æ

On certain solutions of the diophantine
 equation $x-y=p(z)$

by
R. NAIR (Liverpool)

Introduction. Given a subset S of \mathbb{Z} and a sequence $I=\left(I_{n}\right)_{n=1}^{\infty}$ of intervals of \mathbb{Z} strictly increasing in length, let

$$
b(S, I)=\limsup _{\left|I_{n}\right| \rightarrow \infty} \frac{\left|S \cap I_{n}\right|}{\left|I_{n}\right|}
$$

and let

$$
b(S)=\sup _{I} b(S, I),
$$

where the supremum is taken over all possible sequences of intervals I. We say S has positive Banach density if $b(S)>0$. Here and hence forth for a set B we allow $|B|$ to represent its cardinality. We say a subset A of \mathbb{N} is intersective if for each subset S of \mathbb{N} with $b(S)$ positive the set $A \cap(S-S)$ is non-empty. Here $S-S$ denotes the set $\{x-y: x, y \in S\}$. In Section 1 of this note we use ergodic theory to prove the following theorem.

Theorem 1. Let ψ be a polynomial with integer coefficients and let

$$
P_{\psi}=\{\psi(p): p \text { a rational prime }\} .
$$

Then a necessary and sufficient condition on ψ to ensure that P_{ψ} is intersective is that for each non-zero integer n, there exists another integer m_{n}, coprime to it, such that n divides $\psi\left(m_{n}\right)$.

Let

$$
N_{\psi}=\{\psi(n): n \text { a positive integer }\} .
$$

The fact that the set N_{ψ} is intersective for any polynomial ψ with $\psi(0)=0$ and mapping the integers to themselves is proved by H. Furstenberg [4, p. 74], using ergodic theory. In the special case $\psi(x)=x^{2}$, this had been shown earlier by H. Furstenberg [3] and A. Sárközy [10] using ergodic theory and analytic number theory respectively. Later, in response to a question of P. Erdős, Sárközy [11] proved P_{ψ} is intersective in the special case $\psi(x)=$
$x-1$. His method in [11] is a more complicated version of the technique in [7]. This result of Sárközy'sand also Theorem 7 which follows are also obtained in the work of T. Kamae and M. Mendès France [6] though by still further different methods. It should be said Sárközy's methods are quantitative in that if S_{N} denotes $S \cap[1, N]$ lower bounds are found for $\left|A \cap\left(S_{N}-S_{N}\right)\right|$. Our proof of Theorem 1 is a variant of Furstenberg's approach.

Suppose M is a countable commutative monoid with binary operation indicated by the plus sign + . Suppose $\mathcal{A}=\left\{A_{n}\right\}_{n=1}^{\infty}$ is a collection of subsets of M and consider the following properties of \mathcal{A} :
(i) if $m<n$ then $A_{m} \subseteq A_{n}$;
(ii) $\left|A_{n}\right|$ is finite for each n and also tends to infinity as n does;
(iii) for each h in M

$$
\lim _{n \rightarrow \infty} \frac{\left|A_{n} \Delta\left(A_{n}+h\right)\right|}{\left|A_{n}\right|}=0,
$$

where \triangle denotes the symmetric difference and $A_{n}+h$ denotes the set $\{k+h$: $\left.k \in A_{n}\right\}$; and
(iv) there exists $K>0$ such that $\left|A_{n} A_{n}^{-1}\right| \leq K\left|A_{n}\right|$ for each n, where $A_{n} A_{n}^{-1}$ denotes the set

$$
\left\{k \in A_{n}: k+l \in A_{n} \text { for some } l \text { in } A_{n}\right\} .
$$

We introduce two notions of density on M associated with \mathcal{A}. Given a subset E of M, for \mathcal{A} satisfying conditions (i) and (ii) we say

$$
d_{\mathcal{A}}^{*}(E)=\limsup _{n \rightarrow \infty} \frac{\left|E \cap A_{n}\right|}{\left|A_{n}\right|},
$$

denotes its upper density along \mathcal{A}. If the above limit exists we say E has density along \mathcal{A} denoted by $d_{\mathcal{A}}(E)$. We say a set E contained in M has positive upper Banach density on M if there exists a collection of subsets \mathcal{A} of M satisfying (ii) and (iii) such that

$$
b(E, \mathcal{A})=\limsup _{n \rightarrow \infty} \frac{\left|E \cap A_{n}\right|}{\left|A_{n}\right|}>0
$$

