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Abstract

In this thesis, we survey the properties of character amenable Banach alge-

bras. Character amenability is a cohomological property weaker than the classical

amenability introduced by B.E. Johnson. We give characterization of character

amenability in terms of bounded approximate identities and certain topologically

invariant elements of the second dual. In addition, we obtain equivalent char-

acterizations of character amenability of Banach algebras in terms of variances

of the approximate diagonal and the virtual diagonal. We show that character

amenability for either the group algebra L1(G) or the Herz–Figà-Talamanca alge-

bra Ap(G) is equivalent to the amenability of the underlying group G. We also

discuss hereditary properties of character amenability. In the case of uniform al-

gebras we obtain complete characterization of character amenability in term of

the Choquet boundary of the underlying space. In addition, we discuss character

amenable version of the reduction of dimension formula and splitting properties of

modules over character amenable Banach algebras.
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CHAPTER 1

Introduction and Preliminaries

1.1. Introduction

Homological algebra is a powerful tool in mathematics, used mainly for clas-

sifying objects with various categories with algebraic structures. Amenability is

a cohomological property introduced by B.E. Johnson and, independently by Y.

Helemskii [17] in 1972. Banach algebras that are amenable have, by definition,

trivial first cohomology groups, provided that the coefficients of the group are

taken in dual Banach modules. The first cohomology group measures the ob-

struction to a continuous derivation on A to be an inner derivation. Therefore,

amenable Banach algebras are those for which every continuous derivation into a

dual Banach module is automatically inner.

It has been realized by many authors that sometimes a variation of the clas-

sical notion of amenability is better suited for the study of particular classes of

Banach algebras. Over the years, many different variations of amenability have

been introduced, among which one can mention: weak amenability by Bade, Cur-

tis and Dales [2], approximate amenability by Ghahramani and Loy [16] , operator

amenability by Z.J. Ruan [28] , Connes amenability by V. Runde [30], and more

recently character amenability by Kaniuth-Lau-Pym [25] and Sangani Monfared

[31]. Each of these variations either show greater flexibility for particular types

of Banach algebras, or have properties not shared by classical amenability. The

book by V. Runde [29] is a good survey of these various types of amenability. The

purpose of this thesis is a study of character amenable Banach algebras.

Character amenability is weaker than the classical amenability introduced by

B.E. Johnson. The definition requires continuous derivations from A into dual

Banach A-bimodules to be inner, but only those modules are considered where

either of the left or right module action is defined by a character of A. In chapter

1, we introduce some basic definitions about character amenability of Banach

1



1.2. BASIC DEFINITIONS 2

algebras. In chapter 2, we characterize character amenability in terms of bounded

approximate identities and certain topological invariant elements of the second

dual. In theorem 2.2.6, we prove that left ϕ-amenability is equivalent to the

existence of a bounded left ϕ-approximate diagonal, which in turn is equivalent

to the existence of a left ϕ-virtual diagonal. In theorem 2.2.17, we show that

the character amenability for each of the Banach algebras L1(G) and Ap(G) is

equivalent to the amenability of G.

In chapter 3, we discuss main hereditary properties of character amenability.

The connection of left ϕ-amenability with the existence of bounded left approxi-

mate identities is also studied.

In chapter 4, we study character amenability of Banach function algebras. In

theorem 4.2.2, we show that if a unital Banach function algebra A on a compact

space X is character amenable, then the Choquet boundary of A must coincide

with X. In the case of uniform algebras we obtain complete characterization of

character amenability in term of the Choquet boundary of the underlying space

(Corollary 4.2.4).

In chapter 5, we introduce character amenable version of the reduction of order

formula. We also discuss splitting properties of modules over character amenable

Banach algebras. In theorem 5.1.17, we show triviality of cohomological groups

with coefficients in finite-dimensional Banach modules over character amenable

commutative Banach algebras. As a consequence we conclude that all finite-

dimensional extensions of commutative character amenable Banach algebra splits

strongly. The section ends with another splitting property of short exact sequences

over character amenable Banach algebras.

1.2. Basic definitions

Definition 1.2.1. A Banach algebra A is a Banach space with an algebra

structure for which the product is continuous, that is, for all x,y in A, ‖xy‖ 6

‖x‖ ‖y‖.
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Definition 1.2.2. Let A be a Banach algebra. By a left Banach A-module E,

we mean a Banach space E together with a continuous bilinear map: A×E → E,

such that for all a, b ∈ A, x ∈ E,α, β ∈ C,

(i) a · (αx+ βy) = α(a · x) + β(a · y);

(ii) (αa+ βb) · x = α(a · x) + β(b · x);

(iii) a · (b · x) = (ab) · x.

Remark 1.2.3. Continuity of a bilinear map is equivalent to the existence of

M ≥ 0 such that ‖a · x‖ ≤ M‖a‖ ‖x‖. By renorming E, we may suppose that

M = 1.

A right Banach A-module is defined analogously. A Banach A-bimodule E is

a Banach space which is both left and right Banach A-module and satisfies the

following additional property:

(iv) a · (x · b) = (a · x) · b, (a, b ∈ A, x ∈ E).

Definition 1.2.4. Let E be a Banach left A-module. The dual space E∗ of E

has a canonical Banach right A-module structure defined by

〈f · a, x〉E∗,E = 〈f, a · x〉E∗,E, (x ∈ E, f ∈ E∗, a ∈ A).

Similarly if E is a Banach right A-module, the dual space E∗ of E will have a

natural Banach left A-module structure defined by

〈a · f, x〉E∗,E = 〈f, x · a〉E∗,E, (x ∈ E, f ∈ E∗, a ∈ A).

Definition 1.2.5. Let A be a Banach algebra and E be a Banach A-bimodule.

A linear map d : A→ E is called a derivation if

d(ab) = a · d(b) + d(a) · b, (a, b ∈ A).

If x ∈ E is fixed, then the linear map δx : A→ E defined by

δx(a) = a · x− x · a

is called the inner derivation at x. Note that inner derivations are automatically

continuous linear maps.
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Definition 1.2.6. Let Z1(A,E) denote the space of all continuous derivations

from A into E and let N 1(A,E) denote the space of all inner derivations from A

into E. Then the first Hochschild cohomology group of A with coefficients in E is

the quotient vector space:

H1(A,E) = Z1(A,E)/N 1(A,E).

