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Abstract 

The large real-world datasets now commonly tackled by machine learning 

algorithms are often described in terms of attributes whose values are real numbers on 

some continuous interval, rather than being taken from a small number of discrete values. 

Many algorithms are able to handle continuous attributes, but learning requires far more 

CPU time than for a corresponding task with discrete attributes. This paper describes 

how continuous attributes can be converted economically into ordered discrete attributes 

before being given to the learning system. Experimental results from a wide variety of 

domains suggest this change of representation does not often result in a significant loss of 

accuracy (in fact it sometimes significantly improves accuracy), but offers large 

reductions in learning time, typically more than a factor of 10 in domains with a large 

number of continuous attributes. 

Keywords Discretisation, empirical concept learning, induction of decision trees 

1. Introduction 

As Subramanian (1989) concisely stated, "Present day learners depend on careful 

vocabulary engineering for their success." Many authors since Amarel (1968) have 

demonstrated the critical importance of the framework used to represent a given learning 

task, and the benefits to be gained from an appropriate change of representation. Recent 

work such as Rendell (1989) has advanced the state of the art of constructive induction, 

where the attributes given to a selective induction system such as ID3 (Quinlan 1979, 

1983) are transformed into better attributes. Usually "better" is taken to mean "higher 

level", allowing the target concept to be expressed more concisely, making the product 

of the learning more accurate. The transformations often involve investigation of many 

complex combinations of the raw attributes, and can be computationally expensive, but 
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this work may be rewarded by error rates lower than could be obtained from induction 

directly on the raw attributes. 

This paper too addresses the question of changing the representation of tasks given to an 

inductive learning system, but with the aim of lowering the computational cost of the 

learning rather than improving the accuracy of the product. The ideal representation 

would be one that allows the learner both to express the final concept most accurately (or 

concisely, or comprehensibly), and to compute that concept in the least time possible, but 

these two goals are in conflict. Thus the client for whom the learning is performed faces a 

trade-off between speed and accuracy. Changing the representation complicates this 

decision, because any change entails a computational cost. 

The situations in which the client would want to reduce the cost of learning are becoming 

increasingly common as machine learning becomes a commercial technology. The main 

spur comes from problems of scale: training set of hundreds of thousands of instances 

are now being attacked (e.g. Sejnowski 1987), making learning time a limiting factor. As 

commercial knowledge acquisition tools that interface learning systems to corporate 

databases become popular, the management of the extraction and transformation of 

learning data will become a difficult logistic task, much of it needing to be transformed 

from numeric to symbolic form. Finally, in the past three years a class of applications 

that use incremental learning has come under the spotlight (for example, Utgoff 1988). 

Where this is done in real time with new examples becoming available during the 

induction, it may be advantageous to finish the induction earlier. 

Various researchers have attacked the question of how to speed up the learning task. 

Selective induction algorithms such as ID3 that partition the instance space are generally 

very efficient and difficult to improve. Quinlan's first descriptions of ID3 (1979) 

included a method called windowing to speed up ID3 on large training sets, but Wirth & 

Caflett (1988) showed that on noisy data it usually costs rather than saves CPU time. 

Breiman, Friedman, Olshen & Stone (1984, pp 163-7) proposed a method of choosing the 

attribute to partition the space based on a random subset of the available instances, but 

this still retains much of the cost of dealing with continuous attributes. 

The algorithm we describe for discretising a dataset could be used as before a variety of 

learning algorithms; here we use ID3, to provide a familiar basis for comparison. 

However, the rationale for some of the design decisions in the algorithm is based on the 

assumption that the learning system partitions the training set, and may not be 

appropriate for learners that build around a seed example, such as AQ15 (Michalski, 
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Mozetic, Hong, & Lavrac 1986). 

ID3 is reviewed briefly in Section 2, with emphasis on continuous attributes. Other work 

related to continuous attributes is reviewed in Section 3. Section 4 introduces the 

algorithm for discretising continuous attributes. Section 5 describes domains used in 

experiments to evaluate this algorithm, and gives their results. We conclude with a 

statement of the areas to be explored further. 

