (or both)

of its vertices.   The 1-cells  h. ate also enumerated in the clockwise order.
z

Note that in the image of /,  each fih .) determines uniquely an open half

plane   H. of R     containing  tz  such that fih.) lies on  Bd (//.).

Definition 3.4.    We now define the allowable neighborhood,   Aiv, /),  of  v

with respect to / to be the set  A(tz, /) = I 1 .\   H..

Observe that given a map / £ LÍK), an allowable neighborhood A(v, f) is

defined for each vertex v £ Bd ÍS) of   K.   Each  Aiv, f) is clearly a nonempty

open set containing  v.

To define allowable distances for /,  we first observe the following fact.

Let  S be any positive number less than   cl  and less than dist ífív), Bd ÍS)) tot

each inner vertex  v of   K.   Consider a vertex  v  of   K which lies on   Bd ÍS).   Let

v., v. , • • • , v,   be all the vertices of  /   lying on the triangle   Bd(Ta)  suchthat
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(v, v .) is an inner 1-cell of / for each i. Then for each such vertex v., the tri-

angle Bd(Tg) intersects the 1-cell {v, v.) at a point v. and also intersects the

1-cell iv, fiv)) in the image f{K) at a point  w ..   Clearly the smaller is  8,  the

closer are each  v.   and  w . to  v.
i i

Definition 3.5. A number 8 (0 < 8 < a) is an allowable distance for / if the

following conditions are satisfied:

1. 8 < distifiv), Bdfo)) for each inner vertex   r  of  /.

2. For each vertex v eBdfo) of  K with corresponding vertices  v., i/,, •••,

v,   lying on the triangle  Bd ÍTa) such that each {v, v . ) is a 1-cell of  /,  the

points   v. = {v, v .) n Bd (Tg) and  w . = {v, fiv )) Ci BdiT s) are all contained in

the allowable neighborhood Afo, /).

Remark 3.6. Observe that the allowable distances do possess the properties

listed in Step I: the property a listed there is clearly satisfied. As for the prop-

erty b, the argument goes as follows:

Let / £ L{K) be given.   We set

a = inf idist (/fo), Bd fo)) | v an inner vertex of  }\.

We then find a small open disk Dfo) around each vertex  v £ Bd fo) of  K  such

that  Dfo) C Afo, /).
Now, let  N be a neighborhood of / in   L{K) such that each  g £ N  is so close

to / that

1. dist igiv), fiv)) < Via for each inner vertex  v  of  /.

2. Dfo) C Afo, g) fot each vertex  v £ Bdfo)  of  K.

Therefore, we need only choose a  8 > 0 small enough such that

1. 8<V7a.

2. For each vertex  v £ Bd fo) of   K with corresponding vertices   v., v 2, ••• ,

v,    lying on   Bd(Ta),  the points  v.   and w. {i = I, 2, ■ ■ • , k) all belong to  Dfo).

Such a  S  ¡s clearly an allowable distance for each  g  in  N.

IV.   Establishing Step II.    Let a positive number 8 be given and let

W = \f £ L(K) \ 8  is an allowable distance for / \.

We shall now construct a subdivision   Kg  of   K  and a homotopy  F:  W x I     * L(Kg)

which deforms  U   into a set containing only maps / such that / | Bg = identity.

We first construct   Kg.   Note that if  S > a  the set  W  is empty.   Any sub-

division and any homotopy vacuously satisfy the required conditions.    Henceforth,

we assume that  8 < a.   Let  JÍ8) = / f~l R{8).   J{8)  is a subdivision of   K  into a

rectilinear cell complex.   Let   Kg be an arbitrary simplicial subdivision of  Jio)

with no extra vertices added.   This can always be done (see [6, Lemma 1.4J).

Clearly,   K g  is a subdivision of  K.
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Remark 4.1,    Kg and  JÍ8) have the same vertices.   To define the homotopy

F: W x / —* LÍKf, one needs only indicate the position of each Fif, t)iv) where

(/, t) £ W x /  and  v  is a vertex of JÍS) since for each / and  t,  a linear extension

of the images   |F(/, t)iv)\ determines uniquely the element  Fif, t) in  LÍKf.

Roughly speaking, the homotopy  F will be defined as follows:   for each / £

Wt we shall hold each fiv) fixed when  v 4 Bd(Tg), but when  v £ Bd(Tg), we

shall pull fiv) carefully back to  v.