The following is the definition of amenability first introduced by B.E. Johnson

[24].

Definition 1.2.7. A Banach algebra A is called amenable if H1(A,E∗) = {0}

for every Banach A-bimodule E. In other words, A is amenable if every continuous

derivation from A into any dual Banach A-bimodule is an inner derivation.

Example 1.2.8. Let D be the closed unit disk {z ∈ C, |z| ≤ 1} and A(D)

be the Banach algebra (under the supremum norm) of complex-valued functions

which are analytic on the open unit disk and continuous up to the boundary.

Suppose x0 ∈ D and the module actions of A(D) on C are given by

f · z = z · f := f(x0)z, (f ∈ A(D), z ∈ C).

Define

d : A(D)→ C, f 7→ f ′(x0).

Then d is a continuous derivation since for every f, g ∈ A(D),

d(fg) = (fg)′(x0) = (f ′g + fg′)(x0) = f ′(x0)g(x0) + f(x0)g′(x0)

= d(f)g(x0) + f(x0)d(g) = d(f) · g + f · d(g).

But every inner derivation δz at z is zero since δz(f) = f · z − z · f = f(x0)z −

f(x0)z = 0. Thus A(D) is not amenable.

Next we introduce the subject of amenability for groups and explains why the

same terminology is used in both cases, even though the connection is not obvious

from the given definitions.

Let G be a locally compact group. For x ∈ G and ϕ ∈ L∞(G), we define xϕ to

be the left translation by x, so xϕ(t) = ϕ(xt) for any t ∈ G.
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Definition 1.2.9. A mean on L∞(G) is a linear functional Φ ∈ L∞(G)∗ such

that Φ(1) = ‖Φ‖ = 1.

The above definition of mean corresponds to the definition of a state in a

C∗-algebra context.

Definition 1.2.10. Let G be a locally compact group. Then a mean Φ on

L∞(G) is called left invariant if

〈Φ, xϕ〉 = 〈Φ, ϕ〉, (ϕ ∈ L∞(G), x ∈ G).

Definition 1.2.11. A locally compact group G is called amenable if there is

a left invariant mean on L∞(G).

A natural question is to ask whether amenable group also possesses a right

translation mean. The following lemma is proved in Runde [29, Theorem 1.1.11,

p. 22].

Lemma 1.2.12. For a locally compact group G the following are equivalent:

(i) G is amenable.

(ii) There is a right invariant mean on L∞(G).

(iii) There is a two-sided invariant mean on L∞(G).

There seems to be no obvious connection between invariant means on a locally

compact group G and derivations on the Banach algebra L1(G). However, Johnson

[24, theorem 2.5, p. 32] proved a remarkable relation between them.

Theorem 1.2.13. Let G be a locally compact group. Then G is amenable if

and only if L1(G) is amenable as a Banach algebra.

There are many characterizations of the notion of amenability, of which we

note the following.

Let A be a Banach algebra. We denote the projective tensor product of A with

itself by A⊗̂A (see section 1.3). Then diagonal operator on A⊗̂A is defined by

πA : A⊗̂A→ A, a⊗ b 7→ ab.
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It is easy to check the projective tensor product A⊗̂A becomes a Banach A-

bimodule by the following module actions:

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca, (a, b, c ∈ A),

and πA is a bimodule homomorphism with respect to this module structure on

A⊗̂A.

Definition 1.2.14. Let A be a Banach algebra.

(i) An element M in A⊗̂A is called a diagonal for A if a ·M −M · a = 0 and

a πA(M) = a for all a ∈ A.

(ii) An elememt M in (A⊗̂A)∗∗ is called a virtual diagonal for A if a·M = M ·a

and a · π∗∗A (M) = a for all a ∈ A.

(iii) A bounded net (mα)α in A⊗̂A is called an approximate diagonal for A if

a ·mα −mα · a→ 0 and a πA(mα)→ a for all a ∈ A.

The following characterization of amenability is due to Johnson [23, Theorem

1.3, p. 688].

Theorem 1.2.15. For a Banach algebra A, the following are equivalent:

(i) A is amenable.

(ii) There is an approximate diagonal for A.

(iii) There is a virtual diagonal for A.

Definition 1.2.16. Let (A, ‖ · ‖) be a normed algebra. A left (right) approx-

imate identity for A is a net (eα)α in A such that limα eαa = a (limα aeα = a) for

each a ∈ A. A two-sided approximate identity for A is a net (eα)α which is both a

left and a right approximate identity. The approximate identity is called bounded

if supα ‖eα‖ <∞.

The following theorem is a stronger version of Cohen’s factorization theorem

shown in [8, Corollary 2.9.26, p. 314].

Theorem 1.2.17. Let A be a Banach algebra with a left approximate identity

bounded by M and E be a left Banach A-module. Then AE = A · E is a closed
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submodule of E. Moreover, for each x ∈ AE with ‖x‖ < 1 and each ε > 0, there

exists a ∈ A and y ∈ A · x such that x = a · y, ‖x− y‖ < ε, and ‖a‖‖y‖ < M.

1.3. Tensor products

This section gives a brief introduction to tensor products. For a detailed study

of tensor products, we refer to T. Palmer [26].

Definition 1.3.1. Let A,B be linear spaces. A tensor product of A and B is

a pair (M, τ), where M is a linear space and

τ : A×B →M

is a bilinear map with the following property: for each linear space F and for each

bilinear map V : A × B → F , there exists a unique linear map Ṽ : M → F such

that V = Ṽ ◦ τ.

It can be shown that given any two linear spaces A and B, the tensor product

of A and B always exists and is unique up to isomorphism. Given linear spaces

A,B and their tensor product (M, τ), we write A⊗B for M and define

a⊗ b = τ(a, b), (a ∈ A, b ∈ B). (I)

Elements of A ⊗ B are called tensors and elements of the form (I) are called

elementary tensors. Every element of A⊗B can be represented as a finite sum of

elementary tensors.

We can form tensor products in various categories: vector spaces, modules,

algebras, Banach spaces, and Banach algebras. In each case, the product A ⊗ B

will inherit the structural property of A and B. For example, if A and B are

algebras, then the product on A ⊗ B is defined by (a1 ⊗ b1) · (a2 ⊗ b2) = a1a2 ⊗

b1b2, where a1, a2 ∈ A, b1, b2 ∈ B.

