
SANDIA REPORT
SAND94-3128 UC-705
Unlimited Release

+ Printed May 1995

On Certificates and Lookahead in
Dynamic Graph Problems

Sanjeev Khanna, Rajeev Motwani, Randall H. Wilson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-94AL85000

Approved for public release; distribution is unlimited.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161 i

. j

i

4

NTIS price codes
Printed copy: A03
Microfiche copy: A01

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are

produced from the best available original
document.

SAND943 128
Unlimited Release
Printed May 1995

Distribution
Category UC-705

On Certificates and Lookahead in Dynamic Graph Problems

Sanjeev manna* Rajeev Motwanit
Department of Computer Science

Stanford University

Stanford, CA 94305

Randall H. Wilson*

Intelligent Systems and Robotics Center

Sandia National Laboratories

Albuquerque, NM 87 185-095 1

May 5,1995

Abstract

Recent work in dynamic graph algorithms has led to efficient algorithms for dynamic undirected graph

problems such as connectivity. However, no efficient algorithms are known for the dynamic versions

of fundamental directed graph problems like strong connectivity and transitive closure, as well as some

undirected graph problems such as maximum matchings and cuts. We provide some explanation for

this lack of success by presenting quadratic lower bounds on the certificate coniplaig of the seemingly

difficult problems, in contrast to the known linear certificate complexity for the problems which have

efficient dynamic algorithms. A direct outcome of our lower bounds is the demonstration that a generic

technique for designing efficient dynamic graph algorithms, viz., sparsification, will not apply to the

difficult problems. More generally, it is our belief that the boundary between tractable and intractable

dynamic graph problems can be demarcated in terms of certificate complexity.

In many applications of dynamic (di)graph problems, a certain form of lookahead is available.

Specifically, we consider the problems of assembly planning in robotics and the maintenance of relations

in databases. These give rise to dynamic strong connectivity and dynamic transitive closure problems,

respectively. We explain why it is reasonable, and indeed natural and desirable, to assume that lookahead

is available in these two applications. Exploiting lookahead to circumvent their inherent complexity, we

obtain efficient fully-dynamic algorithms for strong connectivity and transitive closure.

'Supported by an OTL grant, and NSF Grant CCR-9357849.

'Supported by Alfred P. Sloan Research Fellowship, an IBM Faculty Development Award, an OTL grant, and NSF Young

Investigator Award CCR-9357849, with matching funds from IBM, Schlumberger Foundation, Shell Foundation, and Xerox

Corporation.

Supported by the Stanford Integrated Manufacturing Association, and by Sandia National Laboratories under DOE contract
DE-AC04-94AL85000. This work was pedormed in part while the author was at the Department of Computer Science, Stanford

University.

DISTRIBUTION W THIS DOCUMENT IS U N L I M m

1 Introduction

A dynamic graph problem is that of efficiently maintaining some property of a graph undergoing structural

changes defined by update operations such as insertion and deletion of edges, so as to minimize the amount

of recomputation needed after each update. An “efficient” algorithm for such problems will be able to

incrementally maintain the graph property at a cost (per update operation) that is significantly smaller than

the cost of computing the graph property from scratch.

While much of the prior research in the design of dynamic graph algorithms involved problem-specific

approaches [9, 10, 11, 19,241, recently Eppstein, Galil, Italiano, and Nissenzweig [SI presented a general

paradigm called sparsification that is useful in both designing new dynamic graph algorithms, as well

as speeding up the existing ones. The sparsification technique is based on the notion of a sparse strong

certiJcate which, informally speaking, is a sparse graph whose structure is representative of the input graph

with respect to the property of interest. Eppstein eta1 established the existence of sparse strong certificates for

a variety of undirected graph properties5 such as edge and vertex connectivity, bipartiteness, and minimum

spanning tree, thereby obtaining efficient dynamic algorithms; recently, Henzinger and King [141 improved

some of these results and obtained randomized fully-dynamic algorithms requiring only poly-logarithmic

time per operation.

In practice, two particularly important dynamic graph problems are strong connectivity (in industrial

robotics applications 1251) and transitive closure (in database applications [28]). Despite intensive efforts,

no efficient dynamic graph algoiithms have been devised for these two problems, as well as a host of others.

It appears that known techniques are of little use for non-trivial direcred graph problems. We attempt to

explain this lack of success by initiating a study of the strong certijcate complexity of graph properties.

For a variety of graph properties, we establish the existence of n-vertex graphs for which every strong

certificate must have Q(n2) edges, thereby ruling out the application of sparsification. We also show that

similar bounds hold even when a more relaxed notion of certificates is used. Our results demonstrate

a qualitative distinction between the certificate complexity of fully-dynamic graph problems with known

efficient algorithms and the (primarily digraph) problems for which no efficient algorithms are known. This

provides a partial explanation for the lack of progress on some dynamic graph problems.

Fortunately, many real systems have some form of lookahead available, i.e., the dynamic algorithm is

provided with information about future updates. In the Appendix, we detail a problem in industrial robotics

-assembly planning [15,25,26,27] -that requires an efficient dynamic algorithm for strong connectivity,

and indicate why lookahead is naturally available in this setting. Also, the problem of dynamic transitive

closure arises in numerous database applications (see Yannakakis [28]). This is equivalent to maintaining

the transitive closure of a relation undergoing frequent updates, and it is usually desirable to update the

transitive closure only after accumulating batches of updates, leading to the availability of lookahead. While

the issue of lookahead is receiving increasing attention in online algorithms [3, 17, 181, there has not been

much work along these lines for dynamic graph algorithms. Schaeffer and Varman [20] studied parallel

batch update of minimum spanning trees, while Eppstein [7] considered the offline version of the same

problem. Dai, Imai, Iwano, and Katoh [6] describe an approach for constructing semi-online algorithms,

Le., algorithms based on partial knowledge of future deletes, using partially dynamic algorithms, and apply

their techniques to undirected graph connectivity problem.