The desired homotopy  F will be constructed in two stages.   We first con-

struct an  Fj :  Ifxl —• LÍKf) such that for each / e W,   F     carries fiv) to a

point on the triangle   Bd(Tg)  if  v is itself a vertex lying on  Bd(Tg) and  F

leaves  /(tz) fixed for all other vertices  tz £ Kg.   Then, we construct an  F    which

carries each F if, lXtz) back to the vertex v when v is in  Bd(Tg).   We shall

finally show that the homotopy   F  obtained by successively applying  F    and  F.

is the desired homotopy.

We now construct  Fj.   Consider a vertex  v £ Bd ÍS) of JÍS).   Let  v., v -,

• • • , v,   be the vertices of J  lying on the triangle   Bd(Ta)  such that each {tz, tz.)

is an inner 1-cell of  /.   We assume that these vertices are labelled in the clock-

wise order.

Now, we let tZj, v2, • • • , v,   be the vertices of  JÍ8) lying on the triangle

Bd(Tg) such that  iz.   is the unique point  (iz, zz.) CiBd(Tg).

Consider an arbitrary f eW.   Since  8 is an allowable distance for /,  fiv.)

elnt(Tg) for  each such vertex  v..   Therefore, the triangle   Bd(Tg) cuts each

segment (fiv), fiv.)) exactly once, say at the point w ..   We now define   F  (/, t)

tot each  (/, () £ ï x 1 as follows:

F.if, t)iv.) = (1 - t)fiv.)+ tw . for each vertex  tz. of   Kg   lying on  Bd(T§),

F,(/,t)iv) - f iv) for all other vertices   zz  of   Kg.

We note that, for each  (/, t) £ W x /,  F Af, ')  is indeed an element of  L(Kg).

This is because that for each tz £ BdiS), the corresponding fiv A's  all move

along the segment  (v, fiv A)  to the point w ..   Regardless how   K g  was obtained

from  JÍ8), as long as no extra vertices are added,   F Af, t) must be injective on

the star of each vertex with respect to   Kg.   Therefore, each  Fff, t) is indeed in

L(Kg) by 2.1.   The homotopy  F     is clearly continuous since we defined  F.   by

moving vertices of  Kg along continuous paths.

To construct the homotopy   F      we may now assume that each  fiv.) is al-

ready deformed into the point  w ..   We shall now construct a homotopy which car-

ries each fiv.) back to the vertex tz .  for each / in  W.

Let us consider all the vertices  v.   of JÍ8) which lie on the triangle   Bd(Tg)
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(not just those corresponding to a single vertex  v  in  Bd fo)).   We may consider

them as being ordered by some cyclic ordering.   Note that the vertices  fiv A's

must have the same ordering on   Bd(Tg)  in the sense that if we travel along the

triangle   Bd(Tg),  say clockwise, we shall encounter the vertices  fivA's  in ex-

actly the same order as we encounter  i'.'s.

We shall assume for the moment that we have the following lemma, upon

which the construction of  F    will be based.   The lemma itself will be proven at

the end of this section.

Lemma 4.2.    Let  V be the set of the vertices  v.   of J{8) lying on  Bd(Tg).

There exists a map G:  I x V x W —»Bd(Tg) such that

1.   For each v.  £ V  and each f £ W    G iv ., f) moves continuously on
i   l        i *

Bd(Tg) /row fiv.) to v.,  and as t  increases, the point  G iv'., f) moves always

toward   vi   {i.e., the arc length along  Bd(Tg) between  Gtiv ', f) and v'. decreases

monotonically   as  t  increases).

2.   For each  t e / and f £ W,   the vertices  Gtiv ■ , f)'s have the same ordering

on  Bd(Ts) as the vertices  v.''s.
0 7

With this map  G,  we simply define   F2.  W X f —» L(Ks) as follows:   For

each  (/, t) £W x I,

F2if, t)iv) = Giv'., f)    fot each vertex v. of  Kg  lying on  Bd(Tg),

F7if, t)iv) = fiv)    fot all other vertices  v of  Kg.

To check if F2  is well-defined we shall again use Lemma 2.1 to see if for

each  (/, t) £ W x I, F2(f, t) is injective on the star of v  for each vertex  v  of

Kg.   This is indeed the case as is guaranteed by the following two facts:

A. For each  v £ Bd fo),  the corresponding  F Af, t)iv')'s  always belong to

the allowable neighborhood Afo,/).   This is because of condition  1   of Lem-

ma 4.2 and the fact that the starting point Fyif, 0){v') = w{  and the end point

F2if, l)fo¿) = v-   are both points in  Afo, /)   and Afo, /) is a convex set.

B. For each  / £ W and each fixed  / £ I,  the vertices   F Af, t)iv') ate in the

same ordering on   Bd(Tg) as the vertices  t'.'s.   This follows from condition 2

of Lemma 4.2.