Let $b(E)=\sup _{\mathcal{A}} b(E, \mathcal{A})$ where the supremum is taken overall collections of subsets \mathcal{A} satisfying (ii) and (iii). We refer to $b(E)$ as the upper Banach density of E along \mathcal{A}. In Section 2 we prove the following theorem:

Theorem 2. Suppose the subset E of M has positive Banach density $b(E)$. Then if \mathcal{A} satisfies conditions (i)-(iv) there exists a subset R of M with $d_{\mathcal{A}}(R) \geq b(E)$ such that for each finite subset $\left\{n_{1}, \ldots, n_{k}\right\}$ of R we have

$$
b\left(E \cap\left(E+n_{1}\right) \cap \ldots \cap\left(E+n_{k}\right)\right)>0 .
$$

The existence of $d_{\mathcal{A}}(E)$ is part of the statement of Theorem 2 . In the special case where $M=\mathbb{Z}$ and \mathcal{A} is given by $A_{n}=[1, n] \cap \mathbb{Z}(n=1,2, \ldots)$ Theorem 2 was proved by V. Bergelson in [1]. His proof depends on G. Birkhoff's pointwise ergodic theorem. The extension to Theorem 2 is made possible by the generalisation of Birkhoff's theorem due to A. A. Tempel'man [7, p. 224]. Besides Bergelson's theorem, there are a variety of contexts to which Theorem 2 applies. We mention three.
(a) $M=\mathbb{Z}^{m}$ for some natural number m, with \mathcal{A} given by $A_{n}=C_{n} \cap \mathbb{Z}^{m}$ ($n=1,2, \ldots$) where C_{n} is a bounded convex subset of \mathbb{R}^{m} tending to infinity in all directions as n does.
(b) $M=\mathbb{Z}$ with \mathcal{A} given by $A_{n}=[1, n] \cap \mathbb{Z} \bigcup_{k=1}^{\infty}\left[d_{k}, e_{k}\right](n=1,2, \ldots)$, where $\left(d_{k}\right)_{k=1}^{\infty}$ and $\left(e_{k}\right)_{k=1}^{\infty}$ are strictly increasing sequences such that $d_{k-1}=$ $O\left(e_{k}\right)$.
(c) $M=\mathbb{D}_{2}$ where \mathbb{D}_{2} denotes the dyadic rationals in $[0,1)$ with addition modulo one and \mathcal{A} given by

$$
A_{n}=\left\{\frac{a_{1}}{2}+\ldots+\frac{a_{n}}{2^{n}}: a_{i} \in\{0,1\}\right\} \quad(n=1,2, \ldots) .
$$

Note that in example (b) if $e_{k}=o\left(d_{k}\right)$ and $\left(a_{k}\right)_{k=1}^{\infty}$ denotes $\bigcup_{k=1}^{\infty}\left[d_{k}, e_{k}\right]$ then

$$
\lim _{N \rightarrow \infty} \frac{\left|\left(a_{k}\right)_{k=1}^{\infty} \cap[1, N]\right|}{N}=0 .
$$

This means that even in \mathbb{Z} Theorem 2 gives more information than in Bergelson's theorem. If M_{1} and M_{2} with systems of subsets $\mathcal{A}_{1}=\left(A_{1, n}\right)_{n=1}^{\infty}$ and $\mathcal{A}_{2}=\left(A_{2, n}\right)_{n=1}^{\infty}$ respectively satisfy conditions (i)-(iv) then so does the direct product monoid $M_{1} \times M_{2}$ with the system of subsets $\mathcal{A}=\left(A_{1, n} \times\right.$ $\left.A_{2, n}\right)_{n=1}^{\infty}$ where $A_{1, n} \times A_{2, n}$ denotes the Cartesian product of $A_{1, n}$ and $A_{2, n}$ ($n=1,2, \ldots$). This last remark and the fact that the examples (b) and (c) satisfy (i)-(iv) are readily justified and their verification we leave to the reader. The fact that example (a) satisfies (i)-(iv) is verified in [8].