Let A,B be normed spaces. For x ∈ A⊗B, let us define

‖x‖π = inf

{
m∑
i=1

‖ai‖ ‖bi‖ : x =
m∑
i=1

ai ⊗ bi, m ∈ N

}
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It can be shown that ‖ · ‖π defines a norm, called the projective norm on A⊗ B.

It follows from the definition that ‖a ⊗ b‖ ≤ ‖a‖ ‖b‖ for every elementary tensor

a⊗ b.

Definition 1.3.2. Let A,B be Banach spaces. Then the projective tensor

product A⊗̂B is the completion of A⊗B with respect to ‖ · ‖π.

Theorem 1.3.3. Let A,B be Banach spaces. For every x ∈ A⊗̂B, there are

sequences (ai)
∞
i=1 in A, (bi)

∞
i=1 in B, such that

∞∑
i=1

‖ai‖ ‖bi‖ <∞ and x =
∞∑
i=1

ai ⊗ bi.

Furthermore,

‖x‖π = inf

{
∞∑
i=1

‖ai‖ ‖bi‖ <∞, x =
∞∑
i=1

ai ⊗ bi

}
.

It can be shown that if A and B are Banach algebras, then ‖ · ‖π is submul-

tiplicative with respect to the product on A⊗̂B, so it turns A⊗̂B into a Banach

algebra.

If A is a Banach algebra, then A⊗̂A has a canonical Banach A-bimodule action

defined by

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca, (a, b, c ∈ A).

This induces a canonical Banach A-bimodule structure on (A⊗̂A)∗ and (A⊗̂A)∗∗.

If we use the identification (A⊗̂A)∗ ∼= B(A,A∗), then the canonical Banach A-

bimodule action on (A⊗̂A)∗ takes the following form:

(a · T )(b) = a · (Tb), (T · a)(b) = T (ab), (a, b ∈ A, T ∈ B(A,A∗)).

To prove these, we note that for all c ∈ A,

〈(a · T )(b), c〉 : = 〈a · T, b⊗ c〉(A⊗̂A)∗,A⊗̂A = 〈T, (b⊗ c) · a〉

= 〈T, b⊗ ca〉 = 〈Tb, ca〉A∗,A = 〈a · (Tb), c〉A∗,A.

Thus (a · T )(b) = a · (Tb) and similarly we have (T · a)(b) = T (ab).
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In the particular case that T ∈ B(A,A∗) is given by T = g ⊗ f, f, g ∈ A∗,

where T (a) = (g ⊗ f)(a) := g(a)f ∈ A∗, it is easy to check that

a · (g ⊗ f) = g ⊗ (a · f), (g ⊗ f) · a = (g · a)⊗ f,

since for every b ∈ A,

[a · (g ⊗ f)](b) = a · ((g ⊗ f)(b)) = a · (g(b)f) = g(b)(a · f) = [g ⊗ a · f ](b),

[(g ⊗ f) · a](b) = (g ⊗ f)(ab) = g(ab)f = (g · a)(b)f = [(g · a)⊗ f ](b).



CHAPTER 2

Character Amenability and its Properties

2.1. Character amenability

Let A be a Banach algebra and σ(A) be the spectrum of A which is the set

of all non-zero multiplicative linear functionals on A. Given ϕ ∈ σ(A) ∪ {0}, we

denote by MA
ϕ the set of all Banach A-bimodules E for which the right module

action is given by x · a = ϕ(a)x, a ∈ A, x ∈ E. Similarly, we denote by ϕMA

the set of all Banach A-bimodules E for which the left module action is given by

a · x = ϕ(a)x, a ∈ A, x ∈ E.

Definition 2.1.1. Let A be a Banach algebra and ϕ ∈ σ(A) ∪ {0}. We call

A left ϕ-amenable if every continuous derivation d : A → E∗ is inner for all

E ∈MA
ϕ . Moreover, A is called left character amenable if it is left ϕ-amenable for

every ϕ ∈ σ(A) ∪ {0}.

Right character amenability is defined analogously by considering E ∈ ϕMA.

We call A character amenable if it is both left and right character amenable.

Remark 2.1.2. The above definitions show that character amenability is weaker

than amenability. In other words, all amenable Banach algebras are automatically

character amenable.

A natural question is under what conditions a Banach algebra is character

amenable. We answer this question in proposition 2.2.2 and theorem 2.2.6.

Definition 2.1.3. Let A be a Banach algebra, ϕ ∈ σ(A) ∪ {0}, and Φ ∈ A∗∗.

(i) Φ is called ϕ-topologically left invariant element (ϕ-TLIE) if

〈Φ, a · f〉 = ϕ(a)〈Φ, f〉, (a ∈ A, f ∈ A∗).

Equivalently, Φ is ϕ-TLIE if Φ · a = ϕ(a)Φ, (a ∈ A, f ∈ A∗).
10
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(ii) Φ is called ϕ-topologically right invariant element (ϕ-TRIE) if

〈Φ, f · a〉 = ϕ(a)〈Φ, f〉, (a ∈ A, f ∈ A∗).

Equivalently, Φ is ϕ-TRIE if a · Φ = ϕ(a)Φ, (a ∈ A, f ∈ A∗).

2.2. Basic properties

Lemma 2.2.1. Let A be a Banach algebra. Then A is left 0-amenable if and

only if A has a bounded left approximate identity.

Proof. Consider A∗ equipped with its canonical left A-module action, and

with the trivial right A-module action defined by:

f · a = 0, (a ∈ A, f ∈ A∗).

Then A∗ ∈ MA
0 and A∗∗ ∈ 0MA. Let τ be the canonical embedding of A into

its second dual A∗∗. Of course, τ is linear and continuous, i.e., τ ∈ B(A,A∗∗).

Moreover, for all a, b ∈ A, f ∈ A∗,

〈a · τ(b) + τ(a) · b, f〉 = 〈τ(a) · b, f〉 = 〈τ(a), b · f〉

= 〈b · f, a〉 = 〈f, ab〉

= 〈τ(ab), f〉.

So τ ∈ Z1(A,A∗∗). By the assumption of left 0-amenability of A, there exists

µ ∈ A∗∗ such that for all a ∈ A,

τ(a) = δµ(a) = a · µ− µ · a = −µ · a.