Regardless how  Kg was formed from  ]{8) by inserting 1-simplices, fact   A

ensures us that in the process of moving the vertices   F Af. t)iv ■ ) from  w ■  to

vi ,  the 1-cells fih^'s  do not cause any trouble.   Fact B ensures us that the

vertices  F Af, t)iv ■ ) do not run into each other in the process of moving.

To sum up, we have constructed two homotopies   F., F,:  W x I —> LÍK/).

We now let  F  be the homotopy obtained by applying first  F,   then  F,.   For
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each / £ W, F  then moves fiv. ) back to  v-    for each vertex v'   £ Bd(Tg) of

Kg,  while all the other fiv)    iv 4 Bd ÍT g))  are kept fixed.   Note that the'only

inner vertices of  K g which are on the circular strip Bg = Cl (S - T f ate ex-

actly those  tz .    on  Bd(Tg) and for such vertices, the corresponding fiv   ) ate

pushed back to  v.    by  F.   Hence, for / £ FÍW, l), / | B g = identity map.

We further observe that if the identity element  e  of  LÍKf happens to be

in  W,  both  Fj and F2  will keep e fixed.   This follows immediately from the

fact that for each vertex jz\    e Bd(Tg),  eiv-) already coincides with  v ',  hence,

both   F.   and  F,  keep e unchanged.

Therefore,   Kg  and  F  do possess all the properties promised in Step II.

We now prove Lemma 4.2 which was quoted above.

Prool of Lemma 4.2.   We shall prove the lemma by carrying over the problem

from  Bd(Tg) to a circle.   Let  C  be the unit circle in the plane.   Assuming the

origin of the plane is contained in  Int(Tg),  we let h:  Bd(Tg)—» C  be the

homeomorphism hix) = x/||x||. Let V ' = hiV) and W ' = \bfk \   f eW] where k =

(¿>|Bd(T g))    . Note that V    is a finite set of points on C and W ' is a collection of maps:

V   —' C such that for each v £V ,   fiv) and tz are not antipodal points on C. We fur-

ther note that each  f £ W    is order preserving in the sense that the points

l/(zz)|   v £ V !  lie on the circle  C in the same cyclic order as the points in   V .

We   shall consider W     as a topological space under the metric  dif, g) =

Maxi||/(îz)-g(tz)|||  v £V'\.

We now construct a map G :  I x V   x W   —»Cas follows.    For each   t £ I,

G'iv, f) = itv + il- t)fiv))/ \\tv + Í1- t)fiv)\\.

For each  zz £ V    and each f eW ,  G iv, f) clearly moves continuously on

C  from  fiv) to  v.   Furthermore, it can be shown that for each   t e I  and f e W ,

the map  G   (   , /):   V   —» C  is order preserving.

Now consider the map  G:  I x V x W —» Bd(Tg) given by  GÍt, tz, /) =

h~  G.ihiv), hfk). G  clearly satisfies the conditions given in Lemma 4.2.    This

settles Step II.

V.   Establishing Step III.   Given the subdivision  K,   we shall now con-

struct a proper subdivision   K^  of S  with the following property:   if  K2  is a

common subdivision of  Kj   and  Kg (hence,   L(Kj) and  LÍKf are subsets of

LÍKf) and if A'   is a subset of  LÍKf such that for each /'   £ Af / ' | Ö g =

identity, then the set A'   is actually contained in   L(Kj).

Let  f ,tz_iz-  be the three vertices of S.   We shall label the vertices of the

concentric triangle  Bd(Tg) inside  S  by  w ^w 2 w,   in such a way that  zzz¿  is

the vertex of  Bd ÍT f which is closest to  v ¿.   We now define   Kj  to be the tri-

angulation of S  which is the same as   K g on the closed region   Tg.   As for the
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circular strip  B g,  we chop it up into smaller triangles by running a 1-simplex

from  vj   to each vertex of  Kj  on the side (ktj, 2272) and a 1-simplex from  v2  to

each vertex on the side {w2, ti>3),  and finally, a 1-simplex from 223  to each ver-

tex on the side {w ^, w,).   This defines a proper subdivision of S.

For each  / e A',  we claim that / £ L(Kj).   Clearly,  / is linear on each

simplex ff of  Kj   lying in  T g,  for er is also a simplex of  Kg.   / is also linear

on each simplex  a of  Kx  lying on  B g,   for / is the identity map there.  Hence,

/ £ L(Kj).   Therefore, the subdivision   Kj  does satisfy all the properties required

in Step III.
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