1. Suppose (X, β, μ) is a probability space and suppose the measurable transformation $T: X \rightarrow X$ is measure preserving, that is, $\mu\left(T^{-1} B\right)=\mu(B)$ for each B in β. Here $T^{-1} B$ denotes $\{x \in X: T x \in B\}$. We say a subset A of \mathbb{N} is a set of (Poincaré) recurrence if for each B in β with $\mu(B)$ positive, there exists m in A such that $\mu\left(B \cap T^{-m} B\right)$ is positive. The proof of Theorem 1 is transformed into a problem in ergodic theory by the following result [2].

Theorem 3. A subset A of \mathbb{N} is a set of recurrence if and only if it is a set of intersectivity.

For a real number x let $\langle x\rangle$ denote its fractional part. To complete the proof of Theorem 1 we need the following subsidiary result.

ThEOREM 4. If α is irrational, $\theta(x)$ is a non-constant polynomial with integer coefficients and for coprime integers c and $d,\left(q_{k}\right)_{k=1}^{\infty}$ are the primes congruent to c modulo d, then $\left(\left\langle\alpha \theta\left(q_{k}\right)\right\rangle\right)_{k=1}^{\infty}$: is uniformly distributed modulo one. Equivalently by Weyl's criteria

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} e^{2 \pi i h \alpha \theta\left(q_{k}\right)}=0 \tag{1}
\end{equation*}
$$

for each h in $\mathbb{Z} \backslash\{0\}$.
Let

$$
\theta^{*}(x)=\alpha_{k} x^{k}+\ldots+\alpha_{1} x+\alpha_{0}
$$

with at least one of $\alpha_{1}, \ldots, \alpha_{k}$ irrational, then using the same method as that used to prove Theorem 4, we can actually prove $\left(\left\langle\theta^{*}\left(q_{k}\right)\right\rangle\right)_{k=1}^{\infty}$ is uniformly distributed modulo one. The proof is adapted from that used to show that if $\left(p_{k}\right)_{k=1}^{\infty}$ is the full sequence of rational primes, $\left(\left\langle\theta^{*}\left(p_{k}\right)\right\rangle\right)_{k=1}^{\infty}$ is uniformly distributed modulo one [9].

Because θ has integer coefficients, in proving (1) we may assume without loss of generality that $h=1$. The first lemma we need is Dirichlet's theorem on diophantine approximation.

Lemma 5. Suppose α is irrational. Then for each $Q \geq 1$, there exists a rational $\xi=a / q$ with $(a, q)=1$ and $1 \leq q \leq Q$, such that

$$
|\alpha-\xi| \leq \frac{1}{q Q}
$$

Let $Q=N^{k}(\log N)^{-u}$ with N large, $u>0$ and k the degree of θ. Also for the rational ξ in reduced form a / q let

$$
M\left(\frac{a}{q}\right)=\left\{\alpha \in[0,1):\left\|\alpha-\frac{a}{q}\right\|<\frac{1}{q Q}\right\}
$$

where $\left\|a_{1}-a_{2}\right\|=\min \left(\left|a_{1}-a_{2}\right|,\left|a_{1}+1-a_{2}\right|\right)$. Let $M=\bigcup_{\xi} M(\xi)$, where the union is taken over all $\xi=a / q$ with $1 \leq q \leq(\log N)^{u}$. Classically the sets $M(\xi)$ are called major arcs and the connected components of $[0,1) \backslash M$ are known as the minor arcs. The following lemma, due to L. K. Hua [5], proves (1) on the minor arcs.

LEMmA 6. Let $\alpha=\beta+a / q$ with $(a, q)=1$ and $\delta=|\beta| N^{k}$. Then if $\max (q, \delta) \geq(\log N)^{u}$,

$$
\left|\frac{1}{\pi_{N, c, d}} \sum_{1 \leq q_{k} \leq N} e^{2 \pi i \alpha \theta\left(q_{k}\right)}\right| \leq C\left((\log N)^{-\zeta}\right)
$$

with $\zeta>0$. Here $\pi_{N, c, d}$ denotes the number of primes congruent to $c \bmod d$ lying in $[1, N]$.