2. ID3 

ID3 (Quinlan, 1979, 1983) is an inductive learning program that constructs classification 

rules in the form of decision trees. It is perhaps the most commonly found ML algorithm 

in both the scientific literature and in commercial systems; for illustrations of real-world 

applications see (Michie, 1987) or (Carter & Catlett, 1987). For a comprehensive 

introduction to the induction of decision trees see (Quinlan 1986). The following 

oversimplified summary aims merely to establish terminology and to emphasise some 

detail concerning continuous attributes. 

The input to ID3 is a set of objects called the training set. The objects are described in 

terms of a fixed set of attributes, each attribute taking its value from a given set, and each 

object is assigned to one of a small fixed set of classes. The output is a decision tree that 

can be used to classify any object from that attribute space. Typically the tree has a low 

error rate on the training set, but is less accurate on unseen examples. 

We can distinguish continuous attributes, whose values are real numbers on some 

interval, from discrete attributes, restricted to some finite (usually small) number of 

values. Discrete attributes can be further divided into ordered attributes, such as cold, 

tepid, warm, hot, or unordered attributes, such as Africa, America, Australia, Europe. 

Continuous attributes were not described in Quinlan's original ID3 paper (1979, 1983), 

nor were ordered discrete attributes, which were first reported in ASSISTANT (Kononenko, 

Bratko & Roskar, 1984). These simple extensions are now widespread in 

implementations. 

ID3 builds its trees by progressively partitioning the training set: it chooses an attribute 

to split the set on, and then recursively builds a tree for each subset, until all the members 

of the subsets are of the same class. For each subset it must decide which is the best 

attribute to split on, which it does using an formula that assesses the gain in information 

theoretic terms of all possible splits. ID3 is a greedy algorithm with no lookahead, so 

making a bad choice of an attribute fragments the training set and reduces accuracy. 
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In choosing a continuous attribute to split the set, a threshold or cutpoint must also be 

selected. (These two terms are synonyms.) Computationally, this entails sorting the set 

on each attribute in turn, for each subset produced as the training set divides. Each sort 

takes time O(nlogn) where n is the number of elements in the subset. 

When all the attributes are discrete (whether ordered or not) no sorting is required, 

merely space proportional to the number of values (which is quite small) and time O(n). 

Overall the algorithm takes time proportional to the product of the training set size, the 

number of attributes, and the size of the final tree. With continuous values the growth is 

superlinear, because sorting of the relevant subset of the training set must be done for 

every attribute at every node created during the building of the tree. With discretisation, 

sorting is done only once per attribute. As an illustration of the relative costs, Figure 1 

shows for a single run the CPU time taken to build a tree from continuous versus 

discretised binary attributes (i.e. single threshold) for the waveform domain (described in 

the next section). The floating figures plot on a log scale the accuracy of the trees built 

from discretised data for various sized training sets. The corresponding accuracies for 

the original continuous data are not shown; they are approximately the same. The figures 

for CPU time are joined with a dashed line for the discretised version, and a solid line for 

the continuous version. The line marked linear is simply a straight line that approximates 

the early part of the continuous attributes curve, showing the latter to be superlinear. 
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Figure 1. Learning time on discretised vs continuous attributes 

This substantial difference in the CPU cost is the main motivation for changing 

continuous attributes into discrete ones. In the case of the wave domain illustrated above 

the learning time is reduced by a factor of about 14. 
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A further saving, in terms of space, comes from the fact that a floating point number 

typically takes four bytes to represent, while a discrete ordered attribute takes only one 

byte. (The implementation reported here reads in the data and converts it in situ, so space 

savings are not realised.) In very large domains (such the Heart domain, with 92 

continuous attributes), memory requirements may be a limiting factor on the size of 

induction tasks that can be performed. 

It may turn out that discretising attributes offers cognitive benefits as well as 

computations ones. In the thyroid domain, the discretising algorithm chose to a high 

degree of accuracy almost all the thresholds used by domain experts. Human experts 

may prefer to look at the set of thresholds chosen, and thereafter work from a tree 

labelled with symbolic values such as low, high, and very high, rather than using a tree 

with a large number of (sometimes very close) thresholds. 

3. Relationship to other work on continuous attributes 

The idea of discretising (or "quantizing") an attribute has appeared previously in the 

pattern recognition and statistics literature. (Wong & Chiu 1987) compare two 

techniques for discretising data. Their motivation for discretisation is not to reduce 

learning time, but to convert the real-valued data into a form suitable for their clustering 

algorithms. Their techniques do not require (or use) a distinguished class, as ID3 does. 

