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ON CERTAIN MULTIPLICITY ONE THEOREMS

JEFFREY D. ADLER AND DIPENDRA PRASAD

Abstract. We prove several multiplicity one theorems in this pa-
per. For k a local field not of characteristic two, and V a symplec-
tic space over k, any irreducible admissible representation of the
symplectic similitude group GSp(V ) decomposes with multiplicity
one when restricted to the symplectic group Sp(V ). We prove the
analogous result for GO(V ) and O(V ), where V is an orthogonal
space over k. When k is non-archimedean, we prove the unique-
ness of Fourier-Jacobi models for representations of GSp(4), and
the existence of such models for supercuspidal representations of
GSp(4).
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1. Introduction

In this paper we prove several multiplicity one theorems. Our initial
aim when writing this paper was to prove a multiplicity one theorem
for the restriction of an irreducible admissible representation of GSp(4)
to Sp(4) for the p-adic case. As is well known, such theorems are
easy consequences of the uniqueness of Whittaker models, when they
exist. But not every representation has a Whittaker model. Our initial
attempt was thus to use the analogous concept of Fourier-Jacobi models
(recalled below), for which uniqueness was proved by Baruch and Rallis
[BR] for the case of Sp(4). This required us to extend their work from
Sp(4) to GSp(4), which became a major exercise in itself, useful in its
own right.

We now introduce some notation. Let k denote a local field not of
characteristic two. Let V denote a finite-dimensional vector space over
k with a non-degenerate bilinear form 〈 , 〉 that is either symmetric or
skew-symmetric. Let U(V ) denote the associated automorphism group:

{
g ∈ Aut(V )

∣∣ 〈gv1, gv2〉 = 〈v1, v2〉 for all v1, v2 ∈ V
}
.

Let GU(V ) denote the corresponding similitude group:
{
g ∈ Aut(V )

∣∣ ∃λg ∈ k×, ∀v1, v2 ∈ V , 〈gv1, gv2〉 = λg〈v1, v2〉
}
.

We also denote these groups by Sp(V ) and GSp(V ) (resp. O(V ) and
GO(V )) if 〈 , 〉 is skew-symmetric (res. symmetric). If the dimension
of V is 2n, we write Sp(V ) also as Sp(2n), and GSp(V ) as GSp(2n).

We now introduce the Fourier-Jacobi models. Let e1 be any nonzero
vector in V . Let J be the stabilizer of e1 in Sp(2n). Then J ∼= Sp(2n−
2) ⋉ H where H is the (2n − 1)-dimensional Heisenberg group. Let
Z ∼= k be the center of H , and ψ : Z → C× a nontrivial character. Let
θψ be the oscillator representation of H with central character ψ. It is

well known that θψ can be extended to a representation of J̃ = S̃H with

S̃ the two-fold metaplectic cover of Sp(2n−2). Let σ be an irreducible
admissible genuine representation (i.e., nontrivial on the kernel of the
map from S̃ to Sp(2n−2)) of S̃. Then σ⊗θψ is an irreducible admissible

representation of J̃ which, as both σ and θψ are genuine, is in fact a
representation of J .

Remark. Any irreducible admissible representation of J on which Z
operates via ψ is of this form.

Baruch and Rallis prove the following theorem in [BR].

Theorem 1.1. Suppose k is non-archimedean. Let π be an irreducible
admissible representation of Sp(4). Then for any irreducible admissible
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representation µ of J on which Z operates via a nontrivial character,
dim HomJ [π, µ] ≤ 1.

Note that in their statement of the theorem, the field k has charac-
teristic zero. However, the proof only requires that the characteristic
is not two.

We prove an analogous theorem for GSp(4). Although our proof
is modelled on the proof in [BR], many details are quite different; in
particular, the proof for the ‘open cell’ (see §6) is totally different.

Theorem 1.2. Let π be an irreducible admissible representation of
GSp(4). Then for any irreducible admissible representation µ of J on
which Z operates via a nontrivial character, dim HomJ [π, µ] ≤ 1.

Remark. By Frobenius reciprocity, a J-invariant map from π to µ
is equivalent to an embedding of π into the induced representation

ind
GSp(V )
J µ, called a Fourier-Jacobi model of π.

To be able to use the uniqueness theorem for the Fourier-Jacobi mod-
els for GSp(4), we must show that they exist. This amounts to showing
that a certain representation of J must have irreducible quotients when
it is known to be nonzero. This turned out to be much more difficult
than anticipated. In fact, we prove only a special case here (§12),
and deduce the multiplicity one theorem for restriction from GSp(4) to
Sp(4) in general from this. We hope that the problems encountered in
this part of the paper (and the way that we have handled them) will
be of independent interest.

In a similar vein, i.e., by the method of “models,” we give a proof of
the multiplicity one theorem for the restricition of an irreducible ad-
missible representation of GL(n) to SL(n) due originally to Tadić [T],
who proved it by an elaborate analysis using the full classification of ir-
reducible admissible representations of GL(n) (due to Zelevinsky [Ze]).

Theorem 1.3. Any irreducible admissible representation of GL(n) de-
composes with multiplicity one when restricted to SL(n).

However, after proving the multiplicity one theorem for GSp(4) by
the method of Fourier-Jacobi models, we realized that a more general
multiplicity one theorem for restriction from GU(V ) to U(V ) is an
easy consequence of a result in linear algebra (of classical groups),
combined with the usual formalism of Gelfand pairs adapted to p-adic
groups by Gelfand-Kazhdan [GKa] and developed further by Bernstein-
Zelevinsky [BZ]. This lemma in linear algebra, valid for any field of
characteristic not 2, says (in the symplectic case) that for any g in
GSp(2n), g and tg are conjugate by an element of GSp(2n) of similitude
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−1. Forms of this lemma are available for all classical groups in [MVW].
The extension of this result of [MVW] to the similitude group for the
symplectic case was observed in [P2]. But for our purposes, its most
precise form given in a very recent paper of Vinroot [V] is what will be
essential.

We prove the following theorem in this paper.

Theorem 1.4. Let V be a finite-dimensional vector space over k with
a non-degenerate symmetric or skew-symmetric form 〈 , 〉. Then any
irreducible admissible representation π̃ of GU(V ) decomposes with mul-
tiplicity one when restricted to U(V ); i.e., for any irreducible, admis-
sible representation π of U(V ),

dim HomU(V )[π̃, π] ≤ 1.

In §2, we will give the rather simple proofs of theorems 1.3 and 1.4.
We also state a conjecture concerning multiplicity one restriction for
more general groups. From §3 on, we will assume that k is non-
archimedean, and will work exclusively with the group GSp(4). We
prove theorem 1.2 about the uniqueness of the Fourier-Jacobi model
for its representations. Then we give another proof of the multiplicity
one theorem about restriction from GSp(4) to Sp(4) from this point
of view by proving the existence of Fourier-Jacobi models in the su-
percuspidal case (§12), and handling nonsupercuspidal representations
separately (§11).