In Lemma 6 and henceforth C denotes an absolute positive constant not necessarily the same at each occurrence. To prove (1) on the major arcs we argue as follows. Let

$$
T_{N}=\sum_{1 \leq q_{k} \leq N} e^{2 \pi i \alpha \theta\left(q_{k}\right)} \quad(N=1,2, \ldots)
$$

with α in M and let

$$
R_{N}=\sum_{1 \leq q_{k} \leq N} e^{2 \pi i a q^{-1} \theta\left(q_{k}\right)} \quad(N=1,2, \ldots)
$$

with $R_{0}=0$. This means that

$$
\begin{aligned}
T_{N} & =\sum_{1 \leq n \leq N} e^{2 \pi i \beta \theta(n)}\left\{R_{n}-R_{n-1}\right\} \\
& =\sum_{1 \leq n \leq N-1} R_{n}\left\{e^{2 \pi i \beta \theta(n)}-e^{2 \pi i \beta \theta(n+1)}\right\}+R_{N} e^{2 \pi i \beta \theta(N)} .
\end{aligned}
$$

By the Chinese remainder theorem the congruences $x \equiv c(\bmod d)$ and $x \equiv m(\bmod q)$ have a solution $x \equiv l(\bmod [d, q])$ if and only if $[d, q]$ divides $m-c$. This solution is unique. Here $[d, q]$ denotes the least common multiple of the natural numbers d and q. As a consequence we have

$$
R_{N}=e^{2 \pi i a q^{-1} \theta(c)} \pi_{N, l,[d, q]}+O(1) .
$$

The prime number theorem for arithmetic progressions says

$$
\pi_{N, l,[d, q]}=\frac{\pi_{N}}{\phi([d, q])}+O\left(N e^{-C(\log N)^{1 / 2}}\right) .
$$

Here π_{N} denotes the number of primes in $[1, N]$ and ϕ denotes the Euler totient function. This means $T_{N}=T_{1}+T_{2}$ where

$$
T_{1}=\frac{e^{2 \pi i a q^{-1} \theta(c)}}{\phi([d, q])}\left(\sum_{1 \leq n \leq N-1} \pi_{n}\left\{e^{2 \pi i \beta \theta(n)}-e^{2 \pi i \beta \theta(n+1)}\right\}+\pi_{N} e^{2 \pi i \beta \theta(N)}\right)
$$

and

$$
T_{2}=O\left(N e^{-C(\log N)^{1 / 2}} \sum_{1 \leq n \leq N}\left|e^{2 \pi i \beta \theta(n)}-e^{2 \pi i \beta \theta(n+1)}\right|+1\right) .
$$

Now because

$$
\left|e^{2 \pi i \beta \theta(n)} e^{2 \pi i \beta \theta(n+1)}\right| \leq C|\beta||(\theta(n+1)-\theta(n))|,
$$

and because $\theta(n+1)-\theta(n)$ does not change sign for large enough n we have

$$
T_{2}=O\left(|\beta| N^{k+1} e^{-C(\log N)^{1 / 2}}\right),
$$

which on the major arcs is

$$
=O\left(N e^{-C(\log N)^{1 / 2}}\right) .
$$

In addition summation by parts gives

$$
T_{1}=\frac{e^{2 \pi i a q^{-1} \theta(c)}}{\phi([d, q])}\left(\sum_{1 \leq n \leq N-1}\left\{\pi_{n}-\pi_{n-1}\right\} e^{2 \pi i \beta \theta(n)}\right) .
$$

So, using the fact from elementary number theory that $q(\log \log q)^{-1}=$ $O(\phi(q))$, we have

$$
T_{N}=\frac{1}{\phi([d, q])} O\left(\sum_{1 \leq n \leq N}\left\{\pi_{n}-\pi_{n-1}\right\}\right)=O\left(\pi_{N} \frac{\log \log q}{q}\right)
$$

Now note that for ξ which is rational, the major arc centred on it gets smaller as N tends to infinity. This means that if α is in the major arc centred on $\xi=a / q$ then $q=q(N)$ tends to infinity as N does. Thus $T_{N} / \pi_{N, c, d}$ tends to zero as N tends to infinity on the major arcs, completing the proof of Theorem 4.