This would put them at a disadvantage in some applications, but makes them more 

widely applicable. Both techniques require the user to specify the number of intervals 

into which each attribute will be divided. Their first technique, called equal width 

discretisation, simply involves calculating the difference between the largest and 

smallest values for the attribute and placing the desired number of equal-width intervals 

between them. Their second technique, called maximum marginal entropy discretisation, 

requires sorting of the values, and basically allocates an equal number of examples to 

each interval. Where repeated values would cause that value to belong to more than one 

interval, the boundaries are adjusted so as to minimise an information theoretic measure 

on the discretised attribute. Note that this is not the same as ID3's measure because it is 

"class-blind"; it does not take into account the class of the examples, only the attribute 

values. For this reason we believe that such methods for discretisation may not be  the 

best match for ID3; the results of experiments discussed at the end of Section 5 

corroborate this. 

Most of the commonly used additions to ID3, such as pruning and the treatment of 

unknown values (Quinlan 1989), are not affected by discretisation, but the 
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implementation of one less common addition, soft thresholds, requires care. Its 

motivation comes from a distaste for the "knife-edge" threshold used by ID3, that can 

make a small change in an attribute's value cause a large change in the class or class 

probability estimate given by the tree. A more "fuzzy" threshold has obvious appeal. A 

little inspection shows that the methods devised to do this are not excluded by 

discretisation, although choices arise which are not evaluated in this paper. The idea of 

soft thresholds was first suggested by Catlett to Carter, and details of Carter's 

implementation were published in (Carter & Catlett, 1987). The basic idea is choose in 

addition to each threshold, a subsidiary threshold either side of it; examples failing 

between these two thresholds are considered sufficiently close to warrant "fuzzy" 

treatment from both of the subtrees below that attribute choice. The method of choosing 

the two subsidiary thresholds was subsequently improved by (Quinlan 1987). When 

using discretisation, we could calculate the subsidiary thresholds at the time of 

discretisation. The alternative is to determine them after the tree is built. This would 

entail re-traversing it, splitting the training set according to the attribute at each node, and 

calculating the subsidiary thresholds in the normal manner. The cost of doing this would 

still be small compared to building the whole tree from undiscretised data. 

4. Algorithm for discretising continuous attributes 

This section describes the algorithm that chooses the thresholds. Although it can be 

thought of logically as a preprocessor to ]133, the most economical implementation would 

include it as part of the learning program because the setup chores of getting the data in 

place are the same, and most of the necessary routines are already in ID3. 

The algorithm given here decides on the thresholds for each attribute without reference to 

the others. A more advanced version might take into account a situation where, for 

example, even the best threshold on an attribute gives a gain that is so poor compared to 

other attributes that it might be deemed not worth spending more CPU time on. That 

question is related to the task of eliminating irrelevant attributes, and has appeared in the 

constructive induction literature. 

The first threshold is computed in the same way as ID3 chooses its thresholds. Thus we 

are guaranteed that the attribute and cutpoint of the root of the tree built will be the same 

in both the continuous and discrete versions. After this we face a question: whether to go 

on and choose another threshold, and if so, how to choose it. 
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Figure 2. Initial information gain for Top cutpoints 

Given that we are going to choose a second outpoint, we must not make the obvious 

choice of the value with the second highest gain. Making this mistake typically results in 

a large number of cutpoints near the original one, offering very little additional 

discriminating power because the difference between them and the first cutpoint involves 

only a few examples. Instead we take the view that the situations where we will need the 

second cutpoint during the tree building occur where the set has already been split on the 

first cutpoint (or on some other attribute with a similar effect). Accordingly, we choose 

the subsequent cutpoints based on the subsets between the cutpoints already chosen. To 

illustrate this distinction, Figure 2 plots the information gain for all cutpoints on an 

attribute from the Iris domain. Each possible cutpoint is marked with a dot; the best five 

cutpoints are distinguished with a numeral above the dot denoting their rank. The third 

such cutpoint appears near-useless on the initial ranking, but after the population to the 

right of the best cutpoint is removed, it happens to become the best choice for the left 

subset. 

