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1. Introduction. We study the class of axially symmetrical deformations of an

elastic sheet characterized by a strain energy function satisfying certain inequalities

pertinent to finite elasticity. It is found that the system of nonlinear equations can be

reduced to quadratures if either the undeformed or the deformed middle surface is

cylindrical.

When the undeformed state is a cylindrical surface, the equation of equilibrium for

the direction tangent to the meridian curve has a first integral if the strain energy

function does not depend on position explicitly. This fact has been discovered independ-

ently by Pipkin [1] and Wu [2], While a specific problem was solved in [2], the deduction

given in [1] was completely general. The fact that the equation of equilibrium for the

direction normal to the middle surface has a first integral is known [3]. We use these

two integrals to obtain the general solution of our problem.

When the deformed state is a cylindrical surface, the equations of equilibrium reduce

to very simple forms which can be integrated even if the material is meridianly inhomo-

geneous.

2. Formulation. We consider the class of axially symmetrical problems in which

the middle surface of an elastic sheet forms a surface of revolution before and after

deformation. Let the middle surface M of the undeformed sheet be characterized by a

meridian curve C and let the middle surface m of the deformed sheet be characterized

by a meridian curve c. The thickness H of the undeformed sheet is assumed to be con-

stant.

We choose a cylindrical coordinate system (R, 9, Z), the z-axis of which coincides

with the axis of symmetry of the sheet. We assume that any point P(R, 9, Z) in M is

carried by the deformation to the point p(r, 9, z) in m. Let C have arc length S and let

c have arc length s. We introduce a set of unit vectors (a! , a2 , a3), a.i being tangent to

the curve c and pointing to the direction of increasing s, a2 being tangent to the lines of

azimuth and pointing to the direction of increasing 6. From the symmetry of the system

it follows that (a! , a2 , a3) are the principal directions of strain at P. If we denote by

Xi , X2 , X3 the principal extension ratios in these three directions, then

= ds/dS, (2.1)

X2 = r/R, (2.2)

X3 = h/H (2.3)

where h is the thickness of the deformed sheet.
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We now assume that the elastic sheet is characterized by a strain energy function

<o = u(Xt , X2, S). It is shown in Appendix I that, for such an elastic sheet, the meridian

and azimuthal stress resultants ti and l2 are given by

ti = ~r~ (2.4)
a2

t2 = — uXa (2.5)

where the subscripts on w denote partial differentiation with respect to the indicated

argument. We require that the strain energy function oj satisfies the conditions

— — ^ ^ (^X,X, — '°x") ^ X"WX,X. > 0, — C0xax, > 0.

(2.6)

These inequalities correspond respectively to the conditions of "invertibility of force-

stretch" and "tension-extension" discussed by Truesdell and Toupin [4],

It is also shown in Appendix I that the stress resultants satisfy the equations of

equilibrium

d.(rti)/ds = t2 clr/ds. (2.7)

ti(d<t>/ds) + (sin <j>)t2/r = q (2.8)

where — qa3 is the externally applied force per unit deformed area and <£ is the tangent

angle such that

dr/ds = cos <j>, (2.9)

dz/ds = sin <f>. (2.10)

Thus we have eight equations (2.1), (2.2), (2.4), (2.5), (2.7), (2.8), (2.9) and (2.10)
for the eight unknowns Xj , X2 , t, , t2 , r, z, s and 4>. In general, the unknown h does not

enter into the analysis. If the elastic sheet is made of Mooney material (cf. Appendix I),

then the thickness h of the deformed sheet can be determined from the condition of

incompressibility

h = H\3 = H/XtX2 . (2.11)

Various numerical procedures are used to integrate the system of equations. In

Sees. 3 and 4, we show that the system can be reduced to quadratures if either the un-

deformed or the deformed middle surface is cylindrical.

3. Deformation from a tube. The middle surface M of the undeformed sheet is

assumed to be a circular cylindrical surface and the elastic sheet is homogeneous, i.e.

co does not depend explicitly on S.

Let M be generated by the meridian curve

C: R = I, Z = S, 0<<S<L<OO. (3.1)

The principal extension ratios become

= ds/dZ, (3.2)

X2 = r. (3.3)
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The problem now is to solve the system of Eqs. (3.2), (3.3), (2.4), (2.5), (2.7), (2.8),

(2.9) and (2.10).

Eq. (2.7) can be written as

dirt^/dr = t2 (3.4)

if dr/ds does not vanish. Multiplying (3.4) by Aid\2/dr (= Xi) and using (2.4), (2.5),

and (3.3), we obtain

wx, d\2/dr = Xt du^Jdr

= dfyiOSxj/dr — d\/dr.

Hence,

w — = a (3.5)

where a is a constant of integration. This deduction was given by Pipkin [1].