Proof of Theorem 1. Sufficiency of conditions on ψ. By Theorem 3 , it is sufficient to show that if (X, β, μ) is any probability space and T : $X \rightarrow X$ is any measurable and measure preserving transformation of it, for any B in β with $\mu(B)>0$ there exists m in P_{ψ} such that $\mu\left(B \cap T^{-m} B\right)>0$. To do this we argue as follows.

For f in $L^{p}(X, \beta, \mu)(p \geq 1)$, let $U: L^{p} \rightarrow L^{p}$ be the Koopman unitary operator defined by $U f(x)=f(T x)$. If \rangle denotes the standard inner product on L^{2} then $\left(\left\langle U^{n} f, f\right\rangle\right)_{n=1}^{\infty}$ is a positive definite sequence, hence by Bochner's theorem, there exists a measure w_{f}, dependent on f, on the unit circle \mathbb{T} such that

$$
\left\langle U^{n} f, f\right\rangle=\int_{\mathbb{T}} z^{n} d w_{f}(z) \quad(n=1,2, \ldots)
$$

Now for each natural number $N,(1 / N) \sum_{n=1}^{N} z^{n}$ equals 1 if z does, and it tends to 0 for all other z on \mathbb{T} as N tends to infinity. This means that if

$$
A_{n} f(x)=\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right) \quad(N=1,2, \ldots)
$$

then $\left\langle A_{N} f, f\right\rangle$ tends to $w_{f}(\{1\})$ as N tends to infinity. By the mean ergodic theorem however, for f in L^{2}, if $\Pi_{T} f$ is the projection of f onto the T invariant subspace of L^{2}, then $A_{N} f$ tends to $\Pi_{T} f$ in both L^{1} and L^{2} norms as N tends to infinity. This means that $\left\langle\Pi_{T} f, f\right\rangle=w_{f}(\{1\})$ and so, by Cauchy's inequality,

$$
\begin{equation*}
w_{f}(\{1\})=\left\langle\Pi_{T} f, f\right\rangle=\left\langle\Pi_{T} f, \Pi_{T} f\right\rangle \geq\left|\int \Pi_{T} f d \mu\right|^{2}=\left|\int_{X} f d \mu\right|^{2} \tag{2}
\end{equation*}
$$

Let $L_{s}(s=1,2, \ldots)$ be the subset of P_{ψ} of elements which are multiples of the least common multiple of the first s positive integers. In addition, let $L_{s, n}=L_{s} \cap[1, n](n=1,2, \ldots)$ and let

$$
F_{k}=\{a / q: 1 \leq a<q \leq k,(a, q)=1\} \quad(k=1,2, \ldots)
$$

(that is, the k th Farey dissection). Let F_{k}^{c} denote the complement of F_{k} in $\mathbb{Q} \cap(0,1)$ and finally let $w_{t}=w_{r}+w_{i}$ denote the decomposition of w_{f} into a part with only atoms at the rationals and a part with no atoms at the rationals respectively. Then for any positive v

$$
\begin{aligned}
\left\langle U^{v} f, f\right\rangle= & \int_{\mathbb{T}} z^{v} d w_{i}(z)+w_{r}(\{1\}) \\
& +\left(\sum_{a / q \in F_{k_{0}}}+\sum_{a / q \in F_{k_{0}}^{c}}\right) e^{2 \pi i a v q^{-1}} w_{r}\left(\left\{e^{2 \pi i a q^{-1}}\right\}\right),
\end{aligned}
$$

where $k_{0}=k_{0}(\varepsilon)$ has been chosen so that the second sum on the right is less than $\varepsilon>0$ in absolute value. This means that