Acknowledgement: Theorem 1.4 has long been expected, at least
in the rank-two symplectic case. We thank Paul Sally for suggesting
that we study it, and for enthusiastic encouragement on several occa-
sions. We also thank E. Moshe Baruch and David Soudry for helpful
correspondence. We thank the Institute of Mathematical Sciences, Sin-
gapore for the invitation to participate in their special semester activity
on representation theory in the summer of 2002, where the two authors
shared an office, and the collaboration on this theorem was conceived.
The first-named author also thanks the Tata Institute for an invitation
in the summer of 2003 to continue our work there.

2. Multiplicity one upon restriction

In this section, we (re)prove theorem 1.3 and prove theorem 1.4. We
deal with the archimedean case first, since it is easy, and from then on
assume that k is non-archimedean.

2.1. Archimedean case. We recall some general Clifford theory:



ON CERTAIN MULTIPLICITY ONE THEOREMS 5

Lemma 2.1. If G is a group with center Z, and H is a normal subgroup
with G/ZH a finite cyclic group, then any irreducible represntation of
G decomposes with multiplicity one when restricted to H. (If G is a real
Lie group, then by a representation of G, we mean either a continuous
representation in a Frechet space, or a Harish-Chandra module.)

Suppose k is archimedean. Then the lemma implies both theorem 1.3
and theorem 1.4, since the quotient in the lemma has order 1 or 2.

Therefore, assume for the rest of this section that k is non-archimedean.

2.2. Restriction from GL(n) to SL(n). In this section only, there is
no restriction on the characteristic of k.

Our proof of theorem 1.3 depends on the following theorem of Zelevin-
sky, corollary 8.3 of [Ze].

Theorem 2.2. Let π̃ be an irreducible admissible representation of
GL(n). Let Un be the group of upper-triangular unipotent matrices
in GL(n). Then there exists a character θ : Un → C× such that
HomUn

[π̃, θ] ∼= C.

Proof of Theorem 1.3. If HomUn
[π̃, θ] ∼= C, then HomUn

[π, θ] is also
isomorphic to C for some irreducible admissible representation π of
SL(n) which appears in the restriction of π̃ with multiplicity exactly
one. Since the set of irreducible admissible representations π of SL(n)
such that HomSL(n)[π̃, π] 6= 0 lies in a single GL(n)-orbit (for the inner
conjugation action of GL(n) on SL(n), and hence on representations of
SL(n)), this completes the proof of the theorem. �

2.3. Restriction from GU(V ) to U(V ). We will prove theorem 1.4
by applying the method of Gelfand pairs:

Theorem 2.3. Suppose G is the group of k-points of an algebraic k-
group, H is the group of k-points of a closed k-subgroup, and G/H
carries a G-invariant distribution. Suppose that τ is an algebraic anti-
involution of G that preserves H and takes each H-conjugacy class in
G into itself. Then

(a) Every H-invariant distribution on G is τ -invariant.
(b) For any irreducible, smooth representations π̃ of G and π of H,

with smooth duals π̃∨ and π∨ respectively, let m(π̃, π) denote the
dimension of the space of H-invariant linear maps from π̃ to π.
Then m(π̃, π)m(π̃∨, π∨) ≤ 1.

Proof. Both parts of the theorem are due to Gelfand-Kazhdan as re-
fined by Bernstein-Zelevinsky. For part (a) we refer to theorem 6.13 of
[BZ], and for part (b) we refer to lemma 4.2 of [P1]. �
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Suppose that G = GU(V ), H = U(V ), and π̃ is an irreducible,
admissible representation of G. From generalities, we know that as a
representation ofH , π̃ decomposes into a finite direct sum of irreducible
representations:

π̃ ∼= π1 ⊕ · · · ⊕ πℓ.

Then

π̃∨ ∼= π∨
1 ⊕ · · · ⊕ π∨

ℓ .

Thus, m(π̃, π) = m(π̃∨, π∨) for any summand π of π̃. Since m(π̃, π) ≥
1, theorem 2.3 will imply m(π̃, π) = 1 as long as there exists an anti-
involution τ as in the theorem.

Thus, we will have proved theorem 1.4 if we can find a suitable anti-
involution τ . This is provided by the following lemmas, which follow
from the work of Vinroot, cf. corollary 1 of [V].

Lemma 2.4. Suppose V is a symplectic space. Fix d ∈ GSp(V ) of
similitude −1. Let τ be the anti-involution on GSp(V ) defined by
τ(g) = dtgd−1. Then for any g ∈ GSp(V ), g and τ(g) are conjugate by
an element of Sp(V ).

Lemma 2.5. Suppose V is an orthogonal space. Let τ be the anti-
involution on GO(V ) defined by τ(g) = tg. Then for any g ∈ GO(V ),
g and τ(g) are conjugate by an element of O(V ).

2.4. A conjecture on multiplicity one restriction. In this paper
we have proved a multiplicity one theorem for restriction from GU(V )
to U(V ) (where U(V ) is symplectic or orthogonal), as well as reproved
a theorem (originally due to Tadić) about restriction from GL(n) to
SL(n). We note that the theorem about GU(V ) has been proved by
a generality valid for all fields not of characteristic two, whereas the
theorem on GL(n) is proved by both Tadić and ourselves using non-
archimedean local fields (as the general lemma from linear algebra that
one may wish to be true, i.e., for h a fixed element of GL(n), A and
htAh−1 are conjugate via SL(n), does not hold, as one can easily see).
There is, however, the possibility that such a lemma holds for distribu-
tions on GL(n), and therefore the multiplicity one theorem can indeed
by proved by the method of Gelfand pairs, as developed by Gelfand
and Kazhdan [GKa]. This suggests the possibility that, just like the
uniqueness of Whittaker models, proved for all quasi-split groups, the
following too is true in this generality, and could be proved by analyzing
invariant distributions.

Conjecture 2.6. Let G be a quasi-split reductive algebraic group over

a local field k. Let G̃ be a reductive algebraic group containing G such
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that the derived groups of G and G̃ are the same, and such that G̃/G
is connected. Then multiplicity one holds for restriction of irreducible

admissible representations of G̃(k) to G(k).

Remark. It is well known that multiplicity one is not true for restric-
tion from D× to SL1(D), D a division algebra over a local field, so the
quasi-splitness assumption seems necessary.

Remark. One example for which the conjecture would be especially

useful is where G̃ is a unitary group U(n), and G = SU(n). Just
like its close cousin (GL(n), SL(n)), multiplicity one cannot be proved
purely by methods of linear algebra, but will require careful analysis of
invariant distributions.

3. Fourier-Jacobi models: Basic setup and notation

Assume from now on that k is non-archimedean. Let

j =

(
1

1
−1

−1

)
,

so that Sp(4) is the subgroup of GL(4) defined by
tgjg = j,

and GSp(4) is the subgroup of GL(4) defined by
tgjg = λ(g)j for some λ(g) ∈ k×.

Let C denote the center of GSp(4). For λ ∈ k×, v ∈ k2, A ∈ GL2(k),
z ∈ k, and B ∈M2(k) with B11 = B22, let

m(λ,A) =




λ
A11 A12

A21 A22

λ−1 detA




h(v, z) =




1 v1 v2 z
1 v2

1 −v1

1




q(A,B, λ) =

(
A

λA∗

) (
I B

I

)
,

where A∗ = ωtA−1ω−1, ω = ( 0 1
1 0 )

n(B) = q(I, B, 1).

