ON CERTAIN SEQUENCES OF INTEGERS

BY

K. THANIGASALAM

ABSTRACT. Let the sequence $\{k_i\}$ satisfy $2 \le k_1 \le k_2 \le \cdots$. Then, under certain conditions satisfied by $\{k_i\}$, it is shown that there exists an integer s such that the sequence of integers of the form $x_1^{k_1} + \cdots + x_s^{k_s}$ has positive density. Also, some special sequences having positive densities are constructed.

1. Introduction. In an earlier paper (see [2]), I considered the sequences of integers of the form

(1)
$$x_1^{k_1} + x_2^{k_2} + \cdots + x_s^{k_s}$$
,

where the x's are nonnegative integers, and k's are natural numbers satisfying $2 \leq k_1 \leq k_2 \leq \cdots \leq k_s$. Let $U_s(k_1, \cdots, k_s; N)$ denote the number of integers of the form (1) that are less than N, N being a given large natural number. The exact order of magnitude of $U_s(k_1, \cdots, k_s; N)$, namely $N^{1/k_1+1/k_2+\cdots+1/k_s}$, was determined when the k's satisfy the conditions

$$2 \leq k_1 < k_2 < \cdots < k_s,$$

and

(2)
$$1/k_i > 1/k_{i+1} + \cdots + 1/k_s$$
 $(i = 1, 2, \cdots, s - 1).$

However, condition (2) makes the sequence $\{k_i\}$ somewhat thin, in the sense that $\sum_{i=1}^{s} (1/k_i) < 1$. Consequently, asymptotic density of the sequence (1) is zero.

In this paper, we construct some sequences of the form (1) which have positive densities. We state a general theorem and also some special cases which are illustrative.

THEOREM 1. Let the sequence $\{k_i\}$ satisfy $2 \le k_1 \le k_2 \le \cdots$, and be such that there exist integers l, m such that

Received by the editors June 14, 1973.

AMS (MOS) subject classifications (1970). Primary 10L10; Secondary 10J10.

K. THANIGASALAM

(3)
$$\mu(l) = \sum_{i=1}^{l} \frac{1}{k_i} > 1,$$

and

(4)
$$\prod_{i=l+1}^{l+m} \left(1 - \frac{1}{k_i}\right) < 2\sigma(l),$$

where $\sigma(l) = \sum_{i=1}^{l} \rho'_{i}$, with

(5)
$$\rho_{i}' = \begin{cases} \frac{1}{k_{i}} \min\left(\frac{1}{2^{k_{i}-1}} - \delta, \frac{1}{k_{l}} \left(1 - \frac{1}{k_{l}}\right)\right), & 2 \le k_{i} \le 11, \\ \frac{1}{k_{l}} \left(\frac{1}{k_{l}} \left(1 - \frac{1}{k_{l}}\right) (9k_{i}^{2} \log k_{i})^{-1}, & k_{i} \ge 12, \end{cases}$$

 δ being a small positive constant. Write s = l + m. (The existence of l and m will be ensured if $\sum_{i=1}^{\infty} (1/k_i) = \infty$.) Then, the sequence $x_1^{k_1} + \cdots + x_s^{k_s}$ has positive Schnirelmann density.

THEOREM 2. The following sequences have positive Schnirelmann densities

(6) $x_1^2 + x_2^3 + x_3^5 + x_4^k \quad (k \ge 5),$

(7)
$$x_1^2 + x_2^3 + x_3^6 + x_4^k \quad (k \ge 6),$$

(8)
$$x_1^2 + x_2^4 + x_3^8 + \cdots + x_s^{2^s} + x_{s+1}^{2^s} + x_{s+2}^k$$

(for any s and $k \ge 2^s$).

REMARK 1. The bounds for k in (6), (7) and (8) are not required, but for smaller k the results, while still true, are less deep. Hence, (7) and (8) represent in a sense best possible results of their kind since

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1, \quad \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^s} + \frac{1}{2^s} = 1,$$

and k is arbitrary. Other similar combinations of the exponents can also be found.

REMARK 4. In order to prove the theorems, it is clearly sufficient to show that the lower asymptotic densities are positive.