Although the algorithms sounds like the same computation as goes on during the 

building of the tree, we are really avoiding the expensive O(nlogn) operation of resorting 

the values. This is because we select all the thresholds for an attribute in one step, rather 

than jumping back and forth. We merely have to adjust the counts to the left and right of 

the last threshold to remove the influence of the examples on the other side of the 

threshold. The procedure can then be applied recursively. This method has the 

reassuring property that for a learning task with just one continuous attribute the 

discretised version would yield the same tree as the the discretised form, provided that a 

sufficient number of thresholds is used. 

As with all recursive procedures, there must be a condition to determine when to stop, 

when we have enough thresholds in an interval. This decision is very like the decision of 

when to stop splitting the training set when growing a tree, so techniques from ID3 such 

as the chi-squared cutoff (Quinlan 83) or Fisher's test (Quinlan 87) could be used. 
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Another possibility is to look at the information gain offered by the split versus the 

number of examples, and to use some statistical test that determines a confidence level 

that the gain is not due to chance. Finally, the simplest method is to set some crude 

absolute cutoffs, which is what was used to produce the figures shown in this paper. (For 

future reference we will call this version D-2, for Discretiser 2). But even the extremely 

crude criterion of "stop after the ftrst threshold" (i.e. the "discretised" version of every 

continuous attributes is always binary) was enough to produce trees of approximately the 

same accuracy in two domains, Hyper and Wave. 

The stopping condition of D-2 comprises the following four broad sub-conditions. 

(Following the goal of reporting experiments in sufficient detail to allow them to be 

reproduced, we give the specific parameters used in D-2. We are not claiming that these 

are the best such values, merely that they are reasonable.) 

1. If the number of examples represented in the interval is sufficiently small, we 

should stop, because estimates made based on very small samples may not be 

reliable. The smallest number we could divide is two; D-2's cutoff is currently 14. 

2. Given that our motivation is to reduce CPU time, it seems reasonable to place 

some overall maximum on the number of thresholds produced for any attribute. If 

this is not imposed, some larger domains, such as Heart, produce hundreds of 

thresholds on what looks like reasonable data to split, and could consume more 

time finding thresholds that will never be used than is saved by the conversion to 

discrete attributes. D-2 limits the number of thresholds (or actually the number 

that are likely to be produced by the depth-first recursion) to seven. 

3. D-2 stops if the gain on all possible thresholds is equal. (This happens quite often 

with the value 0, suggesting that further splitting may be ineffective.) This 

presumption is theoretically unsound (it would be easy to contrive a domain where 

this costs accuracy), but in practice it usually means that further splitting on the 

attribute would be unfruitful. 

4. If all the examples in an interval belong to the same class, there is no need to split 

it, so no further thresholds need be established. This sub-condition logically 

implies the previous condition, but the converse does not hold. 

When the number of classes is greater than two, one more complication is necessary to 

stop thresholds that split off less frequent classes from being swamped by thresholds that 

discriminate well between the most frequent classes. Experimentation with some of the 
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thyroid domains, which contain some very unusual disorders, showed that this step was 

necessary. D-2 looks at an n class decision as n binary decisions by considering each 

class in turn is made the positive class with the others considered negative. At the end all 

the thresholds found are used. It would probably be possible to merge very close 

thresholds without loss of accuracy, but this was not tried; we doubt it would save very 

much time since an extra discrete value entails only a small amount of space and time. 

5. Description of the domains and results of experiments 

To test the effect of discretising on classification accuracy, we ran the following 

experiment on all the large domains with real valued attributes available to us. For each 

domain, we split the data randomly at least 20 times and, for each split, ran ID3 on the 

raw continuous data, then discretised the training and test data using thresholds 

calculated from the training data, and ran it on the discretised data. In both cases the 

trees were pruned on the training data using pessimistic pruning (Quinlan 1987). For 

each pair of data we recorded the original accuracy and the difference in accuracy due 

between the continuous and discrete data. The domains are described below. 

1. Waveform: this was adapted from (Breiman et. al 1984). Although it is less 

popular than the discrete-valued faulty LED problem from the same book, it has 

been used in several comparison papers. Our implementation produces 42 real- 

valued attributes, half of them irrelevant but with the same distribution as the 

relevant ones. There are three classes, representing combinations of waveforms to 

which various kinds of noise is added to obtain the attributes. 