Let M , H , and N denote the images of m, h, and n, respectively.
Then P = MH is the Klingen parabolic subgroup of GSp(4), and its
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unipotent radical H is the Heisenberg group. The image of q is the
Siegel parabolic subgroup Q, whose unipotent radical is N . Let

M ′ =
{

m(1, m)
∣∣ m ∈ SL(2)

}

J = M ′H (the Fourier-Jacobi group)

L =

{(
1

1
λ
λ

) ∣∣∣∣ λ ∈ k×
}

Z =
{

h(0, z)
∣∣ z ∈ k

}
.

Note that Z is the center of both H and J . Note also that M = CLM ′

(in any order), and thus P = JCL.
Let τ be the involution on GSp(4) × J defined by

τ(g, h) = (d−1j−1tgjd, d−1h−1d),

where

d =

(
−1

1
1

1

)
.

Clearly, d normalizes the subgroup J , and the involution τ when re-
stricted to the center Z of the Heisenberg group H is trivial. We will
abuse notation to denote the restriction of τ to any τ -invariant sub-
group of GSp(4) also by τ . We note that

τ(m(λ,A)) = m(λ−1 detA, d−1
1

tAd1),

where d1 =
(

1 0
0 −1

)
.

Let ∆J denote the image of J under the diagonal embedding J →
GSp(4)×J . By the method of Gelfand pairs, as developed by Gelfand
and Kazhdan [GKa] (and applied, for example, in [BR] and in §2.3), to
prove theorem 1.2, it suffices to show that any distribution on GSp(4)×
J which is bi-invariant under ∆J ⊂ GSp(4)×J , and ψ-quasi-invariant
under translations of the second variable by Z, is fixed by the involution
τ .

Just as in theorem 2.6 of [BR], this is equivalent to proving the
following theorem.

Theorem 3.1. Let T be a distribution on GSp(4) which is invariant
under inner-conjugation by J , and Lz ·T = ψ(z)T for all z ∈ Z (where
Lz is left translation by z). Then T is fixed by τ .

This is clearly equivalent to the following:

Theorem 3.2. Let T be as in theorem 3.1, and suppose in addition
that T is τ -skew-invariant. Then T is identically zero.
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4. General strategy for proving uniqueness

We outline the general strategy of our proof of the theorem 3.2.
Implicitly, it involves decomposing GSp(4) = P ∪Pw′P ∪Pw′′P into a
disjoint union of J-invariant, τ -invariant subsets X0, X1, . . . , Xm = P ,
such that Yi = ∪j≥iXj is a closed subset of GSp(4), and Xi is open
in Yi. We begin by showing that T vanishes on the open subset X0,
and thus restricts to its complement. Continuing in this way, we will
show in turn that T vanishes on the complement of Yi for all i (the
final case, i.e., vanishing of T on P is the subject of §8), completing
the proof that T = 0. We emphasize that the method used in the ith
step will vary with i. In many cases, we will show that every J-orbit in
Xi is τ -stable, and use the following lemma of Bernstein, cf. lemma 2.7
of [BR].

Lemma 4.1. Let X be the set of k-points of a k-variety on which a
group J acts, as well as an automorphism τ of order two normalizing
the action of J , i.e., in the automorphism group of X, τJτ−1 = J . If
every J-orbit in X is stable under τ , then every J-invariant distribution
on X is τ -invariant.

In some cases we will show that every J-orbit inXi is stable under left
multiplication by Z, and appeal to the following lemma, cf. lemma 2.8
of [BR].

Lemma 4.2. Let X be a J-stable subvariety of GSp(4) which is stable
under Z (where J acts by conjugation and Z by right translation). If
every J orbit in X is stable under Z, then a distribution on X which
is J-invariant, and on which Z operates by ψ, is trivial.

These properties of the orbits imply that all distributions on Xi (not
just those on the closure of Xi) with our invariance properties must
vanish on Xi, a stronger result than we need. In a few cases, we will
have to use more delicate means to show that T vanishes on Xi, but
these cases can be reduced to [BR], which is what we do in this paper.

5. Using the result of Baruch and Rallis on Sp(4)

Let G = k× Sp(4). Clearly G is an open subgroup of GSp(4), and
therefore any distribution on GSp(4) can be restricted to it. Let T
be a distribution on GSp(4) with invariance properties under J and
Z as in the statement of theorem 3.2, and which transforms under k×

by a given character (the central character), and is τ skew-invariant.
The restriction to G of such a distribution is equivalent (by a form of
Frobenius reciprocity) to a distribution on Sp(4) with invariance under
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J and Z and which further is τ skew-invariant. The Sp(4) theorem of
Baruch and Rallis implies that this distribution on Sp(4) is zero. Hence
our distribution T is zero on this subgroup G. In the next sections, we
analyze the possible support for the distribution T .

6. Open cell

This section is devoted to proving the following result:

Lemma 6.1. Every distribution on Pw′′P satisfying the invariance
properties of theorem 3.1 is τ -invariant.

6.1. Transferring the problem from Pw′′P to smaller spaces.
Let X = Pw′′P . Clearly, X = HMw′′H , with H acting on X by
conjugation. Thus H-invariant distributions on

X = HMw′′H ∼= HMH

can be identified with distributions on P = MH under the map

h1mw
′′h2 ∈ HMw′′H 7→ mh2h1 ∈MH.

Since w′′ commutes with M ′ ∼= SL(2), for elements m1 ∈ SL(2),

m1(h1mw
′′h2)m

−1
1 = (m1h1m

−1
1 )(m1mm

−1
1 )w′′(m1h2m

−1
1 ).

Therefore under the identification of H-invariant distributions on X =
HMw′′H with distributions on MH , the J-invariant distributions cor-
respond to distributions on M × H on which SL(2) operates in the
natural way by the inner-conjugation action.

It can be checked that τ(w′′) = w′′. Therefore, for g = h1mw
′′h2,

τ(g) = τ(h2)w
′′τ(m)τ(h1) = τ(h2)w

′′τ(m)w′′−1w′′τ(h1). Therefore un-
der the identification of distributions on X = HMw′′H with distribu-
tions on MH through the map (h1mw

′′h2) 7→ (m, h2h1), the involution
τ on X corresponds to the involution (m, h) 7→ (w′′τ(m)w′′−1, τ(h)).
Thus we are reduced to proving that SL(2)-invariant distributions on
M ×H are invariant under this latter involution.

Actually, we are looking at distributions on X = HMw′′H on which
Z acts on the left via ψ. Clearly, distributions on X which are H-
invariant and (Z, ψ)-invariant correspond to distributions onMH which
are (Z, ψ)-invariant. These correspond to distributions on MH/Z ∼=
M × k2.

Since w′′τ(m)w′′−1 = m(λ, d−1
1

tAd1), for m = m(λ,A), we are finally
reduced to proving the following result:

Lemma 6.2. An SL(2)-invariant distribution on GL(2) × k2 is in-
variant under τ ′ : (g, v) 7→ (d−1

1
tgd1, d2v), where d1 =

(
1 0
0 −1

)
and

d2 = ( 0 1
1 0 ).
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Before we proceed further, we note the following lemma.