$$
\begin{align*}
& \frac{1}{\left|L_{k_{0}, n}\right|} \sum_{v \in L_{k_{0}, n}}\left\langle U^{v} f, f\right\rangle=w_{r}(\{1\})+\sum_{a / q \in F_{k_{0}}} w_{r}\left(e^{2 \pi i a q^{-1}}\right) \tag{3}\\
& \quad+\sum_{a / q \in F_{k_{0}}^{c}} w_{r}\left(\left\{e^{2 \pi i a q^{-1}}\right\}\right)\left(\frac{1}{\left|L_{k_{0}, n}\right|} \sum_{v \in L_{k_{0}, n}} e^{2 \pi i v a q^{-1}}\right) \tag{4}\\
& \quad+\int_{\mathbb{T}}\left(\frac{1}{\left|L_{k_{0}, n}\right|} \sum_{v \in L_{k_{0}, n}} e^{2 \pi i v \alpha}\right) d w_{i}\left(e^{2 \pi i \alpha}\right) . \tag{5}
\end{align*}
$$

Let s^{*} denote the least common multiple of the first s natural numbers and let

$$
M_{s, n, r}=\left\{\psi(p): \text { prime } p \equiv r\left(\bmod s^{*}\right)\right\} \cap[1, n] .
$$

Because of the assumptions on ψ in the statement of Theorem 1,

$$
L_{s, n}=\bigcup_{r \in g_{s^{*}}} M_{s, n, r},
$$

where $g_{s^{*}}$ denotes the non-empty set of reduced residues mod s^{*} such that $\psi(r) \equiv 0\left(\bmod s^{*}\right)$. This means that

$$
\sum_{v \in L_{k_{0}, n}} e^{2 \pi i v \alpha}=\sum_{r \in g_{k_{0}^{*}}} \sum_{v \in M_{k_{0}, n, r}} e^{2 \pi i v \alpha},
$$

which using Theorem 3 is

$$
=o\left(\sum_{r \in g_{k_{0}^{*}}}\left|M_{k_{0}, n, r}\right|\right)=o\left(\left|L_{k_{0}, n}\right|\right) .
$$

Thus (5) tends to zero as n tends to infinity. In addition the expression (4)is less than ε in absolute value. Hence if we set $f=\chi_{B}$ (the characteristic function of B), using (2) we obtain

$$
\liminf _{n \rightarrow \infty} \frac{1}{\left|L_{k_{0}, n}\right|} \sum_{v \in L_{k_{0}, n}} \mu\left(B \cap T^{-v} B\right) \geq \mu^{2}(B)-\varepsilon
$$

as required.
Necessity of the conditions on ψ. For fixed positive integers n and l and each positive integer $k(k=1,2, \ldots)$ let $S \equiv k n \mathbb{Z}+l$. Clearly S has positive upper Banach density, thus if P_{ψ} is intersective it contains infinitely many non-zero multiples of n. This means that there are primes p such that n divides $\psi(p)$ with p strictly greater than n. So that on setting m_{n} to be one such prime p we have shown that the intersectivity of P_{ψ} implies ψ satisfies the conditions on it in Theorem 1.

Examination of the first part of the proof of Theorem 1 shows that the only property of $\left(u_{t}\right)_{t=1}^{\infty}=P_{\psi}$ used is the following fact. For each natural number s there exists an infinite sequence $\left(u_{s, t}\right)_{t=1}^{\infty}$ of multiples of the least common multiple of the numbers $\{1,2, \ldots, s\}$ contained in $\left(u_{t}\right)_{t=1}^{\infty}$ such that for each irrational real number α we have $N^{-1} \sum_{t=1}^{N} e^{2 \pi i u_{s, t} \alpha}$ tending to zero as N tends to infinity. In consequence, any sequence $\left(u_{t}\right)_{t=1}^{\infty}$ with this property is intersective. As a result if, instead of Theorem 4, we use the fact that $\left(\left\langle\theta^{*}(n)\right\rangle\right)_{n=1}^{\infty}$ is uniformly distributed modulo one[12], we get a virtually identical proof of the following theorem.