If the elastic sheet is made of isotropic incompressible Mooney material (cf. Ap-

pendix I), then (3.5) reduces to

X? - 3(rX,r2 + fc(rXi)2 - 3fcX^2 - r2 - kr'2 = a.

This expression was obtained by Wu [2], using a different approach.

We consider in great detail the general solutions of the following two cases.

Case I. Pressure q is a given function of r.

Since X2 = r, (3.5) can be solved to yield

Xi = X*(r, a). (3.6)

This is guaranteed by the fact that the implicit function condition for (3.5) is satisfied

by the assumptions (2.6) imposed on u. Then Eqs. (2.4), (2.5) yield

ti = t*(r, a) = o)Xl(X? , r)/r, (3.7)

<2 = t%(r, a) = wXj(Xf , r)/Xf . (3.8)

It is noted that for a given problem, i.e. for a specific value of a, the values of Xj, tl and t2

at a point p(r, 9, z) of m depend only on r but not on z.

Multiplying (2.8) by r(dr/ds) and using (2.7), we obtain

dr

Tds

d , , . . dr

Integration j'ields

rti sin <t> = J q(r)r dr + b (3.9)

where b is a constant of integration. Eq. (3.9) shows that b is proportional to the total

(axial) force applied to a circular cross-section of the sheet. If rh ^ 0, then (3.9) implies

<j> = <£*(r, a, b) = Sin Q" qr dr + bj^rttj* (3.10)
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From equation (3.2)

ds/dZ = (ds/dr)(dr/dZ) = X, (3.11)

and hence

dr/dZ = Xi cos <fi. (3.12)

This equation can be integrated to yield

Z

where r0 = r|z=0-Itis also convenient to set

s = 0, z = 0 at Z = 0. (3.14)

It follows from (2.9), (2.10) and (3.14) that

C' fir
s = s*(r,a,b,r0) = (3-15)

z = z*(r, a, b, r0) = f tan </>*(rj) drt . (3.16)
J T 0

It should be mentioned that the integrals appearing in equations (3.14), (3.15) and

(3.16) are improper when cos 4>* = 0. However, a simple calculation given in Appendix II

shows that these integrals do exist.

The system of Eqs. (3.2), (3.3), (2.4), (2.5), (2.7-2.10) is of fifth order and has the
general solution given by (3.6), (3.7), (3.8), (3.10), (3.13), (3.15) and (3.16). Since we

have conveniently set up the coordinates in such a way that (3.14) is satisfied, the

general solution contains only three constants a, b and r0. These constants must then be

chosen to satisfy the set of transcendental equations corresponding to a given set of

boundary conditions. The number of solutions of these transcendental equations will

be considered in subsequent work.

We now consider the solution of the initial value problem with the initial conditions:

s = 0, 2 = 0, r = r0 , <j> = 4>0 , tx = t0 at Z = 0. (3.17)

Substituting the third and the fifth conditions of (3.17) into (2.4), we find

Xl|z-0 = Xo(fo l to)

since cox^./Mz-o ^ 0- Then (3.5) yields

a = a0(r0, t0) = (co — XjtoxJIx.-x,, ; x,-r„ • (3.18)

Thus, the solution of the initial value problem is

Xi = X?(r, r0 , t0) = X*(r, a0(r0 , <„)), (3.19)

t, = t°(r, r0 , t0) = «Xl(x; , r)/r, (3.20)

t2 = t°(r, r„ , <„) = «x.(x; , r)/x; , (3.21)

4> = <#>°(r, r0 , t0 , <t>0) = sin-1 ^ dr, + r0«0 sin [rt\ , (3.22)
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r dr
Z = Z°(r, r0, to, to) = I xo(ri) , (3.23)

r dr
s = s°(r, r0 , , *„) = J^ cos ̂ T) - (3.24)

z = a°(r, r0 , t0 , <t>o) = ^ tan <£°(r,) . (3.25)

The problem of a circular cylindrical sheet stretched in the direction of its axis by

pulling the end circles apart while maintianing them undeformed has been considered

by Stoker [5], The equations were solved numerically by a finite difference method.

This step can be eliminated by using the present results. To illustrate the procedure,

let the radius of the cylindrical sheet be unity and let the length be 2L. The sheet is

stretched to a length 21 > 2L. We choose a cylindrical coordinate system (It, 6, Z),

the Z-axis of which coincides with the axis of symmetry of the cylindrical sheet; the

plane Z = 0 contains one of the end circles. Because of the symmetry of the deformation,

we consider only one half of the sheet, i.e. 0 < Z < L.