Lemma 6.3. For any g, w ∈ GL(2) with detw = −1, the matrices g
and wtgw−1 are conjugate by an element of SL(2).

This is a special case of lemma 2.4 (and is not difficult to prove
directly).

Remark. It follows from this lemma that representations of GL(2)
restrict to SL(2) without multiplicity, something that is already clear
from Whittaker model considerations. Unfortunately, there is no ana-
logue of lemma 6.3 for higher n, and therefore there is no Gelfand pairs
proof of Tadić’s theorem.

6.2. On a certain quadratic form. Let k2 be the 2-dimensional vec-
tor space over k with the standard symplectic structure 〈 , 〉. Asso-
ciated to any g ∈ GL2(k), we have a quadratic form Qg on k2 defined
by

Qg(v) = 〈gv, v〉.

It can be seen that Qg is a non-degenerate quadratic form if and only
if the eigenvalues of g (in the algebraic closure k̄ of k) are distinct.
However, we will not have any occasion to use this fact.

Lemma 6.4. For an element g ∈ GL(2), let Z(g) denote its centralizer
in GL(2). Then we have SO(Qg) = Z(g) ∩ SL(2).

Proof. Clearly,

t ∈ SO(Qg) ⇐⇒ Qg(tv) = Qg(v) for all v ∈ k2, and det t = 1,

⇐⇒ 〈gtv, tv〉 = 〈gv, v〉 for all v ∈ k2, and det t = 1,

⇐⇒ 〈t−1gtv, v〉 = 〈gv, v〉 for all v ∈ k2, and det t = 1,

⇐⇒ 〈[g − t−1gt]v, v〉 = 0 for all v ∈ k2, and det t = 1.

Observe that for v 6= 0, 〈w, v〉 = 0 if and only if w = λv for some λ ∈ k.
Therefore, an element t ∈ SL(2) belongs to SO(Qg) if and only if for
any v ∈ k2, [g − t−1gt]v = λvv for some λv ∈ k.

It is well known that if every vector of a vector space is an eigenvector
for a given linear operator, then the linear operator must be a multiple
of the identity. Therefore,

g − t−1gt = λI, for some λ ∈ k.

Taking the trace, we find that λ must be zero, i.e., t ∈ Z(g). The
lemma follows. �

Lemma 6.5. For any quadratic form q on k2 and vectors v1, v2 with
q(v1) = q(v2) 6= 0, there exists an element g ∈ SO(q) with gv1 = v2.
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Proof. This is the usual Witt’s theorem, except for the conclusion that
g can be chosen to have determinant 1. Given v1, v2 with q(v1) =
q(v2) 6= 0, there exist w1 ⊥ v1 and w2 ⊥ v2. Since the discriminant of q
is equal to q(v1)q(w1), as well to q(v2)q(w2), we may assume that that
q(w1) = q(w2). Clearly, the transformations that take v1 to v2 and w1

to ±w2 are in O(q), and one of them has determinant 1. �

6.3. Proof of Lemma 6.2. Let

π : GL(2) × k2 → k × k × k

(g, v) 7→ (tr(g), det(g), 〈gv, v〉),

where 〈 , 〉 is the standard symplectic form on k2 with 〈e1, e2〉 = 1 =
−〈e2, e1〉, and 〈e1, e1〉 = 〈e2, e2〉 = 0.

It is easy to see that this mapping is SL(2)-invariant and is also τ ′-
invariant. (For τ ′ invariance, we note that 〈gv, w〉 = 〈v, d′′tgd′′−1w〉, for
d′′ =

(
0 1

−1 0

)
, and that d′′ = d1d2.) We will prove the proposition by

showing that any SL(2)-invariant distribution supported on a fiber of π
is τ ′-invariant. This is sufficient by the Bernstein Localization theorem
(lemma 4.1). We will achieve this by dividing the possible fibers into
three cases. But first we introduce the following notation.

If two elements (g1, v1) and (g2, v2) are in the same SL(2)-orbit, i.e.,
there exists s ∈ SL(2) such that (g2, v2) = (sg1s

−1, sv1), we write
(g1, v1) ∼SL(2) (g2, v2).

Case 1: Consider a fiber of π lying over (x, y, z), where z 6= 0. We
will show any SL(2)-orbit in such a fiber is τ ′-invariant. That is, we
will prove that

(g, v) ∼SL(2) (d−1
1

tgd1, d2v),

for any (g, v) such that 〈gv, v〉 6= 0 where d1 =
(

1 0
0 −1

)
and d2 = ( 0 1

1 0 ).

By lemma 6.3, there exists s ∈ SL(2) such that d−1
1

tgd1 = sgs−1.
Further by combining lemmas 6.4 and 6.5, there exists t ∈ Z(g)∩SL(2)
such that s−1d2v = tv. Therefore,

(d−1
1

tgd1, d2v) = (sgs−1, d2v)
∼SL(2) (g, s−1d2v)
= (g, tv)
∼SL(2) (g, v).

Case 2: We next look at the fiber over an element (x, y, z) with
x2 6= 4y and z = 0. Since z = 0, for an element (g, v) in the fiber,
〈gv, v〉 = 0, and therefore v is an eigenvector of g. Since x2 6= 4y,
eigenvalues of g (in k̄) are distinct, hence g is diagonalizable over k
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with distinct eigenvalues. Call such a fiber F(x,y,z). We have a map

µ : F(x,y,z) → GL(2)

(g, v) 7→ g.

Since g is diagonalizable over k, any conjugate of g by GL(2) is in
fact conjugate by SL(2). Therefore the image of F(x,y,z) in GL(2) is
a homogeneous space for the SL(2) action, and can be taken to be
SL(2)/T where T is the subgroup of SL(2) consisting of those elements
that commute with g. We assume that g =

(
α 0
0 β

)
. Therefore µ−1(g) ∼={

(v1, v2) ∈ k2
∣∣ v1v2 = 0

}
. Since τ ′v = d2v, τ

′ maps (v1, v2) to (v2, v1).
From a form of Frobenius reciprocity, as given for instance in [Be], cf.

lemma on page 60, the SL(2)-invariant distributions on F(x,y,z) are in
natural correspondence with the T -invariant distributions on µ−1(g) ∼={

(v2, v1) ∈ k2
∣∣ v1 · v2 = 0

}
, where T is the diagonal subgroup of SL(2)

which acts on µ−1(g) by t · (v1, v2) = (tv1, t
−1v2). The following lemma

therefore suffices to prove that any SL(2)-invariant distribution on
F(x,y,z) is τ ′-invariant. This simple and basic lemma has appeared in
many people’s works on invariant distributions; we refer to lemma 4.6
of [P1].

Lemma 6.6. Let X =
{

(v1, v2)
∣∣ v1v2 = 0

}
⊂ k2. Let k× operate on

X by t · (v1, v2) = (tv1, t
−1v2). Then any distribution on X which is

invariant under k× is invariant under the involution (v1, v2) 7→ (v2, v1).

Case 3: We finally look at the fiber over an element (x, y, z) with
x2 = 4y and z = 0. We assume without loss of generality that (x, y) =
(2, 1), so that we are dealing with unipotent matrices. The fiber is thus

F(2,1,0) =
{

(g, v)
∣∣ g is unipotent and gv = v

}
.