In other words, for every f ∈ E∗, 〈τ(a), f〉 = 〈−µ · a, f〉, which implies 〈f, a〉 =

〈µ,−a · f〉. Since A ↪→ A∗∗ is w∗-dense in A∗∗ by Goldstine’s theorem [10, V.4.6

Theorem 5, p. 424], it follows that for such µ ∈ A∗∗, there exists a bounded net

(eα)α in A, with ‖eα‖ ≤ ‖µ‖ and µ = w∗-limα τ(eα). So we have

〈µ,−a · f〉 = lim
α
〈τ(eα),−a · f〉 = lim

α
〈−a · f, eα〉 = lim

α
〈f,−eαa〉.

Therefore 〈f, a〉 = limα〈f,−eαa〉, i.e., A has a bounded weak left approximate

identity (−eα)α. It is well-known that if A has a bounded weak left approximate
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identity, then A has a bounded left approximate identity [9, Proposition 33.2, p.

223].

For the converse, let E ∈ MA
0 . It is clear that E∗ ∈ 0MA and A · E∗ = {0}.

Let d ∈ Z1(A,E∗). Then for a, b ∈ A,

d(ab) = a · d(b) + d(a) · b = d(a) · b.

Let (eα)α be a bounded left approximate identity for A. Then d(eα) ∈ E∗, for each

α. By Anaoglu’s theorem [10, V.4.6 Theorem 2, p. 424], there exists f ∈ E∗ such

that f is the w∗-cluster point of d(eα). By passing to a subnet of (eα)α if necessary,

we may assume f = w∗-limα d(eα). Then for a ∈ A,

d(a) = ‖ · ‖- lim
α
d(eαa) = w∗- lim

α
d(eα) · a = f · a.

The last identity holds since for every y ∈ E,

lim
α
〈d(eα) · a, y〉 = lim

α
〈d(eα), a · y〉 = 〈f, a · y〉 = 〈f · a, y〉.

Put f ′ = −f ∈ E∗. Then for every a ∈ A,

d(a) = −f ′ · a = a · f ′ − f ′ · a = δf ′(a).

Hence A is left 0-amenable. �

The characterization of left character amenability was shown in [31, Theorem

2.3, p. 699].

Proposition 2.2.2. Let A be a Banach algebra. Then A is left character

amenable if and only if A has a bounded left approximate identity and for every

ϕ ∈ σ(A) there exists a ϕ-topologically left invariant element Φ ∈ A∗∗ such that

Φ(ϕ) 6= 0.

Similar statement holds for right character amenability.

Proof. By lemma 2.2.1 it remains to show that left ϕ-amenability is equiva-

lent to the existence of ϕ-topologically left invariant element for every ϕ ∈ σ(A).



2.2. BASIC PROPERTIES 13

Let ϕ ∈ σ(A), consider A∗, the dual of A equipped with the usual left A-module

action and the right action defined by

f · a = ϕ(a)f, (a ∈ A, f ∈ A∗).

Then A∗∗ will have the usual right A-module action and the left action given by

a · Φ = ϕ(a)Φ, (a ∈ A, Φ ∈ A∗∗).

Since ϕ is multiplicative on A, it follows that for every b ∈ A,

〈a · ϕ, b〉 = 〈ϕ, ba〉 = ϕ(b)ϕ(a) = 〈ϕ(a)ϕ, b〉.

Hence a · ϕ = ϕ(a)ϕ and similarly ϕ · a = ϕ(a)ϕ. So ϕ generates one-dimensional

submodule of A∗. We define

E = A∗/Cϕ

to be the Banach quotient A-bimodule, and let

P : A∗ → E

be the canonical A-bimodule quotient map. Identifying E∗ with the closed sub-

space of A∗∗ vanishing on ϕ, the adjoint map

P ∗ : E∗ → A∗∗

will be the natural inclusion of E∗ into A∗∗.

By the Hahn-Banach theorem, there exists Φ0 ∈ A∗∗ with Φ0(ϕ) = 1. Define

δΦ0 : A→ A∗∗, δΦ0(a) = a · Φ0 − Φ0 · a = ϕ(a)Φ0 − Φ0 · a,

to be the inner derivation at Φ0. It is easy to check that δΦ0(a) ∈ E∗ ∼= (Cϕ)⊥ for

all a ∈ A, in fact for any ϕ ∈ σ(A),

〈δΦ0(a), ϕ〉 = 〈ϕ(a)Φ0−Φ0·a, ϕ〉 = 〈Φ0, ϕ(a)ϕ〉−〈Φ0, a·ϕ〉 = 〈Φ0, ϕ(a)ϕ〉−〈Φ0, ϕ(a)ϕ〉 = 0.

Thus the map

d : A→ E∗, d(a) = δΦ0(a) ∈ E∗
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is a continuous derivation. But d is not an inner derivation by Φ0 since Φ0 /∈ E∗.

Moreover, for every f ∈ A∗, a ∈ A,

(f + Cϕ) · a = f · a+ Cϕ = ϕ(a)f + Cϕ = ϕ(a)(f + Cϕ),

that is E ∈MA
ϕ . By our assumption of left character amenability of A, d must be

inner and hence there exists Φ1 ∈ E∗ such that d = δΦ1 . We show that Φ := Φ0−Φ1

is the required ϕ-TLIE of A∗∗. In fact, firstly

〈Φ, ϕ〉 = 〈Φ0 − Φ1, ϕ〉 = 1− 0 = 1.

Next, for every a ∈ A, we have

δΦ0(a) = δΦ1(a) =⇒ a · Φ0 − Φ0 · a = a · Φ1 − Φ1 · a

=⇒ ϕ(a)Φ0 − Φ0 · a = ϕ(a)Φ1 − Φ1 · a

=⇒ (Φ0 − Φ1) · a = ϕ(a)(Φ0 − Φ1)

=⇒ Φ · a = ϕ(a)Φ.

Hence Φ is ϕ-TLIE with 〈Φ, ϕ〉 6= 0.

It remains to prove the sufficiency part of the theorem. Let ϕ ∈ σ(A) and

Φ ∈ A∗∗ be a ϕ-TLIE such that Φ(ϕ) 6= 0. Suppose d is a continuous derivation

from A into E∗, where E ∈MA
ϕ . It suffices to show there exists g ∈ E∗, such that

d(a) = δg(a) = a · g − g · a. Let

d∗ : E∗∗ → A∗ and d∗∗ : A∗∗ → E∗∗∗

be the adjoint and double adjoint of d, respectively. Identifying E with its canon-

ical image in E∗∗, we define

f = d∗∗(Φ)|E ∈ E∗.