We propose the study of lookahead as a means to circumvent the inherent complexity of certain dynamic

§As we explain in Section 2, the word property is used in a broad sense to include non-boolean functions on graphs.

1 1 ,

graph problems. We present a lookahead-based variant of sparsification'and use it to obtain efficient fully-

dynamic algorithms for the digraph properties that motivated our investigation, viz., strong connectivity and

transitive closure. Our algorithms require only a weak form of lookahead where it suffices to know only the

vertices involved rather than the exact sequence of edge operations.

In Section 2, we briefly review sparsification in a slightly more general framework than that of Eppstein
et a1 [8]. Section 3 develops the concept of strong certijicate complexity and witness comnplexity. We present

a theorem relating these two measures and hence obtain a general technique for bounding the certificate

complexity. We present quadratic lower bounds on this complexity for a variety of problems. We also show

that these bounds essentially continue tohold under a relaxed notion of certificates. We conclude this section

by pointing out some intriguing trends that emerge from our results, and pose a couple of conjectures. In

Section 4, we present a framework for incorporating lookahead into dynamic graph algorithms via a variant

of sparsification. Section 5 is devoted to the presentation of two algorithms for strong connectivity using

our new framework; the Appendix contains a description of the motivating application, assembly planning

in robotics, including a technical development of this application and the practical implications of our

results. Finally, in Section 6, we extend our results to the transitive closure problem with lookahead and

provide a brief discussion of the relevance of this problem in database applications such as maintenance of

materialized views.

2 Preliminaries

We view a graph G as a set of edges whose cardinality is denoted IGl, enabling us to employ set operators to

graphs, The underlying vertex set will be a fixed set of n labeled vertices, or will be clear from the context,
The sparsification technique was originally presented in a framework for boolean graph properties, along

with applications to non-boolean functions such as minimum spanning tree [8]. We review the sparsification

technique using a more general formalism directly applicable to non-boolean graph properties.

Let P denote an arbitrary function, also referred to as agraphproperty, which maps graphs to non-empty

sets of objects. For example, the minimum spanning forest function will presumably map a given weighted

undirected graph to several possible minimum weight spanning forests. In case of boolean properties, P may

map graphs to symbols TRUE and FALSE. The sparsification technique is based on the notion of certificates.

Definition 1 (Strong Certificate) For any graph property P, a strong P-certificate of a graph G is a graph

GI on the same vertex set as G such thatfor any graph H , P(G' U H) C P(G U H) .

Definition 2 (Sparse Strong Certificate) A property P has sparse strong certificates iffor every graph G,

there exists a strong P-certijcate for G with O (n) edges.

We claim that the next two propositions due to Eppstein et aZ[8] hold under the extended definition too.

Proposition 1 ('Ikansitivity) If G' is a strong P-certificate for G, and GI1 is a strong P-certificate for G',
then G" is a strong P-certijcate for G.

Proposition 2 (Monotonicity) IfG' is a strong P-cert$cate for G, and H' is a strong P-certijicate for H ,

then GI U HI is a strong P-certijicate for G U H .

2

e-_ . . .I

Now suppose P is a property with sparse strong certificates. Propositions I and 2 together imply that a

recursive divide-and-conquer approach can be used for computing the sparse strong certificates. The basic

idea in the sparsification technique is to maintain a complete binary tree with [lGl/n] leaves such that each
leaf represents n edges of the graph. Each internal node maintains a sparse strong certificate of the graph

formed by the union of its two children. Using the transitivity and the monotonicity properties, it follows

that the root contains a sparse strong certificate for the whole graph. As the edges are inserted and deleted

from the graph, the certificates along the appropriate leaf-root paths are updated. Since each certificate is

sparse, an update on the whole graph now reduces to O(log((Gl/n)) updates on sparse graphs. In essence,

this technique has cost which is the same as that incurred while processing updates on a sparse graph.

3 Lower Bounds on Strong Certificate Size

The sparsification technique allows us to devise efficient dynamic algorithms for a host of graph properties

including connectivity and minimum spanning trees. However, sparsification has its limitations: many

dynamic graph properties such as strong connectivity, maximum matchings, transitive closure and graph

search trees, do not yield to sparsification. In this section we explain this phenomenon by establishing the

lack of sparse strong certificates for these properties; in particular, we establish that they have instances

requiring quadratic-sized certificates, even for a very relaxed notion of certificates.

Definition 3 (Property Values) A graph property P is said to be mono-valued iffor any graph G, P(G) is

a singleton; otherwise, it is said to be a multi-valued property.

For example, all boolean graph properties are mono-valued. However, the class of mono-valued graph

properties is a strictly larger class as it also includes properties such as transitive closure.

Definition 4 (Critical Graph) A graph G is called P-critical iffor every proper subgraph G' of G, we have

P(G') # P(G)*

Definition 5 (Witness Complexity) Let X denote the family of all n-vertex P-critical graphs for a mono-

valuedproperty ?. Then the witness complexity g (n) of P is defined as maxGEx /GI.

Definition 6 (Distinguishing Graph) Given two graphs GI and G2, a graph H is called a P-distinguishing

graph for GI and G2 ifP(G1 U H) # P(G2 U H).

Let C(G) denote the set of graphs G' which are strong P-certificates for G. A graph G' E C(G) if and

only if there does not exist a P-distinguishing graph for G and G'.

Definition 7 (Strong Certificate Complexity) Let D denote the family of all n-vertex graphs. Then the

strong certificate complexity f (n) of a graph property P is defined as

max min IG'l.
GEP G'EC(G)

3

3.1 Mono-Valued Properties and Lower Bounds via Witness Complexity

We show that the witness complexity of a mono-valued property P can be used to derive lower bounds on

its strong certificate complexity.