Theorem 7. Let ψ be a polynomial with integer coefficients and $N_{\psi}=$ $\{\psi(n): n \in \mathbb{Z}\}$. Then N_{ψ} is intersective if and only if for each non-zero integer n, there exists an element m_{n} of N_{ψ} such that n divides m_{n}.
2. The proof of Theorem 2 hinges on the following form of an ergodic theorem of A. A. Tempel'man.

Theorem 8. Suppose $\left\{T_{m}\right\}_{m \in M}$ is a countable commutative monoid under composition of measurable measure preserving transformations of the measure space (X, β, μ) indexed by elements m of the countable commutative monoid M. Suppose \mathcal{A} is a collection of subsets of M that satisfy conditions (i)-(iv). Then for each integrable function f on (X, β, μ) we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|A_{n}\right|} \sum_{m \in A_{n}} f\left(T_{m} x\right)=f^{*}(x),
$$

and for each $m \in M, f^{*}\left(T_{m} x\right)=f^{*}(x) \mu$-almost everywhere, with

$$
\int_{X} f^{*}(x) d \mu=\int_{X} f(x) d \mu
$$

By $\left\{T_{m}\right\}_{m \in M}$ being a monoid under composition we mean that for each x in X we have $T_{m_{1}}\left(T_{m_{2}}(x)\right)=T_{m_{1}+m_{2}}(x)$.

To prove Theorem 2 we use the following result which is a straightforward generalisation of a result of V. Bergelson [1] produced here for completeness.

Theorem 9. Suppose $\left\{T_{m}\right\}_{m \in M}$ is a countable commutative monoid of measure preserving transformations acting on the probability space (X, β, μ). For B in β with $\mu(B)=a>0$ and for each m in M let B_{m} denote $T_{m} B$. Then if \mathcal{A} satisfies (i)-(iv) there exists a subset R of M with $d_{\mathcal{A}}(R) \geq a$ such that for each finite subset F of R we have $\mu\left(\bigcup_{m \in F} B_{m}\right)>0$.

Proof. For finite subsets F of M let $B_{F}=\bigcap_{m \in F} B_{m}$. Let \mathcal{C} denote the necessarily countable set of products of finitely many characteristic functions of the form $I_{B_{m}}$. For each function f in \mathcal{C} let N_{f} denote the set $\{x$: $\left.\|f(x) \mid>\| f \|_{\infty}\right\}$ and let $N=\bigcup_{f \in \mathcal{C}} N_{f}$. Now if $(X \backslash N) \cap B_{F} \neq \emptyset$ then $\mu\left(B_{F}\right)>0$ because if x is in $(X \backslash N) \cap B_{F}$, letting $f=\prod_{m \in F} I_{B_{m}}$ and assuming $\mu\left(B_{F}\right)=0$ we have $\|f\|_{\infty}=0$. This means x is in N_{f}, which is a contradiction. Thus removing N from X if necessary, we may assume without loss of generality that if $B_{F} \neq \emptyset$ then $\mu\left(B_{F}\right)>0$.

By Tempel'man's theorem

$$
\lim _{N \rightarrow \infty} \frac{1}{\left|A_{N}\right|} \sum_{m \in A_{N}} I_{B_{m}}(x)=f^{*}(x)
$$

with $f^{*}\left(T_{m} x\right)=f^{*}(x)$ for each m in $M \mu$-almost everywhere and $\int_{X} f^{*}(x) d \mu$ $=a$. Because (X, β, μ) is a probability space there exists an x_{0} in X such that $f^{*}\left(x_{0}\right) \geq a$. Let R be the set $\left\{m \in M: x_{0} \in B_{m}\right\}$. It follows $d_{\mathcal{A}}(R) \geq a$ and as x_{0} is in B_{m} for each m in R we have $\mu\left(B_{F}\right)>0$ for every finite subset F of R.

