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ABSTRACT.   Let the sequence {fc,-}   satisfy   2 < fcj < fc2 « • • • .   Then,

under certain conditions satisfied by  {fc,}, it is shown that there exists an in-
fc, fc.

teger   s   such that the sequence of integers of the form  Xj    + • • • + x      has

positive density.   Also, some special sequences having positive densities are con-

structed.

1. Introduction.  In an earlier paper (see [2]), I considered the sequences

of integers of the form

(1) Xjl   +X22  + ■••+*>,

where the x's are nonnegative integers, and fc's are natural numbers satisfying

2 < fcj < fc2 < • • • < fcf.  Let   Us(k1, • * * ,ks; N) denote the number of in-

tegers of the form (1) that are less than N, N being a given large natural num-

ber. The exact order' of magnitude of   Us(klt • • • , fcs; A7), namely

N     l       2    ' s, was determined when the fc's satisfy the conditions

2 < fcx < fc2 < • • • < ks,

and

(2) Uki>lJki+1 + -'- + llks      (i = l,2, ••• ,s-l).

However, condition (2) makes the sequence {fcf} somewhat thin, in the

sense that  2¿=1 (1/fc,) < 1.  Consequently, asymptotic density of the sequence

(1) is zero.

In this paper, we construct some sequences of the form (1) which have

positive densities. We state a general theorem and also some special cases which

are illustrative.

Theorem 1. Let the sequence {fc,.}  satisfy  2 < ki < k2 < • • • , and be

such that there exist integers l, m such that
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(3) ko=Zt>1'
1=1 Ki

and

l+m     / , \

(4) n \1-r)<2°v>

where o(l) = 2?=1 p¡, with

(5) pi

2 <*!<11,

I—   /l-U   fQfr2   Ina frA-í

5  ¿>ez«g a small positive constant.   Write s = l + m.   (The existence of I and
k k

m will be ensured if EjLj (\¡k¡) = °°.)  Then, the sequence Xj1 + • • • + xss

has positive Schnirelmann density.

Theorem 2.   77ze following sequences have positive Schnirelmann densities

(6) xi + x\ + xf + x\      (k> 5),

(7) x2+x32+xi+x*      (k>6),

(8) x2 + x42 + xf + - - • + xf + x£, + xsfc+2,

(for any s and k > 2s).

Remark 1.   The bounds for k in (6), (7) and (8) are not required, but

for smaller k the results, while still true, are less deep. Hence, (7) and (8)

represent in a sense best possible results of their kind since

1+1+1=1     !+!+•••+-L + J_i
2     3     6     *'      2     4 2s     2s ~

and k is arbitrary.  Other similar combinations of the exponents can also be

found.

Remark 4.   In order to prove the theorems, it is clearly sufficient to show

that the lower asymptotic densities are positive.

2.   Proof of Theorem 1.   We choose   /, m   in accordance with (3) and

(4), and defineLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Xj = {cN ;+I '  m }     '        (; = /+1, •••,/ +«î)

•   „fc,, k/+m
with c = («i2 /+w) ;

A(tt) = Il E        exp(27riaxfc0
i=i /       fc,

[ Kx   '<NI4l

¡+m    ( \

S2(a)=   II    <       E exp(2mooc*/)>.
;'=/+l   IXj<x<2Xj j

Then, by Lemma 2 of (3),

(9)
<JV*-nJ¿Al<»-«/V

Î+1 x_J. J"7+m ^ iir/a

and, if Xf<Xf <2X¡   (/ = / + 1, • • • , / + m)

(10) cN < xf|+ ! + • • • + xjj*" < A/3.

Also, taking note of the definitions of A(a) and £2(a), and allowing for

change in the implied constant, we have by Theorem A of (3), that

(11) JÔ IA(a)S2(a)\2dcx<N~1{A(0)£2(0)}2.

Let rim) denote the number of representations of m  in the form

(12) «Z =X^  + • • • +X.*' -r-X^1  + • • • +X/*í+m

subject to

1 < x, < (A/4)1/fc'   (i = 1, • • • , 7)      and     X, < xf < 2X,

(13) fl
Z '» = J o lA(<*M<*)¡2d<*,      (/ = /+ 1, •••,/ + m)
m

and thus, by (11),

(15) Zr2(m)<^-1{A(0)Í2(0)}2.

We also haveLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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2>(W) > {V/fci - - V/fc'}{;r,+ 1 « • • x/+m}
m

(16)
> A(0)Í2(0)

since N11"1 • • • N*1"1 > A(0), and Xl+1 • • • Xl+m > £2(0).  Hence, with

s = I + m,

Us(kA,--> ,ks;N)>      Z       1
m;r(m)>0

>{l;r(m)Ç/^r2(m)^>N

by Cauchy's inequality.

Thus, there exists a constant c > 0 depending at most on klt • • • , ks

such that for sufficiently large TV,

(17) Utf^--- ,ks;N)>cN.

Theorem 1 now follows since 1 belongs to the sequence xxJ+ • • • + xss.

3. Proof of Theorem 2.  First, we prove two auxiliary results.

Lemma 1. Let   e be a sufficiently small fixed positive number.   Then, (i)

the number of solutions of

(18) x¡ + x32+x¡=y2+y32+ys3

with xvyt <(N/4y/2;x2,y2 < (NI4)ll3;x3,y3 < (TV/4)1/5  is

<N-l+eN2(l/2+l/3 + llS).