Theorem 1 Let P be a mono-valued graph property with witness complexity Q(g(n)). Then the strong

certijcate complexity of P is Q(g(n)/log n).

The proof proceeds as follows. Let G be a largest P-critical graph and let F denote the family of all

labeled subgraphs of G. We claim that for any distinct G I , G2 E T, C(G1) n C(G2) = 0. Suppose not; let

G‘ E C(G1) f l C(G2). Assume without loss of generality that 2 jG4, and let H = G \ G I . Clearly,

GI U H = G. On the other hand, by assumption, GI must contain at least one edge not in G2. Therefore,

(G2.UH) C G and, since G is P-critical, we conclude that P(G1 U H) # P(G2 U H) , thereby contradicting

the existence of such a G‘. Thus, if f (n) denotes the strong certificate complexity of P, we must have

Using Stirling’s approximation and the fact that 131 = 2*(g (n)) , we obtain the desired result.

Corollary 1 The following (di)graph properties have sZ(n2/log n) strong certijicate complexity: (I) tran-

sitive closure; (2) diameter; and, (3) minimum cut value.

Each of these three properties is mono-valued and we obtain the results by appIying Theorem 1 to the

following critical graphs: (1) a directed bipartite graph with all edges directed from one bipartition to the

other; (2) the complete bipartite graph Kn,n (diameter two); and, (3) the complete graph ICn. With some

further work, all three lower bounds .may be improved to sZ(n2). The details and some other interesting

applications of this theorem are deferred to the final version of this paper.

3.2 Multi-Valued Properties and Properties with Sparse Witnesses

Theorem 1 has its limitations in yieIding good lower bounds. Several graph properties have linear witness

complexity and yet no sparse strong certificates. The properties of strong connectivity and perfect matching

are two such examples. In this section, we study several such properties and establish an s2(n2) lower bound

on the strong certificate complexity of these properties.

We first show that the certificate complexity of strong connectivity is Q(n2).

Lemma 1 Let G I , G2 be two labeled directed graphs on the same set of vertices, say V , and let H I and

H2 respectively denote their transitive closure graphs. Then ifH1 H2, there exists a graph H such that

G I U A is strongly connected and G2 U H is not.

The proof proceeds as follows. Consider an edge e = (a, y) such that e E H I and e # H2. Let H be

the set of edges (y,z) and (z , ~) where z E V \ {a, y}. Clearly, H U {e}, and hence H U H I , is strongly

connected. On the other hand, the edges in H cannot contribute to a path from a to y and hence there is

no such path in H U H2. The lemma now follows by observing that for any two graphs G and H , we have

TC(G U H) = TC(TC(G) U H) .

4

Consider now the directed bipartite graph G = (X U Y, E) where 1x1 = IYI = n and E contains an

edge (x, y) for all x E X and y E Y . It is easily seen that TC(G) = G. We claim that for any graph H

such that G H, TC(G) # TC(H) . To see this, consider such a graph H and an edge (5, y) E G \ H .
Suppose there is a path from x to y in H . Such a path in H must contain one of the following: an edge

between two vertices in X, an edge between two vertices in Y, or an edge from Y to X . But none of these

edges are present in G = TC(G). Therefore, TC(G) # TC(H) . On the other hand, if there is no path

from x to y in H , then TC(G) # TC(H). Thus, by Lemma 1, there exists a graph which distinguishes G

and H for the property of strong connectivity. We conclude that any certificate of the graph G must contain

every edge in the graph G.

Theorem 2 The strong certificate complexity of strong connectivity is !2(n2).

We now turn to the problem of maintaining a maximum matching in an undirected graph. Consider the

bipartite graph G = (X U Y, E) where 1x1 = 2n, Y = Yl U 15, IYlI = 1151 = n, and E = {(x, y)lx E

X , y E Yl}. Observe that it is useless for a certificate G' of G to have any edge e # E because such an

edge does not belong to any maximum matching of G. Thus G' G. We claim that G' must have at least

n2 -t 1 edges of G. Suppose not; then, there exists a vertex y E 1'1 such that y is connected to no more

than b 5 n vertices in X in the graph G'. Let X' denote the set of neighbors of y. .Consider the graph

H = (X U Y, EH), where EH contains all edges (x? y) such that x E X' and y E 15. Clearly, the graph

G u H has a maximum matching of size n + I; while no matching of G' U If can have size more than

n -t k - 1 . We obtain the following theorem.

Theorem 3 The strong certificate complexity maximum matching is Q(n').

Similar techniques can be used to establish quadratic complexity results for determining perfect match-

ings, and breadth-first and depth-first search tree maintenance; the details are deferred.

Theorem 4 The strong certijicate complexity of the breadth-jrst search tree property from a giver2 vertex

in a directed or undirected graph is Q(n2).

Theorem 5 The strong certiJficate complexity of a lexicographic-$rst depth-$rst search forest property in a

directed graph is C?(n2).

3.3 An Extended Notion of Certificates

So far we assumed that a certificate has the same vertex set as its underlying graph. However, conceivably,

by using a larger vertex set, one may reduce the overall certificate complexity, measured now in terms

of both the number of vertices and edges in the certificate. We refer to this new notion of certificates as

extended strong certificates and their complexity as extended strong certificate complexity. Surprisingly, the

quadratic complexity results of the Sections 3.1 and 3.2 generalize to this extended notion of certificates.

Theorem 6 Let P be a mono-valued graph property with witness complexity Q(g(n)). Then the extended

strong certificate complexity of P is Q(g(n)/logn).

The proof proceeds as follows. Let En(.) denote a mapping from the set of n-vertex graphs to the set of

n"-vertex graphs such that &(G) is an extended strong certificate for a n-vertex graph G. As in Theorem 1,

5

we consider a largest P-critical graph G on n vertices and define F as the family of all its labeled subgraphs.