In this case, we will again prove that

(g, v) ∼SL(2) (d−1
1

tgd1, d2v),

for any (g, v) in such a fiber, and therefore that any SL(2)-invariant
distribution supported on such a fiber is τ ′-invariant.

We will find it more convenient to check invariance under the invo-
lution τ ′′ : (g, v) 7→ (d−1

2
tgd2, d1v), which differs from τ ′ by an element

of SL(2).
By (the proof of) lemma 6.3, we can assume that d−1

2
tgd2 = sgs−1

with s = ( 1 n
0 1 ). Therefore,

(d−1
2

tgd2, d1v) = (sgs−1, d1v) ∼SL(2) (g, s−1d1v).

We will be done if s−1d1v = v, or sv = d1v. Since we have z = 0,
s−1d1v is in any case an eigenvector of g. We will assume that g is
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a unipotent matrix which is not identity, as the other case is trivial.
Therefore, g has a unique eigenvector up to scaling. Therefore,

λs−1d1v = v

for some λ ∈ k×. It suffices to prove that λ can be taken to be 1. We
write out the equation, λs−1d1v = v, or sv = λd1v, assuming that v is
the column vector (v1, v2), explicitly:

(
1 n
0 1

) (
v1

v2

)
= λ

(
1 0
0 −1

) (
v1

v2

)
.

Equivalently, (
v1 + nv2

v2

)
= λ

(
v1

−v2

)
.

Therefore if v2 6= 0, λ = ±1. By changing s to −s, we then can assume
that λ = 1, and we are done. If v2 = 0, then again λ = 1.

7. Middle cell

We will prove the following:

Lemma 7.1. Every distribution on P ∪Pw′P satisfying the invariance
properties of theorem 3.2 vanishes on Pw′P .

As for the open cell, we need to examine the various J-orbits in
Pw′P . Recall that we are using 〈 , 〉 to denote the symplectic form
given by the skew-symmetric matrix

j =

(
1

1
−1

−1

)
.

Let {e1, e2, e3, e4} denote the standard basis of k4. With this notation,
since an element p of P has the property that pe1 is a multiple of e1,
and pe4 is a multiple of e4, it follows that for g = p1w

′p2 ∈ Pw′P ,

g41 = −〈ge1, e1〉 = −〈p1w
′p2e1, e1〉 = −〈w′λ2e1, λ1e1〉 = −〈λ2e2, λ1e1〉 = 0,

where λ1 and λ2 are scalars. Clearly, g41 is zero for elements of P
too. On the other hand, it can be easily checked that 〈ge1, e1〉 6= 0
for g = p1w

′′p2 ∈ Pw′′P . Thus, P ∪ Pw′P consists exactly of those
elements g of GSp(4) with g41 = 0.

Next note that the function γ : G → k defined by γ(g) = 〈g2e1, e1〉
is invariant under J , i.e., γ(tgt−1) = γ(g) for all t ∈ J . For g ∈ Pw′P ,
since g41 = 0,

γ(g) = (g2)41 = g42g21 + g43g31.

It can be easily checked that γ is invariant under the action of τ .
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Since w′ normalizes L, we have

Pw′P = JCLw′LCJ = JCLw′J,

every element of which is J-conjugate to an element of JCLw′. So,
modulo C, every element of Pw′P is J-conjugate to an element of the
form hm′w′, where h ∈ H and m′ ∈M ′L. Write

g = c h((a′, b′), z′) m(1, m) w′,

where c ∈ k× and m ∈ GL(2). Let λ = detm. Then γ(g) = c2m21λ.

Lemma 7.2. Suppose γ(g) 6= 0. Then the J-orbit of g is τ -invariant.

Proof. Without loss of generality, assume c = 1. Let γ0 = γ(g) = m21.
Let r = −m11/γ0 and q = m22/γ0. Then q and r are the unique values
so that

g′ := n

(
0 q
r 0

)
g n

(
0 q
r 0

)−1

= h((a, b′′), z′′) m(1,

(
0 −λγ−1

0

γ0 0

)
) w′

for some a, b′′, and z′′. Let s = −λa/γ0. Then s is the unique value so
that

g′′ := n

(
s 0
0 s

)
g′ n

(
s 0
0 s

)−1

= h((0, b), z) m(1,

(
0 −λγ−1

0

γ0 0

)
) w′

for some b and z. In other words, g′′ is the unique element in the
J-conjugacy class of g having this form.

Since τ(g′′) ∈ Pw′P and γ(τ(g′′)) = γ0, we see that, from the calcu-
lations above, τ(g′′) (like g) has a unique J-conjugate of the form

h((0, b′), z′) m(1,

(
0 −λγ−1

0

γ0 0

)
) w′

for some b′ and z′. The characteristic polynomial of this element (and
thus of τ(g′′)) is

X4 − b′γ0X
3 + z′γ0X

2 − b′γ0X + λ.

One can similarly compute the characteristic polynomial of g′′ (and
thus of g). But since g and τ(g′′) must have the same characteristic
polynomial, we must have that b = b′ and z = z′. �

From now on, assume that γ(g) = 0. Then m21 = 0, so we may write

g = q(A, ( r st r ) , λ) ∈ Qr P

for some r, s, t ∈ k and λ ∈ k×. Since all considerations in the rest
of the section depend only on g up to scalars, we assume that A =
( au 1
u 0 ) ∈ GL2(k). Let β1 and β2 denote the (generalized) eigenvalues of

A.
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Lemma 7.3. Suppose that for all i, j ∈ {1, 2}, we have βiβj 6= λ. Then
the J-orbit of g contains Zg.

Proof. Write g = q(A,B, λ). We would like to solve, for T ∈ N and
S ∈ Z, the equation

n(T )q(A,B, λ)n(−T ) = Sq(A,B, λ),

or,
(
I T
0 I

)(
A 0
0 λA∗

) (
I B
0 I

) (
I −T
0 I

)
=

(
I S
0 I

) (
A 0
0 λA∗

)(
I B
0 I

)
,

or, (
I T
0 I

) (
A 0
0 λA∗

) (
I −T
0 I

)
=

(
I S
0 I

) (
A 0
0 λA∗

)
,

or,
λTA∗ −AT = λSA∗.

Observe that for matrices L1 and L2, the transformation

X 7→ L1X −XL2

is singular if and only if an eigenvalue of L1 is the same as an eigenvalue
of L2. This implies that the equation

λTA∗ − AT = λSA∗

can be solved for T if A and λA∗ do not share an eigenvalue, i.e., if the
eigenvalues of A are {β1, β2}, then

{β1, β2} ∩ λ{β
−1
1 , β−1

2 } = φ,

i.e., λ 6∈ {β2
1 , β1β2, β

2
2}.

We actually need to solve for T with

ωtTω = T.

For this we write the earlier equation as

λT − ATA∗−1 = λS.

If T 7→ ωtTω is denoted by σ, then the above equation becomes:

λT − ATσ(A) = λS.

Applying σ to this equation, we obtain

λσ(T ) − Aσ(T )σ(A) = λS.

Adding the two previous equations,

λ[T + σ(T )] − A[T + σ(T )]σ(A) = 2λS.