(ii) the number of solutions of

(19) x2 + x\ +x\= y\+y\+y%

with x1¡yi< (N/4)1 <2;x2,y2< (TV/4)1 '3;x3,y3 < (TV/4)1 >6  is

< Af-l + e/v20/2 + l/3+l/6).

(iii) the number of solutions of

(20) x2+x42 + .-.+xf +x£1=y\+y% + --'+yl' +y£1

with xt,y, < (N/(s + 2))1/2'(i = 1, • • • , s); xs+ï ,ys+1 < (N/(s + 2))1/2*

is <N-1+eN2(-í/2+'" +1/2í+1/2Í).

Proof.  We prove only (i), since (ii) and (iii) are proved in the same way.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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The number of solutions of x\- y\= n  with x1 :^yl   is < \n Ie.

Hence, the number of solutions of (18)   (by writing it in the form x\ - y\ =

y\+y53- x32- x53) with x1 ¥=y¡   is

(21) <N2(ll3 + l/5)+e_

By the same argument, we see that the number of solutions (18) with xt =

yltx2¥>y2 is

(22) <N1'2 .jv20/s)+e.

the number of solutions of (18) with x¡ = yl,x2 = y2,x3 = y3  is

(23) ^1/2+1/3 + 1/5^

From (21), (22) and (23) we get (i).

(ii) follows in the same way on noting that

2(1/2 + 1/3 + 1/6) > any of 2(1/3 + 1/6) + 1,  1/2 + 2(1/6) + 1.

Similar inequalities establish (iii).

Lemma 2.   Let

7i(<*)=\      H        exp(27Tz'ox2)W      £        exp(27riax3n

(l<jc2<JV/4 )    (l<x3<iV/4 )

x |     £       exp(27naxs)( )    £        exp(27rzaxfc)(

(l<x5<JV/4 )   \l<xk<N/4 j

(25)

^2(a)=j     £        exp(2rr/ax2)(   Í    £        expQmax3))

(l<x2<AT/4 )    {l<x3<.fV/4 j

x <      £       exp(27T/ax6)(  J      ¡T        exp(27r/axfcH ,

(l<x6<JV/4 J     (l<xfc<JV/4 j

*"3(a) = ( Il I       £ exp(27rfca2/)

(26)
Kx2 <N/(s+2) | /

X ^ exp(27T/ax2 ) £ exp(2m'cocfc)

K*2S<JV7(,+ 2) l<**<JV/(J+2)License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Then,

(27) fl \F1ia)\2da<N-1{F1 (0)}2,

(28) fl \F2ia)\2da<N-l{F2iO)}2,

and

fo \F3iá)\2du<N-1{F3iO)}''

Proof. In view of Lemma 1, the proofs of (27), (28) and (29) are similar;

and so we prove only (27).

As in (3), we subdivide the interval  Q_1 < a < 1 + Q~x   with  Q =

2k[Nllk\k~l   into basic intervals D and supplementary intervals E; so that

DUE=[Q-1,1+Q-1]. Since   1/2 + 1/3 + 1/5 + 1/fc > 1, it follows as in

Lemma 9 of (3), that

¡D iFjfa)!2 da <N~liF1iO))2.

As for the integral over E, we proceed thus:

Let p' be defined by (5) with k¡ = fc, = fc.   Then,

(30) /(<*)=[      Z        exp(27naxfc)j <N1'k-(>'.

\l<xk<N/4 J

Also, if

F(a)=[      Z       expatríase2) j(      Z       exp(2max3)\|      Z        exp(2max5) j,

\l<x2<NI4 l\l<x3<NI4 Al<x5<JV/4 I

then Z1 If "   lF(a) 12 da = / ¿ lF(a) 12 da is the number of solutions of ( 18),

and hence ^Ar-i+e . #2(1/2+1/3+1/5). Thus, by (30),

J^ lF1(a)l2da<|max l/(a)l2} J^-i * lF(a)l2cfa

<N2jk-2p' . AT-l + e .#2(1/2+1/3+1/5)

^-^(l^ + l/S+l/S + l/fc)^-!^^.

This completes the proof of (27).

Theorem 2 can be deduced from (27), (28) and 29 in the same way as

Theorem 1 was deduced from (11).

Remark 5.  The method of proof of Theorem 2 can be used for various

other combinations of positive integral powers. Thus, for example, one can show

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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that for any k> 2, the following sequences have positive Schnirelmann den-

sities.

(a) x\ + x\ + x\   + x42 + x* (b) x\ + x3 + x¡   + x24 + xf

(c)x2+x3+x^   +x\8+xk5 (à) x2+x3+x3°+xl5+xk5

(e) x2 + x3 + x\x + x¿3 + x* (0 x2 + x3 + x\2 + x¿2 + x*

(g) x2 + x4 + x* + x20 + x* (h) x2 + x4 + x\   + x*2 + xk5

k
(Ï) x2 + x42 + x73   + x|   + x* Qx2+x4+x*   + x*   +x¡2+x

(k)x2+x4+xf   + x¿0+x40+x*   (l)x2+x4+xf   +x^+x29+x*

(m)x2+x4+x|   + x*2+x24+x*   (n)x2+x4+x|   + x»3+xf°+x*

(0)x2+x4+x*   +x»4+x*8+x*   (p)x2+x4+xf   +x*s+x»7+x*

Acknowledgement.  I am indebted to the referee for useful suggestions.
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