2. Thyroid: this large and widely used dataset from the Garvan Institute in Sydney is 

described in (Quinlan, Compton, Horn & Lazarus 1988). It consists of case data 

and diagnoses for many disorders concerning thyroid hormones, of which the 

following were suitable for our experiments here (the number of classes is 

indicated in brackets): Hypo (5), Hyper (5), Binding Protein (3), Replacement (4) 

and Sick Euthyroid (2). The case data is described in terms of 29 attributes, of 

which six are real-valued: the patient's age and five assay readings. One unusual 

bonus offered by this domain is the knowledge of the actual thresholds used by 

specialists in interpreting the assays; almost all of them were found by D-2 (among 

many other thresholds). 

3. Demon: this domain was deliberately contrived as the worst possible domain to 

give to this algorithm. Because the selection criterion looks at the relationship 
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between the mix of classes under its possible divisions, a division will appear 

useless if the subsets either side of a threshold have the same mix of classes. More 

formally, this occurs when the probability that an example's value for attribute A is 

above a threshold T is independent of its class: 

P(A > T I C )  =P(A>T) 

Normally this is a good reason to ignore the attribute, but if we make its value 

effectively a "switch" on the thresholds relevant to other attributes, it becomes 

important to use it in combination with the other attributes. We chose three 

attributes A1 (the switch), A2, and A3, all with real values uniformly distributed 

on [0, 1], and the class being positive if the following expression hold true: 

A1 <0.5 & A2 <0.8 & A3 > 0.2 or A1 >0.5 & A2 >0.2 & A3 < 0.8 

Since there is no noise in this domain ID3 finds a highly accurate tree after a few 

hundred training instances. 

The ML literature has seen switching in parity checkers and multiplexers on 

boolean attributes (Wilson 1987), and the example of the boolean function A1 > 

A2 is often trotted out as an illustration of the importance of the correct 

formulation of attributes to ID3, but we know of no real domain where this sort of 

switching occurs naturally on real-valued attributes, let alone on an attribute that is 

perfectly independent of the class. This domain is of course very contrived; the 

point was to devise a worst case monster to pit the algorithm against. 

Heart: this domain benefits most from discretising, because it consists of several 

thousand examples, each with 92 real-valued attributes, and takes about half an 

hour to produce a tree on a VAX-11/780. Discretising speeds up the induction by a 

factor of more than 50. The examples consist of measurements from heart patients 

over consecutive 30 second epochs, with the class indicating whether the heart was 

ischemic at that time. The application is described in (Oates, Cellar, Bemstein, 

Bailey & Freedman 1989). 

Othello: the generator for this data was provided by Paul Utgoff, and is described 

briefly in (Utgoff 1988) and in more detail in (Utgoff & Heitman 1988). The 

examples represents successive board positions in a game of OtheUo, and are 

described in terms of 14 integer-values attributes (with only 29 distinct values per 

attribute). The class indicates whether the position described by by the first seven 

attributes can be shown to be better than the position described by the last seven. 
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The object is to be learn preference predicates. 

Because the examples within a game are strongly related, it is in some ways fairer 

to take the test set from a different game. The results reported below call the latter 

"Othello B" ,  and the usual practice of splitting a single uniform sample randomly 

into test and training sets "Othello A".  

Table 1 shows the the results of the comparison experiments. The column headed "Error 

rate mean" gives the percentage error on the test set by ID3 for continuous attributes. 

The training set is also used to compute thresholds for converting the attributes to 

ordered discrete versions, and the difference in error rate between the continuous and 

discrete versions is given in the next column. For example, the first line shows that on 

the Iris database, the error rate was the same in the two versions, and the second line 

shows that for the Demon domain the discrete version averaged error rate more than 10 

percentage points higher than the continuous version. This mean figure and standard 

deviation relate to the mean of the differences, not the difference of the means. The 

column headed N gives the number of trials. The column headed conclusion give the 

result of a two-sided t-test at the 5% level, with NSD denoting no significant difference 

(i.e. we accept the null hypothesis that the mean of the differences is zero, showing that 

there is no difference in error between the original continuous and the discretised 

version). 