Now 1
2
(T + σ(T )) is of the desired form, completing the proof of the

lemma. �
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Suppose from now on that the hypothesis of lemma 7.3 does not
hold. Then we can divide the rest of the proof into three cases.

Case 1: β2
i = λ for precisely one value of i ∈ {1, 2}. Assume without

loss of generality that β2
1 = λ 6= β2

2 . Since β1 and β2 thus have different
minimal polynomials over k, they must both lie in k×. Therefore, for
A′ = A/β1, A

′∗ = β1A
∗ = (λA∗)/β1. Thus for g′ = g/β1, the 2 × 2

block diagonal matrices are (A′, A′∗), i.e., up to scaling g belongs to
Sp(4). Furthermore, one of the eigenvalues of A′ is 1. By appealing
to [BR], we will see in §10 that we don’t have to worry about these
elements.

Case 2: λ = β2
1 = β2

2 . Then β2 = ±β1. If β2 = β1, then λ = β1β2 =
det(A) and tr(A) 6= 0. If β2 = −β1, then λ = −β1β2 = − det(A) and
tr(A) = 0.

Lemma 7.4. If tr(A) 6= 0, then the J-orbit of g = q(A,B, detA) is
τ -invariant.

Proof. In this case, u = −λ. Let n = n ( x yz x ), where x, y, z ∈ k are to
be determined. Then

ngn−1 = q(( au 1
u 0 ) , ( R S

T R ) , λ),

where (R, S, T ) is an affine function of (x, y, z) that takes the value
(r, s, t) at the origin and has gradient




λu−1 − 1 0 −aλu−1

0 −1 λu−2

−2aλ λ a2λ− 1



 .

Since a 6= 0, the first and third rows are independent (look at the
second and third columns). Thus, we may choose x, y, and z to give R
and T any desired value, so g is N -conjugate (and thus J-conjugate)
to

g′ = q(
(
−aλ 1
−λ 0

)
, ( 0 s′

0 0 ) , λ)

for some s′ ∈ k. Let

p = h(0,−s′) h((a, 0), 0) m(1,
(

0 1
−1 0

)
) ∈ J.

Then pg′p−1 = τ(g′). Thus, the J-orbit of g is τ -invariant. �

Lemma 7.5. If tr(A) = 0, then the J-orbit of g = q(A,B,± detA) is
τ -invariant.

Proof. Let h = h(0,−tλ−1). Let

m =

{
m(1,

(
0 −1
1 0

)
) if λ = − det(A),

m(1,
(

0 1
−1 0

)
) if λ = det(A).
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Let g′ = hgh−1. Then

g′ = q(( 0 1
u 0 ) , ( r s

′

0 r ) , λ)

for some s′ ∈ k. Let h′ = h(0,−s′). Then h′mτ(g′)m−1h′−1 = g′. Thus,
the J-orbit of g is τ -invariant. �

Case 3: λ 6= β2
i for i = 1, 2. Then λ = β1β2 = det(A) (since we are

assuming that the hypothesis of lemma 7.3 is not satisfied). Therefore
either lemma 7.4 or lemma 7.5 applies.

8. Closed cell

In this section we prove the following:

Proposition 8.1. Any distribution on P that is J-invariant and ψ
invariant for a non-trivial character ψ of Z must be invariant under
the involution τ .

Proof. Let p = m(λ,A)h be an element of P = MH . It is easy to see
that for z ∈ Z,

pzp−1 = (λ2/ detA)z.

Therefore if λ2 6= detA, then for any z0 ∈ Z, there is z ∈ Z such that

pzp−1 = zz0,

or, z−1pz = z0p, implying that the J orbit of such a p is Z stable.
On the other hand, if λ2 = detA, then the J-orbit of p is τ -invariant.

This can be either checked as an easy exercise, or else observe that in
this case p/λ in fact belongs to Sp(4), and therefore one can use the
calculation of lemma 5.4 of [BR]. �

9. Constructible sets

Before we put all of the pieces together to prove our main theorem,
we need a bit of general topology that does not seem to have been
carefully written down anywhere that we could find. The reason for
our need is that a distribution can be restricted to an open set, and we
can try to decide if the distribution is zero or not on it. If zero, then
the question becomes one on the complementary closed set. And we
can proceed inductively trying to prove that a distribution is zero on
the whole set, the kind of goal we have set ourselves to in this paper.

However, situations might arise where a space is decomposed not
into an open and a complementary closed set, but into a slightly more
complicated subset, a constructible set, and its complement. In our
case this arises when we are considering all J-conjugates of elements
for which the hypothesis of lemma 7.3 holds, where we would like to
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apply lemma 4.2 to say that the distribution restricted to such elements
is zero, except that it does not make sense to restrict distributions to
such general subsets (a certain union of orbits).

First let us recall that a subset Y of a topological space X is said
to be constructible if Y is a finite union of locally closed subsets. (A
subset is locally closed if it is the intersection of a closed set with an
open set.)

The reason for the importance of constructible sets in p-adic groups
arises from the following theorem, which is a variation of a well-known
theorem due to Chevalley in algebraic geometry. We refer to [BZ] for
a proof.

Theorem 9.1. Let X and Y be algebraic varieties over a non-archimedean
local field k, and f be a morphism of algebraic varieties between X and
Y . Denote the corresponding k-valued points, and the morphism be-
tween the k-valued points by removing the underline. Then f(X) is a
constructible subset of the topological space Y .

For our purposes, the following lemma is of utmost importance.

Lemma 9.2. Let Y be a constructible subset of a topological space X.
Then there are finitely many closed subsets X1 ⊂ · · · ⊂ Xn = X such
that Xi+1 r Xi is an open subset of Xi+1 which is either contained in
Y or in X r Y . Further, this decomposition is canonical in the sense
that if a group operates on X preserving Y , then it also preserves each
of the sets Xi.

Proof. We recall the following well-known decomposition of a con-
structible set, cf. [BZ], into a disjoint union of locally closed subsets.

For any subset A of X, define C1(A) = C(A) = Ār ĀrA. Clearly,
C(A) is a locally closed subset of X, and is contained in A. Further,
C(A) = A if and only if A is locally closed. For i > 1, inductively
define Ci(A) to be C(A r [C(A) ∪ C2(A) ∪ · · · ∪ Ci−1(A)]). It is easy
to see that if A is constructible, then Ci(A) is empty for large i, and
therefore such an A is a finite disjoint union of the locally closed sets
Ci(A).

Renaming the indices, let Y = ∪n−2
i=1 Yi, a disjoint union of locally

closed subsets Yi with Yi = ZirWi where Zi and Wi are closed subsets
of X. Now define X1 = ∪n−2

i=1 Wi, Xi = Xi−1 ∪ Zi−1 for 1 < i < n, and
Xn = X.

Clearly the Xi’s have the property desired. These sets are canoni-
cally constructed, and therefore are preserved under any group action
preserving Y . �
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10. Proof of uniqueness of Fourier-Jacobi models

completed

We now have all the pieces necessary to complete the proof of the-
orem 3.2. We start with a distribution T with invariance properties
as in the statement of this theorem. Our aim is to prove that such
a distribution is identically zero. By appealing to [BR] as in §5, we
already know that T is zero on G = k× Sp(4). By §6, T is zero on the
open cell, thus T is supported on the union P ∪Pw′P of the closed and
the middle cell. Let Y = Pw′P , an open subset of this union. Write
Y = Yo ∪ Yc, with Yo the (open) subset of Y on which γ(g) 6= 0.