We claim that for any distinct G1,G2 E F, &(GI) n fn(G2) = 0. To see this, assume 2 1621, and

define H = G \ GI. By definition, P(in(G1) U &(If)) = P(G1 U H) = P(G). On the other hand,

P(En(G2) U En(H)) = P (c 2 U H) =,P(G’) # P(G) since.G’ C G. Therefore, &(GI) and En(G2) must

be distinct. Thus, if f (n) denotes the extended strong certificate complexity of P, we must have

Using Stirling’s approximation and the fact that IF1 = 2*(g(”)), we obtain the desired result.

Theorem 7 Suppose that for a graph property P there exists an n-vertex graph G with m edges such that

C(G) = G. Then the extended strong certificate coinplexity of P is‘S2(m/ logn).

The proof proceeds as follows. If C(G) = G, we show that for any two distinct subgraphs of G, say GI

and G2, there exists a graph H such that P(G1 u H) # P(G2 U H) . To see this, assume IG1 I 2 lG2l and

define H1 = G \ GI. Clearly, G1 U H1 = G and G2 U H1 =‘GI c G. But G’ C(G) and, therefore, there

exists a graph H2 such that P(G U H2) # P(G’ U H2). Now the argument used in Theorem 6 implies that

&(G1) r l &(G2) = 8. Since there are 2m possible subgraphs of G, the result follows from the counting

argument used earlier. .

Corollary 2 The extended strong certificate conzplexity is sZ(n2/ logn) for each of the following (di)graph

properties: (1) transitive closure; (2) diameter; (3) ininiinuin cut; (4) strong connectivity; (5) inaxiinuin

matching; (6) breadtli-jirst search tree; and, (7) lexicographic-jirst depth-jirst search.

The lower bound for the first three properties are an immediate corollary of Theorem 6 while those for

the last four can be obtained from Theorem 7.

3.4 Canonical Hard Instances and A Conjecture

We conclude our discussion of certificate complexity by commenting on some interesting trends that emerge

from our work.

It is rather surprising that the “hard” instances for most of the properties were simply bipartite graphs. A

natural question is: do bipartite graphs provide canonical hard instances for strong certificate complexity?

The following theorem asserts that this is almost the case. The proof is deferred to the final version.

Theorem 8 LRt f (n) denote the strong certijicate complexity of a property P, and h(n) denote the strong

certijicate complexity of P when the input is restricted to bipartite graphs. Then, h(n) = n(f(n)/logn).

A rather intriguing trend which seems to emerge is that a somewhat restricted class of graph properties

appears to have either linear or quadratic strong certificate complexity, but not in between. We define a

non-degenerate graph property as a graph property P such that there exist two graphs GI, G2 E P such that

G1 has O (n) edges while G2 has !2(n2) edges. (An example of a degenerate property would be a threshold

function on the number of edges with a super-linear threshold.)

Conjecture 1 LRt P be a non-degenerate, monotone graph property. Then the strong certificate complexity

of P is either 0 (n) or sZ(n2).

6

In light of our results and the above conjecture, a review of known efficient dynamic graph algorithms

suggests that a non-degenerate, monotone graph problem has an efficient dynamic algorithm only if it has

sub-quadratic certificate complexity.

4 Sparsification with Lookahead

The strong certificate complexity results of the previous sections provide some explanation for the lack of

efficient dynamic graph algorithms for a variety of problems. However, these problems routinely arise in

many practical applications and there is a need for efficient algorithms. Fortunately, at least some of these

applications have the crucial feature of a lookahead in terms of some knowledge about the updates to be

performed in the future. This motivates us to study the complexity of maintaining some of these seemingly

intractable properties under lookahead. While doing so, we assume only a weak form of lookahead: we

know only the set of vertices involved in the updates to be performed in the immediate future. In other

words, we are aware of the current hot spots of activity in the underlying graph.

Our results are based on a new notion of sparsification, namely, loohhead-based sparsiJication. The

sparsification technique as presented by Eppstein et a1 [8] is essentially an edge-sparsification technique in

which the sparse certificates encapsulate the essential structure of the original (dense) graph into a sparse

set of edges. The lookahead-based sparsification, on the other hand, is a vertex-sparsification technique

where we use the knowledge of the future to construct a representative graph H on a smaller set of vertices

such that processing the edge operation sequence on the original graph is "equivalent" to performing the

sequence on this smaller (possibly dense) graph H .

We defer the details of a formal lookahead-based sparsification framework to the final version of the

paper. We develop the basic technique in the next two sections through applications to strong connectivity

and transitive closure.

5 Assembly Sequencing and Exploiting Lookahead in Strong Connectivity

We describe the assembly planning problem in detail in the Appendix. For our purposes, the assembly

sequencing problem can be abstracted as follows: given a graph G and a sequence c of t edge insertions and

deletions, determine for each i E [1 . . . t] whether the graph obtained after the ith edge operation is strongly

connected. The order of t could lie anywhere between n2 and n5 (see Appendix A). Let m denote an upper

bound on the maximum number of edges the graph may have at any time. In practice, the graphs arising in

this application have a(n2) edges. Thus the straightforward algorithm for verifying the strong connectivity

from scratch after each edge operation leads to an Q(tn2) solution to this problem, which could be as large

as n7 and hence impractical even for the most trivial applications.

We can improve the running time by using a lookahead of k into the sequence of edge operations. The

idea is to decompose'the processing into t / k phases with each phase involving precisely k edge operations.

Let Gp denote the graph in the beginning of a phase p and, for 1 5 i _< b, let Gp,i denote the graph obtained

after the ith edge operation within the phase p . The total number of vertices involved in the k edge insertion

and deletions within a phase cannot exceed 2k; call these vertices as the active vertices during the phase.

We will need the following notation: A denotes the set of active vertices; E A denotes the set of all possible

([Actually, the problem involves an implicitly-defined offline sequence but, as explained in the Appendix, the huge length of the

sequence makes it desirable to generate it in smaller blocks of length h so as to reduce the space (and time) requirement.