We claim that d = δf/Φ(ϕ). We observe that elements of A with ϕ(a) = 1 linearly

span the entire A. In fact, if ϕ(a) 6= 0, then a can be written as the form of

ϕ(a) a
ϕ(a)

. Otherwise, there exists some b ∈ A such that ϕ(b) = 1, so a = b+a
2
− b−a

2
.



2.2. BASIC PROPERTIES 15

Therefore it suffices to show that

d(a) = δf/Φ(ϕ)(a), (a ∈ A with ϕ(a) = 1).

In fact, for x ∈ E,

〈δf (a), x〉 = 〈a · f − f · a, x〉

= 〈f, x · a〉 − 〈f, a · x〉

= 〈f, x · a− a · x〉

= 〈f, x− a · x〉 (since x · a = ϕ(a)x = x)

= 〈d∗∗(Φ), x− a · x〉

= 〈Φ, d∗(x)− d∗(a · x)〉. (∗)

But for every b ∈ A,

〈d∗(a · x), b〉A∗,A = 〈a · x, d(b)〉E,E∗ = 〈x, d(b) · a〉E,E∗

= 〈x, d(ba)− b · d(a)〉E,E∗

= 〈d∗(x), ba〉A∗,A − 〈x · b, d(a)〉E,E∗

= 〈a · d∗(x), b〉A∗,A − 〈ϕ(b)x, d(a)〉E,E∗

= 〈a · d∗(x), b〉A∗,A − 〈d(a), x〉E∗,E〈ϕ, b〉A∗,A

= 〈a · d∗(x)− 〈d(a), x〉ϕ, b〉A∗,A.

So d∗(a · x) = a · d∗(x)− 〈d(a), x〉ϕ.

Thus we can rewrite the equation (∗) as

〈δf (a), x〉 = 〈Φ, d∗(x)− d∗(a · x)〉

= 〈Φ, d∗(x)− a · d∗(x) + 〈d(a), x〉ϕ〉

= 〈Φ, d∗(x)〉 − 〈Φ, ϕ(a)d∗(x)〉+ Φ(ϕ)〈d(a), x〉 (since Φ is a ϕ-TLIE)

= 〈Φ, d∗(x)〉 − 〈Φ, d∗(x)〉+ Φ(ϕ)〈d(a), x〉 (since ϕ(a) = 1)

= 〈Φ(ϕ)d(a), x〉.
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Therefore δf (a) = Φ(ϕ)d(a), or equivalently d = δf/(Φ(ϕ)). Hence A is left ϕ-

amenable. �

Corollary 2.2.3. If A is a commutative Banach algebra, then A is left char-

acter amenable if and only if it is right character amenable.

Proof. Let ϕ ∈ σ(A). Suppose A is left character amenable, then A has a

bounded left approximate identity (eα)α and a ϕ-TLIE Φ in A∗∗ such that Φ(ϕ) 6=

0. Since A is commutative, (eα)α is also a bounded right approximate identity for

A. Moreover, for every a, b ∈ A and f ∈ A∗,

〈f · a, b〉 = 〈f, ab〉 = 〈f, ba〉 = 〈a · f, b〉.

So

f · a = a · f and 〈Φ, f · a〉 = 〈Φ, a · f〉 = ϕ(a)〈Φ, f〉.

That is Φ is also a ϕ-TRIE for A. Hence A is right character amenable. The proof

of the other direction is similar. �

Definition 2.2.4. Let A be a Banach algebra and ϕ ∈ σ(A). A left ϕ-

approximate diagonal for A is a net (mα)α in A⊗̂A such that mα ·a−ϕ(a)mα → 0

in the norm topology of A⊗̂A for every a ∈ A and 〈ϕ⊗ ϕ,mα〉 = ϕ(π(mα))→ 1.

A right ϕ-approximate diagonal is defined similarly.

To justify the equality 〈ϕ⊗ ϕ,mα〉 = ϕ(π(mα)), we argue as follows: if mα =
∞∑
i=1

aαi ⊗ bαi , where aαi , b
α
i ∈ A, then using the absolute convergence of the sum,

we have

ϕ(π(mα)) = ϕ(
∞∑
i=1

aαi b
α
i ) =

∞∑
i=1

ϕ(aαi )ϕ(bαi ).

Also,

〈ϕ⊗ ϕ,mα〉 = 〈ϕ⊗ ϕ,
∞∑
i=1

aαi ⊗ bαi 〉 =
∞∑
i=1

ϕ(aαi )ϕ(bαi ),

from which the equality in question follows.

Definition 2.2.5. An element M of (A⊗̂A)∗∗ is called a left ϕ-virtual diagonal

for A, if M · a = ϕ(a)M for every a ∈ A and 〈M,ϕ⊗ ϕ〉 = 〈π∗∗(M), ϕ〉 = 1.
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The equality 〈M,ϕ⊗ ϕ〉 = 〈π∗∗(M), ϕ〉 in the above definition needs justifica-

tion. In fact, for every x, y in A,

〈π∗(ϕ), x⊗ y〉 = 〈ϕ, π(x⊗ y)〉 = 〈ϕ, xy〉 = ϕ(xy) = ϕ(x)ϕ(y) = 〈ϕ⊗ ϕ, x⊗ y〉,

therefore π∗(ϕ) = ϕ⊗ ϕ. Hence 〈π∗∗(M), ϕ〉 = 〈M,π∗(ϕ)〉 = 〈M,ϕ⊗ ϕ〉.

The characterizations of left ϕ-amenability were shown in [21, Theorem 2.3,

p. 56].

Theorem 2.2.6. Let A be a Banach algebra and ϕ ∈ σ(A). Then the following

are equivalent:

(i) A has a left ϕ-virtual diagnonal.

(ii) A has a bounded left ϕ-approximate diagonal.

(iii) A is left ϕ-amenable.

(iv) There exists a ϕ-TLIE, Φ ∈ A∗∗ such that Φ(ϕ) = 1.

