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We study the multiplicativity factor and quadraticity factor for near quasinorm on cer-

tain sequence spaces of Maddox, namely, l(p) and l∞(p), where p = (pk) is a bounded

sequence of positive real numbers.

1. Introduction

Let X be an algebra over a field F (R or C). A quasinorm on X is a function | · | : X → R

such that

(i) |0| = 0,

(ii) |x| ≥ 0, for all x ∈ X ,

(iii) |− x| = |x|, for all x ∈ X ,

(iv) |x+ y| ≤ |x|+ |y|, for all x, y ∈ X ,

(v) if tk ∈ F, |tk − t| → 0, and xk, x ∈ X , |xk − x| → 0, then |tkxk − tx| → 0.

If | · | satisfies only properties (i) to (iv), then we call | · | a near quasinorm. If the

quasinorm satisfies |x| = 0 if and only if x = 0, then it is said to be total.

A quasinormed linear space (QNLS) is a pair (X ,| · |) where | · | is a quasinorm on X .

If (X ,| · |) is a quasinorm space, then the map | · | : X → R is continuous. For p > 0, a

p-seminorm on X is a function ‖ · ‖ : X → R satisfying

(i) ‖x‖ ≥ 0, for all x ∈ X ,

(ii) ‖tx‖ = |t|p‖x‖, for all t ∈ F, for all x ∈ X ,

(iii) ‖x+ y‖ ≤ ‖x‖+‖y‖, for all x, y ∈ X .

A seminorm is called a norm if it satisfies the following condition:

(iv) ‖x‖ = 0 if and only if x = 0.

A p-seminormed linear space (p-semi-NLS) is a pair (X ,‖ · ‖) where ‖ · ‖ is a semi-

norm on X . p-normed linear spaces (p-normed-LS) are defined similarly.

In [1, 2], multiplicativity factors (or M-factors) and quadrativity factors (or Q-factors)

for seminorms on an algebra X have been introduced and studied in detail. A number µ >

0 is said to be a multiplicativity factor for a seminorm S if and only if S(xy)≤ µS(x)S(y),

for all x, y ∈ X . Similarly, a number λ > 0 is said to be a quadrativity factor for S if and
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only if S(x2)≤ λS(x)2, for all x ∈ X . The necessary and sufficient conditions for existence

of M-factor and Q-factor for S are answered in the following results.

Theorem 1.1. Let X be an algebra and let S �= 0 be a seminorm on X . Then

(a) S has M-factors on X if and only if KerS is an ideal in X and

µinf ≡ sup
{

S(xy) : x, y ∈ X , S(x)= S(y)= 1
}

< +∞, (1.1)

(b) if S has M-factors on X and µinf > 0, then µinf is the best (least) M-factor for S,

(c) if S has M-factors on X and µinf = 0, then µ is an M-factor for S if and only if µ > 0.

Theorem 1.2. Let X be an algebra and let S �= 0 be a seminorm on X . Then

(a) S has Q-factors on X if and only if KerS is closed under squaring (i.e., (KerS)2 ⊂

KerS) and

λinf ≡ sup
{

S
(

x2
)

: x ∈ X , S(x)= 1
}

< +∞, (1.2)

(b) if S has Q-factors on X and λinf > 0, then λinf is the best (least) Q-factor for S,

(c) if S has Q-factors on X and λinf = 0, then λ is a Q-factor for S if and only if λ > 0.

If S is a norm, then KerS = {0}. If in addition X is finite-dimensional, then a sim-

ple compactness argument shows that µinf is finite. Therefore, by Theorem 1.1, norms

on finite-dimensional algebras always have M-factors. If S is a seminorm on a finite-

dimensional algebraX , then S hasM-factors on X if and only if KerS is a (two-sided) ideal

in X . In [1, 2] several examples of seminorms having M-factors and Q-factors are given.

In [3], scalar multiplicativity factors for near quasinorms on certain sequence spaces of

Maddox are studied. Motivated by these results we define Mr-factors and Qr-factors for a

near quasinorm q on an algebra X as follows.

A number µ > 0 is an Mr-factor for q if and only if q(txy)≤ µ|t|rq(x)q(y) , there exists

r > 0, for all t ∈ F, for all x, y ∈ X .