7

directed edges between the active vertices; E,” denotes the set of the edges actually present between the

active vertices in the graph G,; E$ denotes the set E,” after the ith edge operation in’the phase p ; define G;

as the graph G, \ E A and let H, denote the induced subgraph on the set of active vertices in the transitive

closure of the graph G; (Le., in the graph H,, there is an edge from u to v if and only if G, has a path from

u to v in which u and v are the only active vertices); Hp,i is the graph on the active vertices with precisely

the edges in H , and E$; finally, define G$ as the graph G, U EA.

We defer the proofs of Lemmas 2 and 3 to the final version of this paper.

Lemma 2 IfGp,; is strongly connected, then the graph G: is also strongly connected.

Lemma 3 For any two active vertices, say u and v, there exists a directed path from u to v in G,,; if and

only if there exists a directed path from u to v in H,,;.

Theorem 9 The graph G,,; is strongly connected iflboth G$ and H,,i are strongly connected.

This theorem can be proved as follows. If G,,; is strongly connected then the graph G,’ must also be

strongly connected by Lemma 2. By Lemma 3, the strong connectivity of Gpl; implies that H,,; i s strongly

connected. For the converse, observe that the strong connectivity of H,,; implies that TC(G,,;) includes all

edges in the set E A where TC(.) denote the transitive closure of a given graph. Therefore,

2 TC(Gp U E A) = TC(G,+).

Thus G,,; must be strongly connected.

The running time is determined by how efficiently strong connectivity of the graphs Gpf and H,,; can be

verified. The strong connectivity of the graph G$ can be verified at the beginning of the phase in O(m + n)

time by simply collapsing all active vertices into a single vertex and then running the standard strong

connectivity algorithm. Let T(n, m) denote the time complexity of a computing transitive closure on a

n-vertex graph with m edges. Then the graph H, can be constructed in O(T(n, m>) time. Finally, the strong

connectivity of each B,,; can be verified in O(k2) time. Hence the running time for each phase is given

by O(m + T(n,m) + k 3) and the total running time is given by O(t (k2 + T(n, m)/k)). This expression

is minimized when a lookahead of size O(T(n, m)’l3) is used. The running time for the whole sequence

becomes O(tT(n, m)*j3) which is an improvement over the naive approach for any m = Q(T(n, m)2/3).

Observe that if the graph contains o(T(n, m)2/3) edges, our algorithm is slower than the naive approach.

This can be handled easily by adding a simple feature to the lookahead algorithm. At the beginning

of each phase, the algorithm computes the number of edges in the current graph. If the graph contains

Q(T(n, rn)2/3) edges, it uses this algorithm, else it simply uses the naive approach of running the strong

connectivity algorithm for each operation in the phase.

Theorem 10 There is an algorithm forfully-dynamic maintenance of the strong connectivity of a graph

at an amortized cost of O(min{m, k2 + T(n, m)/k}) per operation using lookahead b = O(T(n, m)’/3),

where T(n, m) denotes the time complexity of the transitive closure algorithm used.

We now observe that the problem of determining strong connectivity of each Hp,i within a phase p is

identical to our original problem. This leads to a recursive approach with a significantly improved running

time. We defer the details to the final version.

8

Theorem 11 There is an algorithm for fully-dynamic maintenance of the strong connectivity of a graph at

an arnortized cost of O(T(n, m)/n) per operation using lookahead O(n), where T(n, m) denotes the time

coniplexity of the transitive closure algorithm used.

Transitive closure of a graph can be computed using boolean matrix multiplication [2]. Let M(n)

denote the complexity of a boolean matrix multiplication algorithm. Then for instance, if we use the best-

known (but impractical) algorithm for matrix multiplication due to Coppersmith and Winograd [5] with

M (n) = n2*376, then the time per operation of the recursive algorithm is O(n1*376). On the other hand, using

the more practical algorithm due to Strassen [23] with M(n) = n2e808, we achieve a bound of O(n1*808) per

operation. These should be contrasted with the naive algorithm requiring Q(n2) time per operation. Note

that in this application, the graph has !2(n2) edges at most points of the update sequence.

Remark 1 Of course, it would be desirable to avoid using matrix multiplication altogethel; and it is our

expectation that using a good transitive closure algorithm instead would still yield signijicant speed-ups in

practice. Howevel; in the next application of this technique, we show that it achieves a signijkant speed-up

even without the use of a fast matrix multiplication algorithm.

6 Database Updating and Exploiting Lookahead in Transitive Closure

Consider the problem of maintaining the transitive closure of a directed graph undergoing edge updates. The

primary motivation for this problem is the maintenance of the transitive closure of relations in databases [28].

In several applications, it is known that the updates will be restricted to a particular portion of the database

that will be referred to as the active set. The knowledge of an active set provides us with lookahead that

can be used to significantly speed up the transitive closure computations. Specifically, we show that it is

possible to maintain transitive closure at an amortized cost of O(k3 -t n2k/ 108 n t mn/k) per operation,

where b is the size of the active set (see Theorem 12 and Corollary 3). In applications where the amount

of lookahead available is unrestricted, such as in the off-line construction of a persistent data structure for

transitive closure, we show that it can be maintained at an amortized cost of O (n f i / logn) per operation

using a lookahead of O(m l o g n) (see Corollaries 4 and 5).

Our techniques also yield a solution to the problem of efficiently updating materialized views in

databases [l , 4, 12, 16,21,22]. In many query-intensive database applications, materialized views, derived

from a base relation at a central site, are maintained at multiple local sites. Abstractly speaking, a materi-

alized view at a local site may simply correspond to the reachability information for a subset of vertices of

the original graph. Since the base relation may be very large, there are tremendous costs associated with

globally updating the views after each update. To save on such costs, a commonly employed strategy is to

trade off currency for efficiency, e.g., by batching the updates and updating the views only after periodic

intervals. Another possibility is to always keep the local views current with respect to the updates that affect

the vertices in the local view, and to perform global updates only periodically. Our results indicate how the

latter may be efficiently implemented by, performing only local transitive closure computations after each

update (see Theorem 13).