(v) There exists a bounded net (uα)α in A such that uα · a− ϕ(a)uα → 0 for

all a ∈ A and ϕ(uα) = 1 for all α.

Proof. (ii)⇒ (i) If A has a bounded left ϕ-approximate diagonal (mα)α, then

by Alaogu’s theorem [10, V.4.6 Theorem 2, p. 424] there exists M ∈ (A⊗̂A)∗∗

such that M is a w∗-cluster point of the canonical image of mα. Then by going to

a subnet of (mα) if necessary, we may assume M = w∗-limαmα. So

〈M,ϕ⊗ ϕ〉 = lim
α
〈mα, ϕ⊗ ϕ〉 = lim

α
〈ϕ⊗ ϕ,mα〉 = 1.

Note that for fixed a ∈ A,

Ra : (A⊗̂A)∗∗ → (A⊗̂A)∗∗, M 7→M · a,

is w∗-continuous, since Ra is the double adjoint map of the right module multipli-

cation

ra : A⊗̂A→ A⊗̂A, (b⊗ c) 7→ (b⊗ c) · a = b⊗ ca,

which implies

M · a = w∗- lim
α

(mα · a),
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and

M ·a−ϕ(a)M = w∗- lim
α

(mα ·a)−w∗- lim
α

(ϕ(a)mα) = w∗- lim
α

(mα ·a−ϕ(a)mα) = 0,

since by assumption ‖mα · a− ϕ(a)mα‖ → 0.

(i) ⇒ (iv) Suppose A has a left ϕ-virtual diagonal M ∈ (A⊗̂A)∗∗, define Φ ∈ A∗∗

by

Φ(f) := 〈M,ϕ⊗ f〉, (f ∈ A∗).

Then

Φ(ϕ) = 〈M,ϕ⊗ ϕ〉 = 〈π∗∗(M), ϕ〉 = 1.

Moreover, M · a = ϕ(a)M, therefore for all f ∈ A∗,

〈Φ, a · f〉 = 〈M,ϕ⊗ (a · f)〉 = 〈M,a · (ϕ⊗ f)〉 = 〈M · a, ϕ⊗ f〉

= 〈ϕ(a)M,ϕ⊗ f〉 = ϕ(a)〈M,ϕ⊗ f〉 = ϕ(a)〈Φ, f〉.

The equivalence of (iii) and (iv) was shown in the proof of proposition 2.2.2.

(iii) ⇒ (i) Consider the Banach A-bimodule A⊗̂A with the module actions given

by

a · (b⊗ c) = ϕ(a)(b⊗ c), (b⊗ c) · a = b⊗ ca, (a, b, c ∈ A).

Then the right module action on (A⊗̂A)∗ is defined by

f · a = ϕ(a)f, (f ∈ (A⊗̂A)∗, a ∈ A).

So (A⊗̂A)∗∗ will have the canonical right A-module action, while the left action is

given by

a · Φ = ϕ(a)Φ, (Φ ∈ (A⊗̂A)∗∗, a ∈ A).

Since ϕ is multiplicative on A, it follows that for every a, b, c ∈ A,

〈a·(ϕ⊗ϕ), b⊗c〉 = 〈ϕ⊗ϕ, (b⊗c)·a〉 = 〈ϕ⊗ϕ, b⊗ca〉 = ϕ(b)ϕ(ca) = ϕ(a)〈ϕ⊗ϕ, b⊗c〉.

Hence a·(ϕ⊗ϕ) = ϕ(a)(ϕ⊗ϕ). Clearly ϕ⊗ϕ generates a 1-dimensional submodule

C · (ϕ⊗ ϕ) of (A⊗̂A)∗. We define

E = (A⊗̂A)∗/C · (ϕ⊗ ϕ)
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to be the quotient Banach A-bimodule and

Q : (A⊗̂A)∗ → E

to be the canonical A-bimodule quotient map. Since

E∗ = ((A⊗̂A)∗/C · (ϕ⊗ ϕ))∗ ∼= (C · (ϕ⊗ ϕ))⊥ ⊂ (A⊗̂A)∗∗,

we can identify E∗ with closed subspace of (A⊗̂A)∗∗ vanishing on ϕ⊗ϕ. Then the

adjoint of Q, that is,

Q∗ : E∗ → (A⊗̂A)∗∗

will be the canonical inclusion of E∗ into (A⊗̂A)∗∗. By the Hahn-Banach theorem,

there exists Φ0 ∈ (A⊗̂A)∗∗ such that 〈Φ0, ϕ⊗ ϕ〉 = 1. Let

δΦ0 : A→ (A⊗ A)∗∗, a 7→ a · Φ0 − Φ0 · a = ϕ(a)Φ0 − Φ0 · a,

be the inner derivation defined by Φ0. It is routine to check that δΦ0(a) ∈ E∗ for

all a ∈ A. In fact,

〈δΦ0(a), ϕ⊗ ϕ〉 = 〈ϕ(a)Φ0 − Φ0 · a, ϕ⊗ ϕ〉

= 〈Φ0, ϕ(a)(ϕ⊗ ϕ)〉 − 〈Φ0, a · (ϕ⊗ ϕ)〉

= 〈Φ0, ϕ(a)(ϕ⊗ ϕ)〉 − 〈Φ0, ϕ(a)(ϕ⊗ ϕ)〉 = 0

Define the map

d : A→ E∗, a 7→ δΦ0(a).

Clearly d is a continuous derivation. Moreover, as we saw above, E ∈ MA
ϕ . By

the assumption of left ϕ-amenability of A, d must be inner. Hence there exists

Φ1 ∈ E∗ ∼= (C · (ϕ⊗ ϕ))⊥ such that d = δΦ0 = δΦ1 . We claim that M := Φ0 − Φ1

is the required ϕ-virtual diagonal for A. In fact,

〈M,ϕ⊗ ϕ〉 = 〈Φ0, ϕ⊗ ϕ〉 − 〈Φ1, ϕ⊗ ϕ〉 = 1− 0 = 1,
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and for every a ∈ A,

δΦ0(a) = δΦ1(a) =⇒ a · Φ0 − Φ0 · a = a · Φ1 − Φ1 · a

=⇒ ϕ(a)Φ0 − Φ0 · a = ϕ(a)Φ1 − Φ1 · a

=⇒ (Φ0 − Φ1) · a = ϕ(a)(Φ0 − Φ1).