A number λ > 0 is a Qr-factor for q if and only if q(tx2)≤ λ|t|rq(x)2 , there exists r > 0,

for all t ∈ F, for all x ∈ X .

Let

µinf ≡ sup

{

q(txy)

|t|rq(x)q(y)
: t ∈ F −{0}, x, y ∈ X −Kerq

}

,

λinf ≡ sup

{

q
(

tx2
)

|t|rq(x)2
: t ∈ F −{0}, x ∈ X −Kerq

}

.

(1.3)

2. Mr-factors and Qr-factors for near quasinorms

In this section, we will prove the following theorems.

Theorem 2.1. Let X be an algebra over a field F (F = C or R). Let q be a near quasinorm

on X . Then

(a) q has Mr-factors on X if and only if Kerq is a (two-sided) ideal in X and µinf < +∞,

(b) if q has Mr-factors on X and µinf > 0, then µinf is the best (least) Mr-factor for q,

(c) if q has Mr-factors on X and µinf = 0, then µ is an Mr-factor for q if and only if µ > 0.
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Theorem 2.2. Let X be an algebra over a field F (F = C or R). Let q be a near quasinorm

on X . Then

(a) q has Qr-factors on X if and only if Kerq is closed under squaring (i.e., x2 ∈ Kerq, for

all x ∈ Kerq) and λinf < +∞,

(b) if q has Qr-factors on X and λinf > 0, then λinf is the best (least) Qr-factors for q,

(c) if q has Qr-factors on X and λinf = 0, then λ is a Qr-factors for q if and only if λ > 0.

Proof of Theorem 2.1. (a) Suppose that q has an Mr-factor µ on X . Clearly, Kerq is a sub-

space ofX . Now take any x ∈ Kerq and y ∈ X . Then q(xy)≤ µq(x)q(y)= 0 which implies

that xy ∈ Kerq. Similarly, yx ∈ Kerq, so Kerq is a (two-sided) ideal in X . Now for t ∈

F −{0} and x, y ∈ X −Kerq, we have q(txy)≤ µ|t|rq(x)q(y) or q(txy)/|t|rq(x)q(y)≤ µ

which implies that µinf ≤ µ < +∞. Conversely, suppose that Kerq is a (two-sided) ideal

in X and µinf < +∞. If t = 0, x ∈ Kerq, or y ∈ Kerq, then txy ∈ Kerq, so 0 = q(txy) =

µinf |t|rq(x)q(y). If t �= 0 and x, y /∈ Kerq, then q(txy)/|t|rq(x)q(y) ≤ µinf or q(txy) ≤

µinf |t|rq(x)q(y). Therefore, q(txy) ≤ µinf |t|rq(x)q(y), for all t ∈ F and for all x, y ∈ X

which implies that q has Mr-factors on X.

(b) Let µ be an Mr-factor for q on X and µinf > 0. Then q(txy)≤ µ|t|rq(x)q(y) for all

t ∈ F and for all x, y ∈ X . Therefore, q(txy)/|t|rq(x)q(y)≤ µ, for all t ∈ F −{0} and for

all x, y ∈ Kerq, so µinf ≤ µ.

(c) This part follows directly from definition of µinf and Mr-factors for q on X . �

Proof of Theorem 2.2. The proof of this theorem is a simple modification of the proof of

Theorem 2.1 and will be omitted. �

3. Mr-factors and Qr-factors for near quasinorm

on certain sequence spaces of Maddox

Let p = (pk) be a bounded sequence of positive real numbers. The sequence spaces of

Maddox l∞(p) and l(p) are defined as follows:

l∞(p)=

{

(

xk
)

: xk ∈ C, sup
k

∣

∣xk
∣

∣

pk <∞

}

,

l(p)=

{

(

xk
)

: xk ∈ C,
∑

k

∣

∣xk
∣

∣

pk <∞

}

.

(3.1)

With the usual multiplication (i.e., (xk)(yk)= (xk yk)), both l∞(p) and l(p) are algebras

over C. We define near quasinorms q1 on l∞(p) and q2 on l(p) as follows:

q1

((

xk
))

= sup
k

∣

∣xk
∣

∣

pk/M ,
(

xk
)

∈ l∞(p),

q2

((

xk
))

=

(

∑

k

∣

∣xk
∣

∣

pk

)1/M

,
(

xk
)

∈ l(p),

(3.2)

where M =max{1,supk pk}. We observe that q1 and q2 may or may not be quasinorms.