The problem now is to solve the system of Eqs. (3.2), (3.3), (2.4), (2.5), (2.7-2.10)

with 5 = 0 subject to the boundary conditions:

s = 0, z = 0, r = 1 at Z = 0 (3.26)

z = I, <i> = tt/2 at Z = L (3.27)

The solution is given by f*(r, a, b, r0) where / is a generic symbol and the constants

a, b, rQ are the solutions of the transcendental equations:

r0 = 1,

Z*(r1,a,b,ro)=L> (3.28)

, a, b) = t/2,

z*{r1 , a, b, ra) = I.

In the above equations n = r\z-L is the deformed radius at the "throat".

Alternatively, we may wish to consider the initial value problem with the initial

conditions:

s = 0, z = 0, r — 1, t = t0, 4> — <f>o at Z — 0.

The solution is given by f(r, r0 , t0 , 4>a) where / is again a generic symbol and r0 = 1.

The constants t0 and 4>0 have to be adjusted in such a way that both conditions (3.27)

at Z = L are satisfied.

Case II. The middle surface m of the deformed sheet is given.

Let m be generated by a meridian curve c which is a portion of a given curve paramet-

rized by

r = p(o-), z = f(ff), r(0) = 0 (3.29)

where p and f are continuous functions of the arc length <r. The functions p and f may

have discontinuous derivatives.

The undeformed circular cylindrical sheet (3.1) is applied onto the surface of revolu-
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tion generated by (3.29). We wish to determine all the physical quantities as functions

of Z. In particular, we wish to determine the pressure q between the sheet and the given

surface. While it is difficult to impose physically reasonable, a priori restrictions on p

and we assume that they do not give rise to negative pressure.

Since the deformed middle surface is known, the equations which remain to be solved

are (3.2), (3.3), (2.4), (2.5), (2.7), (2.8) and

ds/da = 1. (3.30)

Moreover, Eq. (2.8) decouples from the other equations, and is simply an algebraic

equation for the determination of the pressure q.

The system of equations also admits the first integral (3.5). Since X2 = r = p(a), and

because of (2.6), Eq. (3.5) can be solved to yield

Ax = Xt(<r, a). (3.31)

The stress resultants are

ti = a) = «Xl(Xi+, p(o-))/p(<r), (3.32)

t2 = t+2(<r, a) = MXa(X*, p(a))/Xi . (3.33)

Eqs. (3.2), (3.30) and (3.31) yield

Z = Z\c, a, v0) = f' (3.34)

where <r0 = <r\z-0 •

Thus the general solution of this case is given by (3.31)-(3.34) which involve two

constants of integration a and c0 .

We also obtain explicit expression for the solution of the initial value problem with

the initial conditions:

a — <r0(r = p(<r0)) and ti = t0 at Z = 0. (3.35)

These are the same conditions used to derive (3.18). Thus

Xi = Xi(<r, <7-0 , to) = X°(p(cr), p(cr0), <„), (3.36)

ti = Co , t0) = coXl(Xf , r)/p(o), (3.37)

U = t\{a, o*o , to) = ux,(A? , r)/x? . (3.38)

Finally, (3.2), (3.30) and (3.31) yield

Z = z\c, CQ , to) = f ^■ ■ (3.39)

Eqs. (3.36-3.39) constitute the complete solution for the initial value problem. The

special case of a Mooney tube stretched into an annulus has been given explicitly in [2],

We conclude this section by remarking that if the curve (3.29) has discontinuous

first derivative at <j = od , then a line distribution of pressure will result there. The

intensity of the line load is

2t\{<Td , a) sin %(<t>(<xd +) — 4>(ad -))

and the line of action bisects the angle formed by (3.25) at <x = ad .
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4. Deformation to a tube. We consider the deformation of an inhomogeneous

elastic sheet1 of revolution applied onto a circular cylindrical surface. Let the meridian

curves of the middle surfaces M and m have the parametric representations:

C:R=R0(S), Z = Z0(S), R0<1, Z„00) = 0, 0 < S < L < ® (4.1)

c : r = 1, z = s, 0<s<co. (4.2)

The principal extension ratios now become

Xi = dz/dS, X2 = 1/R = 1/R0(S), (4.3)

and the equations of equilibrium (2.7), (2.8) reduce to

dtjdz = 0, (4.4)

q = t2 . (4.5)

It follows from (4.4) and (2.4) that

= f ,X.,S) = <o (4-6)
A2 OAi

where t0 is a constant of integration. In view of the second condition of (2.6) and the fact

that X2 is a known function of S, Eq. (4.6) can be inverted to yield X, = Xi(S, t0). Thus

2 = [ X,(5, , Q dS\ . (4.7)
Jo

This completes the solution. We consider the following examples:

Example 1. An elastic tube of radius 0 < R < 1 made of Mooney material is

applied on a rigid cylinder of radius r = 1.