2. Proof of Theorem 1. We choose *l*, *m* in accordance with (3) and License (4)gy and side fine, apply to redistribution; see https://www.ams.org/journal-terms-of-use

200

$$X_{j} = \{cN^{(1-1/k_{j+1})\cdots(1-1/k_{l+m})}\}^{1/k_{j}} \qquad (j = l+1, \cdots, l+m)$$

with $c = (m2^{k_{l+m}})^{-k_{l+m}};$

$$\Lambda(\alpha) = \prod_{i=1}^{l} \left\{ \sum_{1 \le x^{k_i} \le N/4l} \exp(2\pi i \alpha x^{k_i}) \right\};$$
$$\Omega(\alpha) = \prod_{j=l+1}^{l+m} \left\{ \sum_{X_j \le x \le 2X_j} \exp(2\pi i \alpha x^{k_i}) \right\}.$$

Then, by Lemma 2 of (3),

(9)
$$N^{1-\prod_{j=l+1}^{l+m}(1-1/k_j)} \ll X_{l+1}X_{l+2}\cdots X_{l+m}$$
$$\ll N^{1-\prod_{j=l+1}^{l+m}(1-1/k_j)}$$

and, if $X_j \le x_j \le 2X_j$ $(j = l + 1, \dots, l + m)$,

(10)
$$cN < x_{l+1}^{k_{l+1}} + \cdots + x_{l+m}^{k_{l+m}} < N/3.$$

Also, taking note of the definitions of $\Lambda(\alpha)$ and $\Omega(\alpha)$, and allowing for change in the implied constant, we have by Theorem A of (3), that

(11)
$$\int_0^1 |\Lambda(\alpha)\Omega(\alpha)|^2 d\alpha \ll N^{-1} \{\Lambda(0)\Omega(0)\}^2.$$

Let r(m) denote the number of representations of m in the form

(12)
$$m = x_1^{k_1} + \cdots + x_l^{k_l} + x_{l+1}^{k_{l+1}} + \cdots + x_{l+m}^{k_{l+m}}$$

subject to

(13)
$$1 \leq x_i \leq (N/4)^{1/k_i} \quad (i = 1, \dots, l) \quad \text{and} \quad X_j \leq x_j \leq 2X_j$$
$$\sum_m r^2(m) = \int_0^1 |\Lambda(\alpha)\Omega(\alpha)|^2 d\alpha, \quad (j = l+1, \dots, l+m)$$

and thus, by (11),

(15)
$$\sum_{m} r^{2}(m) \ll N^{-1} \{ \Lambda(0) \Omega(0) \}^{2}.$$

License or Waright setrifting any apply to redistribution; see https://www.ams.org/journal-terms-of-use

(16)
$$\sum_{m} r(m) \ge \{N^{1/k_1} \cdots N^{1/k_l}\} \{X_{l+1} \cdots X_{l+m}\} \ge \Lambda(0)\Omega(0)$$

since $N^{1/k_1} \cdots N^{1/k_l} \ge \Lambda(0)$, and $X_{l+1} \cdots X_{l+m} \ge \Omega(0)$. Hence, with s = l + m,

$$U_{s}(k_{1}, \cdots, k_{s}; N) \ge \sum_{m; r(m) > 0} 1$$
$$\ge \left\{ \sum_{m} r(m) \right\}^{2} / \left\{ \sum_{m} r^{2}(m) \right\} \ge N$$

by Cauchy's inequality.

Thus, there exists a constant c > 0 depending at most on k_1, \dots, k_s such that for sufficiently large N,

$$(17) U_s(k_1, \cdots, k_s; N) > cN$$

Theorem 1 now follows since 1 belongs to the sequence $x_1^{k_1} + \cdots + x_s^{k_s}$.

3. Proof of Theorem 2. First, we prove two auxiliary results.

LEMMA 1. Let ϵ be a sufficiently small fixed positive number. Then, (i) the number of solutions of

(18) $x_1^2 + x_2^3 + x_3^5 = y_1^2 + y_2^3 + y_3^5$

with $x_1, y_1 < (N/4)^{1/2}; x_2, y_2 < (N/4)^{1/3}; x_3, y_3 < (N/4)^{1/5}$ is $\ll N^{-1+\epsilon} N^{2(1/2+1/3+1/5)};$

(ii) the number of solutions of

(19)
$$x_1^2 + x_2^3 + x_3^6 = y_1^2 + y_2^3 + y_3^6$$

with $x_1, y_1 < (N/4)^{1/2}; x_2, y_2 < (N/4)^{1/3}; x_3, y_3 < (N/4)^{1/6}$ is $\ll N^{-1+\epsilon} N^{2(1/2+1/3+1/6)};$