We sketch the extension of the techniques from Section 5 to all-pairs transitive closure computation; the

ideas also apply to single-source transitive closure but we defer the details to the final version. We follow

the notation from Section 5 and outline the computation done in each phase.

9

At the beginning of a phase p , we first compute the transitive closure of G; in O(T(n, m)) time. For

each non-active vertex v, let r:*”(v) and r‘r*”(v) denote, respectively, the set of all active vertices and

the set of all non-active vertices that it can reach in the graph G;. Similarly, for each active vertex w, let

r;””(v) denote the set of all non-active vertices that it can reach in G;.

At the ith step in this phase, we compute the transitive closure of HP,i in O(T(b, b2)) time. For each

active vertex w, let l?ty”(v) denote the set of all active’vertices it can reach in the graph HP,;. Now, if

rP,;(v) denotes the set of all vertices reachable from a vertex v in Gp,;, we may compute it as follows. We

begin by computing for each active vertex v,

Next, for each non-active vertex v, we compute

rp,i(v) = r ‘ p ” (v) u u r p , i (z) } .

t E r p A (v)

The computation of rP,j(v) for active vertices can be easily performed in 0(b2n) time. Similarly, a

straightforward implementation has O(kn2) running time for computing rp,i(v> for all non-active vertices.

This may be slightly improved as follows. Consider a bipartite graph H” = (A , V, E“) such that there

is an edge (z,y) in E*, z E A and y E IT, if and only if y E rp,;(z). It can be shown that the

computation of rp,i(v) for a non-active vertex v reduces to answering a reachability query in the graph

H’, Le., given X = {z E r‘:-”(w)>, find the set of vertices adjacent to X in H*. Using the approach

of Hellerstein, Klein, and Wilber [13], we can construct a data structure to perform this computation in

O(n2k/ log‘ n) time for all the non-active vertices. Thus the total running time of each phase is given by
O(T(n, m)+k-T(k, k2).+n2k2/ lo$ n), which is minimized when the lookahead is k = d m log n/n.

Theorem 12 Given lookahead b, fully-dynamic maintenance of transitive closure can be perjormed at an

amortized cost of O(T(n, m)/b + T(b, b2) + n2b/ 102 n) per update.

Corollary 3 Given lookahead k, fully-dynamic maintenance of transitive closure can be perjormed at an

amortized cost of O(k3 + n2k f 108 n + mn/k) per update..

Corollary 4 Fully-dynamic maintenance of transitive closure can be perjormed at an amortized cost of

O((n&)/ logn) per update using lookahead O(m l o g n).

It is worthwhile to contrast these bounds with the bound of O(nm) time per operation achieved by the

naive algorithm which recomputes transitive closure at each step.

In the preceding algorithm, we explicitly maintained the transitive closure of the resulting graph after
each update. We now describe a variant in which the update time is significantly improved by maintaining

only an implicit representation of the transitive closure. This implicit representation can support reachability

queries but at a significantly increased cost. The basic idea is the following: after each update during a

phase, we compute only the transitive closure of HP,i; queries are processed by using this along with the

transitive closure of G;. We present only the resulting time bounds and omit the details.

Theorem 13 Suppose the updates are restricted to a set of k active vertices. Then, there exists a fully-

dynamic data structure forprocessing reachability queries at an amortized cost of 0 (n3/k + b3) per update,

with a query cost that is O(k) for queries involving at least one active vertex, and 0 (k2) otherwise.

10

The preceding bounds can all be improved using fast matrix multiplication. For example, Corollary 4

can be replaced by the following.

Corollary 5 Using fast matrix multiplication, fully-dynamic maintenance of transitive closure can be per-

formed at an amortized cost of 0 (n2*'ss/ log n) per update using lookahead O(no-188 log n).

Acknowledgments

We are grateful to Jean-Claude Latombe for sharing his insights about assembly planning and his constant
encouragement. We thank Sergey Brin, Surajit Chaudhry, Waqar Hasan, Jeff Ullman, and Jennifer Widom

for useful discussions about transitive closure and databases. Many thanks also to Julien Basch, Chandra

Chekuri, Delphine Berthet, Philip MacKenzie, and David Strip.

References

[l] R. Agrawal and H.V. Jagdish. Materialization and Incremental Update of Path Information. In

Proceedings of Fifrlz International IEEE Coilference on Data Engineering (1 989), pp. 374-383.

[2] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design andAnalysis of Computer Algorithms. Addison-

Wesley, 1974.

[3] S. Albers. The influence of lookahead in competitive on-line algorithms. Technical Report MPI-I-92-

143, Max Planck Institute, Germany, 1993.

[4] J.A. Blakaley, P-A. Larson, and F.W. Tompa. Efficiently Updating Materialized Views. In Proceedings

of the ACM-SIGMOD International Conference on Management of Data (1986), pp. 61-71.

[5] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of

Symbolic Computation, 9: 1-6 (1990).

[6] Y. Dai, H. Imai, K. Iwano, and N. Katoh. How to treat delete requests in semi-online problems. In

Proceedings of the 4th International Symposium on Algorithms and Computation (1993), pp. 48-57.

[7] D. Eppstein. Offline Algorithms for Dynamic Minimum Spanning Tree Problems. Journal of Algo-

rithms, 17:237-250 (1994).

[8] D. Eppstein, Z. Galil, G. E Italiano, and A. Nissenzweig. Sparsification - A technique for speeding
up dynamic graph algorithms. In Proceedings of the 33rdAnnual IEEE Symposium on Foundations of
Computer Science (1992), pp. 60-69.