=⇒M · a = ϕ(a)M.

Hence M is a ϕ-virtual diagonal for A.

(i)⇒ (ii) If A has a left ϕ-virtual diagonal M ∈ (A⊗̂A)∗∗, by Goldstine’s theorem

[10, V.4.6 Theorem 5, p. 424], there exists a bounded net (eα)α in A⊗̂A such that

‖eα‖ ≤ ‖M‖ and M = w∗-limα eα. Then eα · a−ϕ(a)eα → 0 in the weak topology

of A⊗̂A and ϕ(π(eα)) = 〈ϕ⊗ ϕ, eα〉 → 0. In fact, for all f ∈ (A⊗̂A)∗,

lim
α
〈f, eα · a− ϕ(a)eα〉 = lim

α
〈f, eα · a〉 − lim

α
〈f, ϕ(a)eα〉

= lim
α
〈a · f, eα〉 − lim

α
〈ϕ(a)f, eα〉

= lim
α
〈a · f − ϕ(a)f, eα〉

= lim
α
〈M,a · f − ϕ(a)f〉

= lim
α
〈M · a, f〉 − lim

α
〈ϕ(a)M, f〉

= lim
α
〈M · a− ϕ(a)M, f〉

= lim〈0, f〉

= 0.

Thus we have shown that w-limα(eα · a− ϕ(a)eα) = 0, for all a ∈ A. Moreover for

every f ∈ (A⊗̂A)∗,

〈M, f〉 = lim
α
〈eα, f〉 = lim

α
〈f, eα〉.

In particular, for ϕ⊗ ϕ ∈ (A⊗̂A)∗, we have

lim
α
ϕ(π(eα)) = lim

α
〈ϕ⊗ ϕ, eα〉 = 〈M,ϕ⊗ ϕ〉 = 1.
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Of course, a = w-limα ϕ(π(eα))a. Now fix F = {a1, a2, · · · , an} ⊂ A and ε ≥ 0.

The bounded net

V = {(eα · a1 − ϕ(a1)eα, ϕ(π(eα))a1 − a1, · · · , eα · an − ϕ(an)eα, ϕ(π(eα))an − an}

converges to 0 in the product space ((A⊗̂A)×A)n with respect to the weak topol-

ogy (which is equal to the product of weak topologies). By Mazur’s theorem [8,

Theorem A.3.29, p. 818] in a Banach space, each convex set has the same closure in

the norm and in the weak topologies. It follows that there is a convex combination

fF,ε =
∑
λjeαj with

∑m
j=1 λj = 1, such that

‖(fF,ε·a1−ϕ(a1)fF,ε, ϕ(π(fF,ε))a1−a1, · · · , fF,ε·an−ϕ(an)fF,ε, ϕ(π(fF,ε))an−an)‖ < ε.

Thus we have

‖fF,ε · ai − ϕ(ai)fF,ε‖ < ε, ‖ϕ(π(fF,ε))ai − ai‖ < ε, i = 1, 2, · · ·n.

If we take (F, ε) > (F ′, ε′) to mean F ⊃ F ′, ε < ε′, then {fF,ε} is a bounded left

ϕ-approximate diagonal.

Finally, the equivalence of (iii) and (v) has been shown in [25, Theorem 1.4,

p. 88]. �

Corollary 2.2.7. Let A be a Banach algebra. Then the following are equiv-

alent:

(i) A is left character amenable.

(ii) A has a bounded left approximate identity and there exists a ϕ-TLIE Φ ∈

A∗∗ such that Φ(ϕ) 6= 0 for every ϕ ∈ σ(A).

(iii) A has a bounded left approximate identity and has a bounded left ϕ-

approximate diagonal for every ϕ ∈ σ(A).

(iv) A has a bounded left approximate identity and has a left ϕ-virtual diagonal

for every ϕ ∈ σ(A).

Let G be a locally compact group with a fixed left Haar measure.
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Recall if 1 ≤ p <∞,

Lp(G) =

{
f : G→ C, f is measurable ,

(∫
G

|f |pdx
) 1

p

<∞

}
.

In the case p = 1, it can be shown that L1(G) is an algebra with respect to the

following convolution product

(f ∗ g)(x) =

∫
G

f(y)g(y−1x)dy, (f, g ∈ L1(G), x, y ∈ G).

L1(G) is called the group algebra of G. We let Ap(G) be the subspace of C0(G)

consisting of functions of the form

u =
∞∑
i=1

gi ∗ f̌i,
∞∑
i=1

‖fi‖p‖gi‖q <∞,

where fi ∈ Lp(G), gi ∈ Lq(G), 1
p

+ 1
q

= 1, f̌i(x) = fi(x
−1). Moreover we let

‖u‖Ap = inf

{
∞∑
i=1

‖fi‖p‖gi‖q, u =
∞∑
i=1

gi ∗ f̌i, fi ∈ Lp(G), gi ∈ Lq(G)

}
.

It is well known that with the norm ‖u‖Ap and usual pointwise operations, Ap(G)

becomes a commutative Banach algebra called the Herz–Figà-Talamanca algebra

of G [18]. In the case p = 2, we simply write A(G) for A2(G). A(G) is called

the Fourier algebra of G, introduced by P. Eymard [11]. The dual of Ap(G) is

the space of PMp(G), which is the w∗-closure of the set {λp(f) : f ∈ L1(G)} in

B(Lp(G)). Here λp(f) is the convolution operator on Lp(G) defined by λp(f)(g) =

f ∗ g (g ∈ Lp(G)). In the case of p = 2, the dual of A(G) is the von Neumann

algebra VN(G) generated by the left translation operators acting on the Hilbert

space L2(G).

A(G) has a close connection with L1(G). In fact, when G is abelian, A(G) is

isometrically isomorphic to L1(Ĝ) via the Fourier transform, where Ĝ is the dual

group of G, consisting of all continuous homomorphisms χ : G→ T.

Our main goal in the remaining of this section is to show that the character

amenability of L1(G) and Ap(G) are completely characterized by the amenability

of their underlying group G. We firstly show two useful identities related to natural

left (right) L1(G)-module action on its dual L∞(G).