(iii) the number of solutions of

(20)
$$x_1^2 + x_2^4 + \dots + x_s^{2^s} + x_{s+1}^{2^s} = y_1^2 + y_2^4 + \dots + y_s^{2^s} + y_{s+1}^{2^s}$$

with $x_i, y_i < (N/(s+2))^{1/2^i}$ $(i = 1, \cdots, s); x_{s+1}, y_{s+1} < (N/(s+2))^{1/2^s}$ is $\ll N^{-1+\epsilon} N^{2(1/2+\cdots+1/2^s+1/2^s)}$. The number of solutions of $x_1^2 - y_1^2 = n$ with $x_1 \neq y_1$ is $\ll |n|^{\epsilon}$. Hence, the number of solutions of (18) (by writing it in the form $x_1^2 - y_1^2 = y_2^3 + y_3^5 - x_2^3 - x_3^5$) with $x_1 \neq y_1$ is

(21)
$$\ll N^{2(1/3+1/5)+\epsilon}$$

By the same argument, we see that the number of solutions (18) with $x_1 = y_1, x_2 \neq y_2$ is

(22)
$$\ll N^{1/2} \cdot N^{2(1/5)+\epsilon};$$

the number of solutions of (18) with $x_1 = y_1, x_2 = y_2, x_3 = y_3$ is

(23)
$$\ll N^{1/2+1/3+1/5}$$
.

From (21), (22) and (23) we get (i).

(ii) follows in the same way on noting that

$$2(1/2 + 1/3 + 1/6) \ge$$
 any of $2(1/3 + 1/6) + 1$, $1/2 + 2(1/6) + 1$.

Similar inequalities establish (iii).

LEMMA 2. Let

$$F_{1}(\alpha) = \left\{ \sum_{1 \le x^{2} \le N/4} \exp(2\pi i \alpha x^{2}) \right\} \left\{ \sum_{1 \le x^{3} \le N/4} \exp(2\pi i \alpha x^{3}) \right\}$$

$$\times \left\{ \sum_{1 \le x^{5} \le N/4} \exp(2\pi i \alpha x^{5}) \right\} \left\{ \sum_{1 \le x^{k} \le N/4} \exp(2\pi i \alpha x^{k}) \right\},$$

$$(24)$$

$$F_{2}(\alpha) = \left\{ \sum_{1 \le x^{2} \le N/4} \exp(2\pi i \alpha x^{2}) \right\} \left\{ \sum_{1 \le x^{3} \le N/4} \exp(2\pi i \alpha x^{3}) \right\}$$

$$\times \left\{ \sum_{1 \le x^{5} \le N/4} \exp(2\pi i \alpha x^{6}) \right\} \left\{ \sum_{1 \le x^{k} \le N/4} \exp(2\pi i \alpha x^{k}) \right\},$$

$$F_{3}(\alpha) = \left(\prod_{j=1}^{s} \left\{ \sum_{1 \le x^{2} \le N/(s+2)} \exp(2\pi i \alpha x^{2^{j}}) \right\} \right)$$

$$(26)$$

$$\times \left\{ \sum_{1 \le x^{2} \le N/(s+2)} \exp(2\pi i \alpha x^{2^{j}}) \right\} \left\{ \sum_{1 \le x^{k} \le N/(s+2)} \exp(2\pi i \alpha x^{2^{j}}) \right\}$$

$$License or copyright reflections m2^{s} apply to redistribution; see https://www.ams.org/out_{1 \le x^{k} \le N/(s+2)} \exp(2\pi i \alpha x^{k})$$

Then,

(27)
$$\int_0^1 |F_1(\alpha)|^2 d\alpha \ll N^{-1} \{F_1(0)\}^2,$$

(28)
$$\int_0^1 |F_2(\alpha)|^2 d\alpha \ll N^{-1} \{F_2(0)\}^2,$$

and

$$\int_0^1 |F_3(\alpha)|^2 \, d\alpha \ll N^{-1} \{F_3(0)\}^2.$$

PROOF. In view of Lemma 1, the proofs of (27), (28) and (29) are similar; and so we prove only (27).