[9] G.N. Frederickson. Data Structures for On-line Updating of Minimum Spanning Trees, with Applica-

tions. SIAM Journal on Computing, 14:781-798 (1985).

[101 G.N. Frederickson. Ambivalent Data Structures for Dynamic 2-edge Connectivity and k Smallest

Spanning Trees. In Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer
Science (1991), pp. 632-641.

[1 11 Z. Galil and G.F. Italiano. Fully dynamic algorithms for edge-connectivity problems. In Proceedings

of the 23rd Annual ACM Symposium on Theory of Computing (1991), pp. 317-327.

11

[12] E. Hanson. A Performance Analysis of View Materialization Strategies. In Proceedings of the ACM-

SIGMOD lnternational Conference on Management of Data (1987), pp. 440-453.

[13] L. Hellerstein, P. Klein, and R. Wilber. On the time-space complexity of reachability queries for

preprocessed graphs. Information Processing Letters, 35:261-267 (1990).

[14] M. Rauch Henzinger and V. King. Randomized Dynamic Algorithms with Polylogarithmic Time per

Operation. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing (1995).

[15] L.S. Homem de Mello and S. Lee (editors). Computer-Aided MechanicaZAssembZy Planning. Kluwer,

1991.

[161 H.V. Jagdish. A Compression Technique to Materialize Transitive Closure. ACM Transactions on

Database Systems, 15:558-598 (1990).

[17] E. Koutsoupias and C.H. Papadimitriou. Beyond competitive analysis. In Proceedings of the 35th

Annual IEEE Symposium on Foundations of Computer Science (1 994), pp. 394-400.

[18] R. Motwani, V. Saraswat, and E. .Tomg. Online Scheduling with Lookahead: Multipass Assembly

Lines. Report CPS-94-41 , Department of Computer Science, Michigan State University, 1994.

[191 M. Rauch. Fully dynamic biconnectivity in graphs. In Proceedings of the 33rdAnrzud IEEE Symposiurit

on Foundations of Computer Science (1 992), pp. 50-59.

[20] A. Schaeffer and P. Varman. Parallel Batch Update of Minimum Spanning Trees. Technical Report
COMP TR90-140, Rice University, 1990.

[21] A. Segev and J. Park. Maintaining Views in Distributed Databases. In Proceedings of Fifth International

IEEE Coi2ference on Data Engineering (1989), pp. 262-270.

[22] 0. Shmueli and A. Itai. Maintenance of Views. In Proceedings of the ACM-SIGMOD International

Conference on Management of Data (1984), pp. 240-255.

[23] V. Strassen. Gaussian elimination is not optimal. Nuinerische Mathematik, 14:354-356 (1 969).

[241 J. Westbrook and R.E. Tarjan. Maintaining bridge-connected and biconnected components on-line.

Algorithmica, 7:433-464 (1992).

[25] R.H. Wilson. On Geometric Assembly Planning. PhD thesis, Stanford University, 1992. Stanford

Technical Report STAN-CS-92-1416.

[26] R.H. Wilson and J-C. Latombe. Geometric reasoning about mechanical assembly. ArtiJicial Zntelli-

gence, 71 (1994).

[27] J.D. Wolter. On the Automatic Generation of Plans for Mechanical Assembly. PhD thesis, University

of Michigan, 1988.

[28] M. Yannakakis. Graph-theoretic Methods in Database Theory. In Proceedings of the Ninth ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (1 990), pp. 230-42.

12

Figure 1: The discriminator assembly

A The Assembly Sequencing Problem

Automated assembly planning promises to reduce the effort required to create manufacturing plans for

products, as well as provide valuable and timely design-for-assembly feedback to designers. Together with
the rising use of Computer-Aided Design (CAD) systems, this opportunity has fueled a decade of research
in assembly planning (see, e.g., [15]).

Assembly sequencing is a subproblem of assembly planning. Given a set of parts and their final positions

in a product (for example, see Figure l), assembly sequencing attempts to find a sequence of object motions

that will build the assembly from the parts without inducing part collisions. Assuming that the parts are rigid

and each operation mates two rigid subassemblies to produce a larger one, an assembly sequence can be

found by disassembling the product and then reversing the operations and their order. The initial assembly is

divided into two subassemblies, each of which is disassembled recursively to find the disassembly sequence.

A.l Blocking Graphs

The blocking graph is a central structure in assembly sequencing, allowing polynomial-time sequencing

in many situations [26, 271. Given a rigid motion d (for instance an infinite translation along a vector

d = (dz, dy, dz)), a part PI blocks a part P2 along d if and only if P2 collides with PI when moved along

d. The blocking graph G(A, d) for an assembly A and motion d is a directed graph with one vertex for each

part in A, and an arc from vertex N; to Nj exactly when Pj blocks P; along d. A proper subassembly S of
A can be removed along d if no parts in A \ S block parts in S. Such an S exists if and only if G(A, d) is

not strongly connected [25,26].

Finally, consider the space of all possible motions d. This space can be partitioned into regions such that
the blocking graph is constant for all motions in that region; furthermore, the graphs of neighboring regions
differ by at most one arc. Refer to Appendix A.3 for useful classes of motion and the regions that result.
To find a removable subassembly, it suffices to check all the blocking graphs for strong connectedness; this
step dominates the running time of the algorithm [26]. A traversal of the regions yields a directed graph and
a sequence of edge insertions and deletions to that graph. This yields the following problem: given a graph
G and a sequence u of t edge insertions and deletions, determine for each i E [l . . .t] if the graph obtained
after the ith edge operation is strongly connected. The order o f t could lie anywhere between n2 and n5,

13

depending on the type of motion used for the disassembly (see Appendix A.3).