We now complete the proof of Theorem 2.
By hypothesis there exists a sequence of subsets $\left\{C_{N}\right\}_{N=1}^{\infty}$ of M satisfying (ii) and (iii) such that

$$
b(E)=\lim _{N \rightarrow \infty} \frac{\left|E \cap C_{N}\right|}{\left|C_{N}\right|}
$$

exists and is positive. Let Λ denote the set $\{0,1\}$ and let Ω denote Λ^{M}, that is, the set of maps from M to Λ. By identifying I_{E}, the characteristic function of the set E in M, with its range we may think of $\xi=I_{E}$ as a point of Ω. Let T_{l} be the shift on Ω defined by $T_{l} x(t)=x(t+l)$. Now let X denote the orbit closure of $\left\{T_{m} \xi: m \in M\right\}$ in Ω and let X_{0} denote $\{x \in X: x(0)=1\}$. If δ_{x} denotes the delta measure on the point x, for each
natural number N let

$$
\mu_{N}=\frac{1}{\left|C_{N}\right|} \sum_{m \in C_{N}} \delta_{T_{m} \xi}
$$

Because of the conditions (ii) and (iii) on $\left\{C_{N}\right\}_{N=1}^{\infty}$ there is a probability measure μ supported on X and preserved by elements of $\left\{T_{n}\right\}_{n \in M}$ which is a weak-star limit of the sequence of measures $\left\{\mu_{N}\right\}_{N=1}^{\infty}$. In addition, passing to a subsequence of $\left\{C_{n}\right\}_{n=1}^{\infty}$ if necessary, for every integrable function f on Ω we have

$$
\int_{\Omega} f d \mu=\lim _{s \rightarrow \infty} \int_{\Omega} f d \mu_{N_{s}} .
$$

This means

$$
\mu\left(X_{0}\right)=\lim _{s \rightarrow \infty} \mu_{N_{s}}\left(X_{0}\right)=\frac{1}{\left|C_{N_{s}}\right|} \sum_{n \in C_{N_{s}}} \delta_{T_{n} \xi}\left(X_{0}\right)=b(E)>0 .
$$

By Theorem 9 this also means that

$$
\begin{aligned}
\mu\left(X_{0} \cap T_{n_{1}} X_{0} \cap\right. & \left.\ldots \cap T_{n_{k}} X_{0}\right) \\
& =\lim _{s \rightarrow \infty} \mu_{N_{s}}\left(X_{0} \cap T_{n_{1}} X_{0} \cap \ldots \cap T_{n_{k}} X_{0}\right) \\
& =\lim _{s \rightarrow \infty} \frac{1}{\left|C_{N_{s}}\right|} \sum_{n \in C_{N_{s}}} \delta_{T_{n} \xi}\left(X_{0} \cap T_{n_{1}} X_{0} \cap \ldots \cap T_{n_{k}} X_{0}\right) \\
& =b\left(E \cap\left(E+n_{1}\right) \cap \ldots \cap\left(E+n_{k}\right)\right)>0
\end{aligned}
$$

as required.

References

[1] V. Bergelson, Sets of recurrence of \mathbb{Z}^{m}-actions and properties of sets of differences in \mathbb{Z}^{m}, J. London Math. Soc. (2) 31 (1985), 295-304.
[2] A. Bertrand-Mathis,Ensembles intersectifs et recurrence de Poincaré, Israel J. Math. 55 (1986), 184-198.
[3] H. Furstenberg,Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204-256.
[4] -, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, 1981.
[5] L. K. Hua, Additive Theory of Prime Numbers, Amer. Math. Soc.Transl. 13, 1965.
[6] T. Kamae and M. Mendès France, Van der Corput's difference theorem, Israel J. Math. 31 (1978),335-342.
[7] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, 1985.
[8] R. Nair, On strong uniform distribution, Acta Arith. 56 (1990), 183-193.
[9] G. Rhin, Sur la répartition modulo 1 des suites $f(p)$, ibid. 23 (1973), 217-248.
[10] A. Sárközy, On difference sets of sequences of integers, II, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 21(1978), 45-53.
[11] A. Sárközy, On difference sets of sequences of integers. III, Acta Math. Acad. Sci. Hungar. 31 (3-4) (1978),355-386.
[12] H. Weyl, Über die Gleichverteilung von Zahlenmod. Eins, Math. Ann. 77 (1916), 313-352.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF LIVERPOOLP.O. BOX 147LIVERPOOL L69 3BX, U. K.

Received on 16.8.1991
and in revised form on 31.1.1992