As in (3), we subdivide the interval $Q^{-1} \le \alpha \le 1 + Q^{-1}$ with $Q = 2k [N^{1/k}]^{k-1}$ into basic intervals D and supplementary intervals E; so that $D \cup E = [Q^{-1}, 1 + Q^{-1}]$. Since 1/2 + 1/3 + 1/5 + 1/k > 1, it follows as in Lemma 9 of (3), that

$$\int_D |F_1(\alpha)|^2 \, d\alpha \ll N^{-1} (F_1(0))^2.$$

As for the integral over E, we proceed thus:

Let ρ' be defined by (5) with $k_i = k_l = k$. Then,

(30)
$$f(\alpha) = \left(\sum_{1 \le x^k \le N/4} \exp(2\pi i \alpha x^k)\right) \le N^{1/k - \rho'}.$$

Also, if

$$F(\alpha) = \left(\sum_{1 \le x^2 \le N/4} \exp(2\pi i \alpha x^2)\right) \left(\sum_{1 \le x^3 \le N/4} \exp(2\pi i \alpha x^3)\right) \left(\sum_{1 \le x^5 \le N/4} \exp(2\pi i \alpha x^5)\right),$$

then $\int_{Q^{-1}}^{1+Q^{-1}} |F(\alpha)|^2 d\alpha = \int_0^1 |F(\alpha)|^2 d\alpha$ is the number of solutions of (18), and hence $\ll N^{-1+\epsilon} \cdot N^{2(1/2+1/3+1/5)}$. Thus, by (30),

$$\begin{split} \int_{E} |F_{1}(\alpha)|^{2} d\alpha &\leq \left\{ \max_{\alpha \in E} |f(\alpha)|^{2} \right\} \int_{Q^{-1}}^{1+Q^{-1}} |F(\alpha)|^{2} d\alpha \\ &\leq N^{2/k-2\rho'} \cdot N^{-1+\epsilon} \cdot N^{2(1/2+1/3+1/5)} \\ &\leq N^{-1} N^{2(1/2+1/3+1/5+1/k)} \leq N^{-1} (F_{1}(0))^{2} \end{split}$$

This completes the proof of (27).

Theorem 2 can be deduced from (27), (28) and 29 in the same way as Theorem 1 was deduced from (11).

License or copyrig **REMAR Rev5** priv **Thestmethod** to from **Theorem 2** can be used for various other combinations of positive integral powers. Thus, for example, one can show

204

that for any $k \ge 2$, the following sequences have positive Schnirelmann densities.

(x - 2) = 3 + 9 + 18 + 18 $(x - 2) + 13 + 10 + 15 + 16$	
(c) $x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2$ (d) $x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2$	
(e) $x_1^2 + x_2^3 + x_3^{11} + x_4^{13} + x_5^k$ (f) $x_1^2 + x_2^3 + x_3^{12} + x_4^{12} + x_5^k$	
(g) $x_1^2 + x_2^4 + x_3^5 + x_4^{20} + x_5^k$ (h) $x_1^2 + x_2^4 + x_3^6 + x_4^{12} + x_5^k$	
(i) $x_1^2 + x_2^4 + x_3^7 + x_4^9 + x_5^k$ (j) $x_1^2 + x_2^4 + x_3^8 + x_4^9 + x_5^{72}$	$+ x_{6}^{k}$
(k) $x_1^2 + x_2^4 + x_3^8 + x_4^{10} + x_5^{40} + x_6^k$ (l) $x_1^2 + x_2^4 + x_3^8 + x_4^{11} + x_5^{29}$	$+ x_{6}^{k}$
(m) $x_1^2 + x_2^4 + x_3^8 + x_4^{12} + x_5^{24} + x_6^k$ (n) $x_1^2 + x_2^4 + x_3^8 + x_4^{13} + x_5^{20}$	$+ x_{6}^{k}$
(0) $x_1^2 + x_2^4 + x_3^8 + x_4^{14} + x_5^{18} + x_6^k$ (p) $x_1^2 + x_2^4 + x_3^8 + x_4^{15} + x_5^{17}$	$+ x_{6}^{k}$

ACKNOWLEDGEMENT. I am indebted to the referee for useful suggestions.

REFERENCES

1. H. Davenport, On Waring's problem for cubes, Acta Math. 71 (1939), 123-143. MR 1, 5.

2. K. Thanigasalam, On sums of positive integral powers, Bull. Calcutta Math. Soc. 62 (1970), 133-138. MR 43 #6174.

3. — , A generalization of Waring's problem for prime powers, Proc. London Math. Soc. (3) 16 (1966), 193-212. MR 34 #5790.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, BEAVER CAMPUS, MONACA, PENNSYLVANIA 15061