For example, when (pk) = (1/k), then q1 is a near quasinorm but not a quasinorm; if

(pk)= (1− 1/(k+ 1)), then q1 is a quasinorm.
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In this section, we give necessary and sufficient conditions for sequence spaces l∞(p)

and l(p) to have Mr-factors and Qr-factors.

Theorem 3.1. Let p = (pk) and let M be defined as above. Then the following are equiva-

lent.

(a) p0 = pk = pk+1 for all k ≥ 0 where p0 is a positive real number.

(b) q1 has Mr-factors on l∞(p).

(c) q1 has Qr-factors on l∞(p).

(d) q1 is a p0/M-seminorm on l∞(p).

Theorem 3.2. Let p = (pk) and let M be defined as above. Then the following are equiva-

lent.

(a) p0 = pk = pk+1 for all k ≥ 0 where p0 is a positive real number.

(b) q2 has Mr-factors on l(p).

(c) q2 has Qr-factors on l(p).

(d) q2 is a p0/M-seminorm on l(p).

Proof of Theorem 3.1. (a)⇒(b) If p0 = pk = pk+1 for all k ≥ 1, then

q1(txy)= sup
k

|txy|pk/M = sup
k

|txy|p0/M ≤ |t|p0/Mq1(x)q1(y) (3.3)

for all x, y ∈ l∞(p), so q1 has an Mr-factor on l∞(p).

(b)⇒(a) Assume that q1 has Mr-factors on l∞(p). This implies that

µinf = sup

{

q1(txy)

|t|rq1(x)q1(y)
: t ∈ F −{0}, x, y ∈ X −Kerq1

}

< +∞. (3.4)

We shall show that r = supk pk/M = infk pk/M which implies that pk = pk+1 for all

k ≥ 1. To this end we observe that

µinf = sup

{

q1(txy)

|t|rq1(x)q1(y)
: t ∈ F −{0}, x, y ∈ X −Kerq1

}

≥ sup

{

q1(txy)

|t|rq1(x)q1(y)
: t ∈ F −{0}, x, y = (1,1,1, . . .)

}

≥ sup

{

supk |t|
pk/M

|t|r
: t ∈ F, |t| ≥ 1

}

= sup
{

|t|supk pk/M : t ∈ F, |t| ≥ 1
}

(3.5)

so that

µinf ≥ sup

{

|t|supk pk/M

|t|r
: t ∈ F, |t| ≥ 1

}

. (3.6)

If r < supk pk/M, then µinf = +∞ which is a contradiction. Therefore, r ≥ supk pk/M.

Similarly, we can show that r ≤ infk pk/M from which it follows that r = supk pk/M =

infk pk/M and the proof is complete.

(a)⇒(c) The same proof as (a)⇒(b).

(c)⇒(a) The same proof as (b)⇒(a).
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(d)⇒(b) This is obvious.

(b)⇒(d) Assume that q1 has Mr-factors. Then, by (a), p0 = pk = pk+1 for all k ≥ 0

where p0 is a positive real number. Moreover, we have

q1(txy)= sup
k

∣

∣t ·
(

xk
)(

yk
)
∣

∣

p0/M
= |t|p0/M sup

k

∣

∣xk yk
∣

∣

p0/M
= |t|p0/Mq1(xy) (3.7)

for all x = (xk), y = (yk)∈ l∞(p) and all t ∈ F. Putting y = (1,1,1 . . .) we see that

q1(tx)= |t|p0/Mq1(x) (3.8)

and the proof is complete. �

Proof of Theorem 3.2. The proof is almost the same as in Theorem 3.1 and will be omit-

ted. �

Remark 3.3. If the algebra X has an identity element x0 for multiplication and q �= 0 is

a near-quasinorm on X which has an Mr-factor on X , then we obtain q(x0) > 0, µinf ≥

1/q(x0) and

1

q(x0)µinf
|t|rq(xy)≤ q(txy)≤ µinf |t|

rq(x)q(y) (3.9)

for all x, y ∈ X and all t ∈ F.
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