TABLE 1. Comparison experiments 

Domain Training Test Error Difference of errors Number Concl. 
set size set size rate mean mean stddev of trials 

Iris 100 50 5.800 0.000 0.000 20 NSD 
Demon 5000 3000 0.265 - 10.083 11.127 50 worse 
Wave 300 200 29.231 0.712 3.470 26 NSD 
Wave 3000 2000 24.881 0.922 1.262 29 better 
Heart 3000 2039 2.555 -0.061 0.494 20 NSD 
Oth. A 3000 2022 15.574 -5.349 0.943 20 worse 
Oth. B 3000 6248 35.606 0.297 3.869 20 NSD 

Hypo 5000 2438 0.744 0.051 0.095 20 better 
Hyper 5000 2012 1.260 0.119 0.159 20 better 
Binding 5000 2147 3.372 0.078 0.315 50 NSD 
Replace 5000 2126 1.261 -0.t03 0.237 50 worse 
Euthy 5000 2218 0.874 -0.410 0.231 50 worse 

The identical performance of the two methods in the case of Iris is not surprising; the 

pruned trees consist of only about seven nodes and the number of distinct values of the 

attributes is typically only about 30. The demon database delivered the expected result of 
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turning a negligible error rate into a large one, with a very high standard deviation. 

Several of the domains were slightly improved by discretisation; this may be due to the 

fact that the discretised trees are typically smaller. Although all the trees were pruned in 

some cases further pruning may result in higher accuracy. Another possible explanation, 

more likely in the case of the thyroid domain, is that the thresholds can be more 

accurately determined from the full sample. 

The differences on the Othello test (B) were insignificant; but when the test set is taken 

from the same game, predetermining the thresholds costs accuracy. This may be because 

there are very similar examples within a single game, which can be accurately classified 

by trees trees that use more complexity (additional tests on already tested attributes) than 

would be justified by what is true of the game in general. Ironically this domain does not 

really require further discretisation, ordered discrete attributes can be used directly, 

giving a large speedup with no loss of accuracy. 

The binding domain was just within the null hypothesis with a lower bound for the 

confidence interval of -0.01. At a confidence level of 10% we can conclude that the 

discretised version was better. Two of the domains, replace and euthyroid, were 

significantly worse at the 5% level under discretisation, and the remaining two, hypo and 

hyper, were significantly better. 

Some comparisons of learning time (including time to discretise) showed that in domains 

with only a few continuous attributes, learning time was approximately half in the 

discretised version. In the other domains (Othello, Wave & Heart), the speedup was by 

factors of more than 10. 

Some comparisons with class-blind methods of discretisation largely gave the conclusion 

that their performance is inferior to D2 in these applications. The two methods tested 

were equal width discretisation (described in Section 3), and a simplification of 

maximum marginal entropy discretisation, which could be called "roughly equal 

population" discretisation; it simply entails sorting the n values (including repeats), and 

taking as the j thresholds the values of every flnth value. We examined the performance 

of these methods with number of intervals arbitrarily chosen at 2, 7, and 24. For the 

wave domain, this gave much smaller trees at least as accurate as ID3's. (This is 

consistent with evidence from other sources that the trees grown by ID3 for the Wave 

domain are overly large, and should be pruned further. Binary discretisation is an 

extreme way of achieving this.) In almost all other domains the error rate for the class- 
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blind methods were grossly higher than for D2, with the exception of Othello, which can 

by explained by the following analysis. In the case of an attribute with only a few 

distinct values, n say, once the number of intervals reaches n, the discretised error rate (at 

least for "roughly equal population" discretisation) will become the same as the 

undiscretised version. In the case of Othello, the value of 24 is very close to n = 29. 

Learning time will of course be lowered by treating the attribute as ordered discrete. 

A quick comparison between the two class-blind discretisation methods showed a strong 

difference only in the heart domain, where equal width discretisation performed very 

poorly, which is consistent with Wong & Chiu's preference. 

6. Conclusion 

We have shown that discretising continuous attributes can be achieved simply, offering 

very large savings in CPU time in domains where they abound. This change does not 

often result in a significant loss of accuracy (in fact it sometimes significantly improves 

accuracy). 

Some work remains to be done to tune the basic algorithm for best performance. 

Evaluation should be extended to extremely large training sets. Here the the initial 

thresholding could be performed on a subset to cut down the computational cost of the 

thresholding. 
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