In principle, the entire sequence CT can be computed in advance, yielding an offline version of the
dynamic strong connectivity problem. However, note that the basic goal is to find a point in the sequence

(i.e., a direction vector d) at which the resulting graph is not strongly connected. Having found this point,
the graph will be decomposed into its strongly connected components, and the problem then needs to solved

independently on these components. Thus, it would be extremely wasteful (in terms of both time and space)

to compute the entire sequence u in the case where the disassembly could be performed very early in the

sequence, as is typically the case. Of course, we could use a doubling search technique to ensure that

we only compute a sequence that is at most twice as long as necessary. However, this would require a

tremendous amount of space since the sequence could be of length as much as n7.
A more reasonable approach is to use a lookahead k significantly smaller than t , thereby ensuring that

only a near-optimal prefix of the sequence CT needs to be computed, while reducing the space requirement

to a quantity much smaller than the sequence length.

A.2 Practical Implications

We briefly discuss some practical aspects of the solution obtained in this paper. Figure 1 shows a discrim-
inator, a safety device with 42 complex parts modeled in the ProEngineer CAD system. A version of the
infinitesimal rigid motion disassembly algorithm discussed in Appendix A.3 is used in a planner that finds
an assembly plan for the discriminator in about 30 seconds on an SGI Indigo2 workstation. The planner
checks several thousand blocking graphs in the planning process.

We are currently attempting to apply the assembly planner to assemblies having 1000 parts. Planning for

typical industrial assemblies (such as a car) will require massive numbers of strong connectedness checks

on graphs having on the order of one million edges. For such assemblies, methods such as those described

in this paper will be critical, even with the use of fast matrix multiplication algorithms.

A.3 Classes of Motion

Depending on the desired output of assembly planning and the rest of the planning system in which an
assembly sequencer operates, several classes of relative motions between subassemblies might be allowed.

Each class generates a space of possible motions and regions in that space with the same blocking graph.

We first present a more detailed view of a disassembly algorithm for a simple case, that of infinitesimal

translations in two dimensions. We then summarize algorithms for two types of three-dimensional motions

used in real assembly planning systems: infinite translations and infinitesimal rigid motions (see [26] for
further details). Note that computing the strong connectedness of a sequence of blocking graphs dominates

the algorithm’s running time for each class‘of motion.

A Simple Case. Consider a two-dimensional polygonal assembly A such as the one shown in Figure 2.

We wish to identify a subassembly that can be translated infinitesimally without colliding with any other

parts, if one exists. Representing a direction of infinitesimal motion as a unit vector d = (dx, dy), the set
of all motions is the unit circ1e.S’. Consider one contact between an edge of a part P; and an edge of part
Pj. The diameter of S1 parallel to the contact edge divides the set of motions into an open half-circle of

motions for which Pj blocks‘P;, and a closed half-circle of motions for which Pj does not block P; at that

contact. A similar division occurs if a point of P; contacts an edge of Pj.
The set of diameters corresponding to all the contacts of the assembly divide S’ into a set of regions.

Since blocking relationships only change at the endpoints of these diameters, it is clear that the blocking

graph for all points in any region is constant. Furthermore, if no two diameters coincide, the blocking graph

14

Figure 2: A simple assembly and blocking graphs for two directions of motion

Figure 3: The arrangement on S’ and some of the blocking graphs for the assembly in Figure 2

for a region differs by at most one arc from the blocking graph of each neighbor region. Figure 3 shows the

arrangement on S’ and some of the blocking graphs for the regions.

To identify a movable subassembly, we construct the above arrangement on S’ and compute a blocking

graph G(A, Ro) for one region Ro. We then step around 5’’ to each region in turn, which gives a sequence
t of arc additions and deletions to the blocking graph G(A, Ro). If the assembly has n parts with e edges

in total, the arrangement can be constructed in O(e loge) time and has O(e) regions. If the amortized time
to check an n-vertex graph in the sequence for strong connectedness is f(n), then identifying a movable

subassembly requires O (e (f (n) + log e)) time.

Infinite Translations. Consider now a more realistic case: an assembly A of polyhedra, to bedisassembled

using single translations to infinity. In this case, the set of translation directions can be represented by S2.

A part Pi blocks part Pj in a (generally non-convex) region of the sphere bounded by arcs of great circles;

this region is computed by projecting the Minkowski difference Pi 8 Pj onto S2 by a central projection.
In an assembly with a total of 2) vertices, there are O(v2) boundary edges of these regions, which define
an arrangement of O(v4) cells on the sphere. This arrangement can be computed in 0(v4) time. 0(v4)

blocking graphs must be checked for strong connectedness, for a total of O(v4f(n)) time.

Infinitesimal Rigid Motions. Now assume that we wish to identify subassemblies of A that can be moved

an infinitesimal distance in rigid motion. Such subassemblies are a superset of all possible removable
subassemblies. A direction of rigid motion can be represented as a 6D unit vector giving three degrees of
translation and three degrees of rotational motion. Thus the set of motions can be represented as the surface
of the unit sphere S5. The constraints on motion imposed by contacts can be represented as finite sets of

point-plane constraints [26]. Each point-plane constraint defines a 5D hyperplane through the origin, cutting

S5 along a “great sphere” (for want of a better term). The set of constraints between any two parts defines

15

a convex polytope on S5; for motions within this polytope the two parts are free to move and outside of it
the parts collide.

The set of convex polytopes 'for all contacts of A determines an arrangement on S5, consisting of

relatively-open cells of dimensions 0, . . . ,5. For a total of c point-plane constraints, this arrangement

can have 0 (c 5) cells, which are'computable in the same time bound. In fact, the cells can be computed

incrementally, along with the sequence of edge insertions and deletions to the blocking graph that they

entail. Thus the running time for the local rigid motion disassembly algorithm is 0(c5 f (n)) .

16

Distribution for SAND950722

MS9018 Central Technical Files, 8523-2 (1)
MS 0899 Technical Library, 13414 (5)
MS 0619 Print Media, 12615 (1)
MS 0100 Document Processing forDOE/OSTI, 7613-2 (2)

Randy Wilson, 2121 (20) MS 0951

17