Eqs. (1.10) and (4.6) with (, 3 0 imply that X! = R1/2 and hence z — R1/2Z. Thus

the length of the tube never shrinks to zero. The pressure between the tube and cylinder is

q = t2 = (R'3/2 - R3/2)( 1 + KmR). (4.8)

Example 2. An elastic tube of radius 0 < R < 1 made of classical material is

applied on a rigid cylinder of radius r — 1.

Eqs. (1.9) and (4.6) with h = 0 imply that

"-[!
2 + Kc 1

+ Kc (1 + KC)R.
Z.

Thus, the length of a tube of initial radius R — 1/(2 + Ke) is shrunk to zero. Similar

phenomena have been found by Stoker [5] and Sensenig [6]. The pressure is

q = h = K.(2 + Kc){ 1 - R)/[(2 + KC)R - 1], (4.9)

Example 3. An elastic annulus C: Z = 0, R = S, O<<S<1S<I, made of

Mooney material is applied on a rigid cylinder of radius r = 1.

Eqs. (1.10) and (4.6) with U = 0 imply that

Xx = dz/dR = R1'2

•The elastic sheet is characterized by a strain energy function a = w(Xi, X2, S).
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and hence

2 = f (R3/2 - S3/2).

The pressure is

q = t2= (R-3/2 - R3/2)( 1 + KmR). (4.10)

Acknowledgment. The author is indebted to Professor J. B. Keller who read the

manuscript and offered many helpful criticisms.

APPENDIX I: Derivation of Governing Equations

Let us consider an elastic sheet which in the undeformed state is characterized by

the meridian curve

C:R = R(S), Z = Z(S), Z(0) = 0, 0 < S < L. (1-1)

The sheet is subjected to externally applied normal pressure

q = ~qa3 (1-2)

per unit deformed area. The deformed state which is characterized by the coordinates

of p(r, d, z) is assumed to satisfy the following variational expression

/* L /* L I Zj

S / 27ri2o>(\1 , X2 , S) dS = — / 2irrq\l 8u3 dS + 2irrii SMj • (I-
Jo Jo Jo

3)

Here u is a strain energy function per unit undeformed area, I, is the force per unit

deformed arc length acting at the ends of the sheet and Sui , 5u3 are respectively the a!

and a2 components of the virtual displacement about the equilibrium position p(r, 6, z).

The presence of S in co allows for inhomogeneous material properties.

Let prime denote differentiation with respect to S. It is easy to show that

SXj = Cos <£ Sr' + Sin <t> Sz' . .
(1-4)

- 5u[ — <t>' Su3 ,

Sr Cos d> „ Sin d> „ /T ,,

5X2 — n ~ ft R 3 (I"4)

where </> is the tangent angle. Equations (1-3), (1-4) imply that

f {— [(7?coXl)' — Cos Ifwj Sttj — [R<t>'cox, + Sin0cox, — rX^] Su3} dS
0

+ (flcox, - r'u) 5Ul = 0. (1-5)
Jo

Then, the necessary and sufficient conditions for (1-5) to hold are the Euler equations

dfyQ/ds = t2 dr/ds,
(1-6)

t^d^/ds) + (Sin <t>)t2/r = q,

and the boundary conditions

(<1 - h) Swj =0 (1-7)
Jo
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where the notations

ti = Wxj/Xa , t2 = OJ\,/Xi (1-8)

have been used. Physically, these quantities are the stress resultants in the meridian and

azimuthal directions.

Two types of strain energy function are commonly used, namely the classical function

coc and the Mooney function com . The nondimensional forms of these functions and the

corresponding constitutive relations are

2coc = (Xj + X2 — 2)2 + Kc [(X! — l)2 + (X2 — l)2], Ke = 2/i/X,

~ [(^i + X2 — 2) + Kc(\ — 1)], (1-9)
A2

<2 = t(^l + ^2 — 2) + Kc(\i — 1)],
"1

K = —M (J 12ccm = (x, + X2 + + ^2 + ~2^ ,

k = - ^s)(l + (1-10)

- (s - s)(1 + K-x;>

where X, n are the Latn6 constants and C\ , C2 are the Mooney constants. To obtain the

dimensional forms, multiply coc by 2X and wm by 2CJI.

APPENDIX II: Integrability of Eqs. (3.13), (3.15) and (3.16)

It suffices to show that the integral

dr

=/; cos 4>* '

cos <£* =0, (H-1)

cos 4>* 0 for u < r < v

exists. Equation (3.9) implies

sin 0* = Q/rt* ,

Q — f 1r dr + b.

Thus

• 2 ,* Q? , , , ,d ( Q2\
"m *= 1 + (r " "> dr W)

where u < f < r. Differentiating and applying (3.4), we have
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for u < r < v by equation (2.8). This implies that

1
0 <

where

cos <t>*< i M..\m (11-2)

w = Min Vtf)«<r < v

Equation (II—2) implies that (II 1) is integrable.
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