By lemmas 7.2 and 4.1, T is zero on Yo, thus T is supported on
P ∪ Yc. Since anyway we know that the support of T is outside G,
we get that the support of T is contained in the closed subset Ycc =
Yc r (Yc ∩ G) of Yc. Let S denote the set of elements of the form
appearing in lemma 7.3. This is the set of rational points of a k-variety.
One can write Ycc = Y1 ∪ Y2, where Y1 is the subset of Ycc for which
the hypothesis of lemma 7.3 holds, i.e., it consists of J-conjugates of
elements of S. Applying theorem 9.1 to the map from S×J to GSp(4)
defined by (s, j) 7→ jsj−1, we see that Y1 is a constructible subset of Ycc.
Applying lemma 9.2 to the toplogical space X = Ycc, and Y = Y1, we
are able to write Ycc as an increasing union of closed sets such that the
successive differences are either in Y1 or Y2, to which we can apply now
lemmas 4.2 and 4.1 respectively (for the first, J orbits are Z-invariant,
and for the second, J-orbits are τ -invariant by lemmas 7.4 and 7.5) to
conclude that the distribution is zero on Ycc, thus is supported in P .

We remind the reader that by removing Yc ∩ G from Yc, we have re-
moved from our consideration elements with eigenvalues {c, cα, cα−1, c},
where α, c ∈ k× and α 6= ±1, for which J-orbits are in fact not τ -
invariant, and were a source of difficulty for [BR]; for us, luckily, we
can just use [BR] instead of having to redo this part of their argument.

Finally, by proposition 8.1, T is zero on P , completing the proof of
theorem 3.2.

11. Proof of multiplicity one theorem for GSp(4) for

nonsupercuspidals

Proposition 11.1. Any irreducible admissible nonsupercuspidal rep-
resentation π̃ of GSp(V ) decomposes with multiplicity one when re-
stricted to Sp(V ); i.e., for any irreducible, admissible representation π
of Sp(V ),

dim HomSp(V )[π̃, π] ≤ 1.
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Proof. From generalities, it is known that π̃ decomposes as a finite
direct sum of irreducible representations when restricted to Sp(4), say

π̃|Sp(4)
∼= π1 ⊕ · · · ⊕ πℓ,

where we allow repetitions. One has the relation [GKn]:

dim EndSp(4)(π̃|Sp(4)) = card
{
χ : k× → C

×
∣∣ π̃χ ∼= π̃

}
,

where χ is a character of k× thought of as a character of GSp(2n),
via the similitude homomorphism λ : GSp(2n) → k×. For a character
χ of k×, and a representation π̃ of GSp(4), the representation π̃χ is
said to be a twist of π̃. The characters χ of k× such that π̃χ ∼= π̃ are
called self-twists of π̃. Observe that the above relation implies that if
the number of self-twists of π̃ is less than 4, then π̃ decomposes with
multiplicity one when restricted to Sp(4).

Any nonsupercuspidal representation π̃ of GSp(2n) can be realized
as a subquotient of a representation induced from a supercuspidal rep-
resentation of a Levi factor of a parabolic subgroup of GSp(2n). Recall
that this cuspidal support is uniquely determined by the representation
π̃ (up to conjugation by the normalizer of the Levi subgroup). In par-
ticular, if π̃ has self-twists, then so does the associated cuspidal support
(where twisting is defined in the obvious way), up to equivalence.

Recall that the parabolic subgroups in GSp(2n) are parametrized by
partitions n = n1 + · · · + nr + m with corresponding Levi subgroup
isomorphic to GL(n1) × · · · × GL(nr) × GSp(2m). (In this notation,
m = 0 is allowed; GSp(0) is taken to be k×.) Irreducible representations
of such Levi subgroups are thus parametrized by (τ1, · · · , τr; τ) where
τi are irreducible admissible representations of GL(ni), and τ is one of
GSp(2m). Further, the twisting operation is given by

(τ1, · · · , τr; τ)χ = (τ1, · · · , τr; τχ).

We take up the various possibilities for the cuspidal support of π̃.
Case 1 (Siegel Parabolic): In the notation above, this corresponds

to n1 = 2, and m = 0. The Levi subgroup M is isomorphic to GL(2)×
k×. Denote a representation of M by (τ ;χ) with τ a supercuspidal
representation of GL(2), and χ a character of k×. The action of the
normalizer of M on this data is given by

(τ ;χ) 7→ (τ∨;ωτχ),

where ωτ is the central character of τ . Since the twisting is given by
(τ ;χ)ν = (τ ;χν), it follows that the cuspidal support has a non-trivial
self-twist if and only if

(τ ;χν) = (τ∨;ωτχ),
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i.e., if and only if τ ∼= τ∨, and ν = ωτ . Clearly there is at most 1 non-
trivial self-twist, therefore π̃ splits into at most two irreducible factors
when restricted to Sp(4). These factors must be distinct.

Case 2 (Klingen Parabolic): In the notation introduced above,
this corresponds to n1 = m = 1. The Levi subgroup M is isomorphic
to k××GL(2). Denote a representation of M by (χ; τ) with τ a super-
cuspidal representation of GL(2), and χ a character of k×. The action
of the normalizer of M on this data is given by

(χ; τ) 7→ (χ−1;χτ).

Since the twisting is given by (χ; τ)ν = (χ; τν), it follows that the
cuspidal data has a self-twist by ν if and only if either of the following
holds:

(χ; τ) ∼= (χ; τν),

(χ−1;χτ) ∼= (χ; ντ).

Thus ν is a self-twist for π̃ if and only if either ν is a self-twist for
τ , or χ2 = 1, and χν is a self-twist for τ . Thus if Sτ denotes the
set of self-twists of τ , then the self-twists of the cuspidal pair (χ; τ) are
parametrized by elements of order 2 in Sτ ∪χSτ , and thus the cardinal-
ity of the set of self-twists of the cuspidal pair (χ; τ) is at most 2s, where
s is the cardinality of Sτ . By multiplicity one restriction from GL(2)
to SL(2), we already know that there are s irreducible components in
the restriction of τ to SL(2). Let π1 be an irreducible representation of
Sp(4) appearing inside π̃. Clearly, the cuspidal support of π1 (a repre-
sentation of Sp(4)) is (χ; τ1) where τ1 is an irreducible representation
of SL(2) appearing in the restriction of τ . Since all the conjugates of
π1 by GSp(4) also appear in the restriction of π̃ to Sp(4), we find irre-
ducible representations of Sp(4) inside π̃ with cuspidal support (χ; τi)
where τi are the various irreducible representations of SL(2) inside τ .
This gives us s irreducible representations of Sp(4) inside π̃.

It is clear that each irreducible representation of Sp(4) appears in
π̃ with the same multiplicity. If this common multiplicity were more
than 1, then each irreducible component would contribute at least 4 to
the dimension of the endomorphism ring of π̃ restricted to Sp(4). But
this would contradict the fact that the dimension of the endomorphism
ring is bounded by 2s.

Case 3 (The Borel): In the notation above, this corresponds to
n1 = n2 = 1, m = 0. The Levi subgroup M is isomorphic to k× ×
k× × k×. Denote a representation of M by (χ1, χ2;χ) where χi and χ
are characters of k×. The relevant Weyl group in this case is the semi-
direct product of (Z/2)2 by Z/2; its action on the character (χ1, χ2;χ)
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of M is given by compositions of the actions:

(χ1, χ2;χ) 7→ (χ2, χ1;χ),

(χ1, χ2;χ) 7→ (χ−1
1 , χ2;χχ1),

(χ1, χ2;χ) 7→ (χ1, χ
−1
2 ;χχ2).

In this case, twisting is given by (χ1, χ2;χ)ν = (χ1, χ2;χν). From
these facts, it can be checked that the self-twists on the cuspidal data
(χ1, χ2;χ) are the characters belonging to the group generated by char-
acters of order 2 in {χ1, χ2}, a group of order 1, 2, or 4. If the number
of self-twists is 1 or 2, there is nothing further to be said. If the num-
ber of self-twists is 4, observe that χ1 and χ2 must be both of order 2,
and therefore by lemma 3.2 of [ST], the principal series representation
induced from the cuspidal data is irreducible as a representation of
GSp(4), and we are done by the uniqueness of Whittaker models. �

12. Proof of multiplicity one theorem for GSp(4)
completed: existence of Fourier-Jacobi models for

supercuspidal representations

The multiplicity one theorem for GSp(4) will be completed (by this
method of Fourier-Jacobi models; we already have given an indepen-
dent proof in §2) if we can show that every representation of GSp(4) has
a Fourier-Jacobi model. Unlike the Whittaker model, which may not
exist for some representations, Fourier-Jacobi models (should) always
exist as long as π is not one dimensional. Unfortunately we are able
to prove this only for supercuspidal representations of GSp(4); this is
enough for our purposes, as we have already proved multiplicity one in
§11 for all nonsupercuspidal representations.

We begin with the following general lemma.

Lemma 12.1. Let π be a smooth representation of N ∼= k, on which
N acts nontrivially. Then there exists a nontrivial additive character
ψ : N → C×, and a nonzero linear form ℓ : π → C such that

ℓ(nv) = ψ(n)ℓ(v),

for all v ∈ π, n ∈ N .

Proof. It clearly suffices to prove that the twisted Jacquet module

πψ :=
π{

nv − ψ(n)v
∣∣ n ∈ N, v ∈ π

}

is nonzero for some nontrivial additive character ψ : N → C×. This
will be a simple consequence of the exactness of the Jacquet func-
tor, denoted π 7→ πN defined as above but for ψ = 1, and of the
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twisted Jacquet functor π 7→ πψ. Let π[N ] be the kernel of the map
from π to πN . Clearly π[N ] is an N -module, which by the exact-
ness of the Jacquet functor has trivial Jacquet module. Since any
finitely-generated representation has an irreducible quotient, cf. [BZ]
lemma 2.6(a), any smooth representation has an irreducible subquo-
tient. By Schur’s lemma, which is valid for any smooth representation,
cf. [BZ] lemma 2.11, any irreducible representation of N is one dimen-
sional. Therefore π[N ] has an irreducible subquotient which is one di-
mensional, and therefore given by a non-trivial character ψ : N → C×.
The exactness of the twisted Jacquet functor then implies that the
twisted Jacquet module of π[N ], and hence of π, is non-trivial. �

Lemma 12.2. Let π be an irreducible smooth representation of GSp(4)
that is not one dimensional. Let ψ be a nontrivial character of k,
thought of as a character of Z, the center of the unipotent radical of
the Klingen parabolic subgroup of GSp(4). Then

HomZ(π, ψ) 6= 0.

Proof. It is easy to see that a Levi subgroup of the Klingen parabolic
operates transitively on the set of all non-trivial characters of Z. Hence,
if the conclusion of the lemma is true for one ψ, it is true for all ψ. The
previous lemma gives that if HomZ(π, ψ) = 0, then Z acts trivially on
π, and hence the normal subgroup generated by Z also acts trivially on
π. But it is a standard fact that Sp(4) has no normal subgroup besides
the center, and hence Sp(4) must act trivially on π, and therefore π
must be one dimensional, concluding the proof of the lemma. �

We still have the task of proving that the representation

πψ :=
π{

zv − ψ(z)v
∣∣ z ∈ Z, v ∈ π

} ,

of J , which we know now is nonzero, has nonzero irreducible quotients.
We would have liked to believe that this is obvious, but we did not
succeed in finding a general proof. Here is a proof for the case where
π is supercuspidal.

In the next two lemmas, G is a general ℓ-group, countable at infinity,
in the sense of [BZ]. This hypothesis is satisfied by algebraic groups
over non-archimedean local fields. We let S(G) denote the Schwartz
space of locally constant, compactly supported functions on G, thought
of as a left G-module. We let dg denote a Haar measure on G.

We recall proposition 2.12 of [BZ]:
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Lemma 12.3. Let G be an ℓ-group, and f a compactly supported func-
tion on G. Then there is an irreducible smooth representation π of G
such that the action of f on π is non-trivial.

We combine this lemma with the following trivial lemma:

Lemma 12.4. Let π be a smooth irreducible representation of G. Then
for every vector v ∈ π, there is a homomorphism of G-modules S(G) →
π given by

f 7→

∫

G

f(g)π(g)v dg.

For a function f ∈ S(G), the image of f under this homomorphism is
non-zero for some choice of v ∈ π if and only if the action of f on π
is nontrivial.

Proposition 12.5. Let π be a supercuspidal representation of Sp(4).
Then the representation πψ of J has an irreducible quotient.

Proof. Observe that the supercuspidal representation π can be real-
ized on a space of functions in S(Sp(4)). Fix one such realization, and
think of elements of π now as functions on Sp(4). Restricting these
functions to the Fourier-Jacobi group J , we get a space of locally con-
stant, compactly supported functions on J . For a function g of this
kind, and for any element z ∈ Z, f = zg − g is another such function.
We can (and do) choose z ∈ Z so that f is nonzero. By the previous
two lemmas, there is an irreducible representation ρ of J on which f
acts nontrivially. By generalities (cf. [BZ], proposition 2.11), ρ has a
central character (i.e., Schur’s lemma holds). Hence, Z operates by a
character on ρ. This character cannot be trivial, as f was chosen to be
of the form zg − g. �

Question. It would be interesting to understand πψ as a representa-
tion of J . Of the irreducible representations of J with central character
ψ (which are parametrized by irreducible representations of S̃, the two-
fold cover of SL(2)), which ones occur as a quotient in πψ? We expect
that if π is a generic representation of GSp(4), then every irreducible
representation of S̃ appears. Further, if π is a degenerate represen-
tation, then we expect πψ to be a representation of finite length as a
J-module, with a unique irreducible quotient.
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13 (1980), no. 2, 165–210.

Department of Mathematics, The University of Akron, Akron, OH

44325-4002, USA

E-mail address : adler@uakron.edu

School of Mathematics, Tata Institute of Fundamental Research,

Mumbai 400 005, India

E-mail address : dprasad@math.tifr.res.in