2.2. BASIC PROPERTIES 23

Lemma 2.2.8. Let G be a locally compact group. If f · ϕ and ϕ · f denote the

canonical module operations of L1(G) on its dual L∞(G), then f · ϕ = ϕ ∗ f̌ and

ϕ · f = f̄ ∗ ∗ ϕ for every f ∈ L1(G), ϕ ∈ L∞(G).

Proof. For every g ∈ L1(G),

〈f · ϕ, g〉L∞,L1 = 〈ϕ, g ∗ f〉L∞,L1

=

∫
G

ϕ(x)(g ∗ f)(x)dx

=

∫
G

ϕ(x)(

∫
G

g(y)f(y−1x)dy)dx

=

∫
G

g(y)(

∫
G

ϕ(x)f(y−1x)dx)dy

=

∫
G

g(y)(

∫
G

ϕ(x)f̌(x−1y)dx)dy

=

∫
G

(ϕ ∗ f̌)(y)g(y)dy

= 〈ϕ ∗ f̌ , g〉L∞,L1 .

Thus f · ϕ = ϕ ∗ f̌ . Similarly we can conclude

〈ϕ · f, g〉L∞,L1 = 〈ϕ, f ∗ g〉L∞,L1 = 〈f̄ ∗ ∗ ϕ, g〉L∞,L1 .

Thus ϕ · f = f̄ ∗ ∗ ϕ. �

It is well known that the spectrum of L1(G) is completely characterized by

Ĝ = {χ : G→ T, χ is a continuous homomorphism} .

In fact, for every χ ∈ Ĝ, the corresponding character on L1(G), which we denote

by Φχ, is given by

Φχ(f) =

∫
G

f(x)χ(x)dx, (f ∈ L1(G)),

[19, Corollary 23.7, p. 358]. In the particular case that 1G : G→ T is a constant

function, we obtain the character

1G : L1(G)→ C, 1G(f) =

∫
G

f(x)dx.
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Definition 2.2.9. Let G be a locally compact group. We call an element

Φ ∈ L∞(G)∗ a TLIE (respectively TRIE) if it is 1G-TLIE (respectively 1G-TRIE.

Furthermore, a topological left (right) invariant mean on L∞(G) is a TLIE (TRIE)

Φ such that ‖Φ‖ = Φ(1) = 1. If Φ is both a left and a right topological invari-

ant element (respectively, mean), then Φ is called a topological invariant element

(respectively, mean).

Remark 2.2.10. Our convention of ‘left’ and ‘right’ in the above definition is

opposite to the one usually used in the literature, but is consistent with our own

convention in definition 2.1.3.

Let us define

P (G) :=

{
f ∈ L1(G), f ≥ 0, ‖f‖1 =

∫
|f(x)|dx = 1

}
.

The following result follows from lemma 2.2.8 and the fact that P (G) linearly

spans L1(G).

Theorem 2.2.11. (a) For an element Φ ∈ L∞(G)∗, the following are equiva-

lent:

(i) Φ is a TLIE.

(ii) 〈Φ, ϕ ∗ f̌〉 = (
∫
f(x)dx)〈Φ, ϕ〉 for every f ∈ L1(G), ϕ ∈ L∞(G).

(iii) Φ · f = Φ for every f ∈ P (G).

(iv) Φ · f = (
∫
f(x)dx)Φ for every f ∈ L1(G).

(b) For an element Φ ∈ L∞(G)∗, then the following are equivalent:

(i) Φ is a TRIE.

(ii) 〈Φ, f ∗ ϕ〉 = (
∫
f(x)dx)〈Φ, ϕ〉 for every f ∈ L1(G), ϕ ∈ L∞(G).

(iii) f · Φ = Φ for every f ∈ P (G).

(iv) f · Φ = (
∫
f(x)dx)Φ for every f ∈ L1(G).

Lemma 2.2.12. The existence of TLIE on L∞(G) implies the existence of TLIM

on L∞(G). The existence of TRIE on L∞(G) implies the existence of TRIM on

L∞(G).



2.2. BASIC PROPERTIES 25

Proof. Let Φ be a TLIE. By the definition of TLIE, we have Φ · f = Φ, for

every f ∈ P (G). Then for f ∈ P (G),

Φ∗ · f = Φ∗, where 〈Φ∗, ϕ〉 := 〈Φ, ϕ̄〉 (ϕ ∈ L∞(G)).

Indeed, since ϕ ∈ L∞(G),

〈Φ∗ · f, ϕ〉 = 〈Φ∗, f · ϕ〉

= 〈Φ∗, ϕ ∗ f̌〉

= 〈Φ, ϕ ∗ f̌〉

= 〈Φ, ϕ̄ ∗ f̌〉 since f ≥ 0, f̄ = f

= 〈Φ, f · ϕ̄〉

= 〈(Φ · f)∗, ϕ〉

= 〈Φ∗, ϕ〉 since Φ · f = Φ.

Thus replacing Φ0 with Φ0 + Φ0
∗ if necessary, we may assume Φ0 is self-adjoint.

By the Jordan decomposition theorem [32, Proposition III. 2.1, p. 120], there is a

unique decomposition of Φ0 such that

Φ0 = Φ+
0 − Φ−0 , where Φ±0 ∈ (L∞(G))∗+ and ‖Φ0‖ = ‖Φ+

0 ‖+ ‖Φ−0 ‖.

So if f ∈ P (G), we have

Φ0·f = Φ+
0 ·f−Φ−0 ·f, where Φ±0 ·f ∈ (L∞(G))∗+ and ‖Φ+

0 ·f‖+‖Φ−0 ·f‖ = ‖Φ0‖.

In fact, for every ϕ ∈ L∞(G),

〈Φ±0 · f, ϕϕ̄〉 = 〈Φ±0 · f, |ϕ|2〉

= 〈Φ±0 , f · |ϕ|2〉

= 〈Φ±0 , |ϕ|2 ∗ f̌〉

Since |ϕ|2 ∗ f̌ ≥ 0, it has a positive square root in L∞(G)+, say ψ ≥ 0, so

〈Φ±0 · f, ϕϕ̄〉 = 〈Φ±0 , ψ2〉 = 〈Φ±0 , ψψ̄〉 ≥ 0.
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Thus Φ±0 · f ∈ L∞(G)∗+.

Also note that for any positive linear functional w on a unital involutive Banach

algebra, ‖w‖ = w(1) [32, Lemma I.9.9, p. 38]. So in our case,

‖Φ+
0 · f‖+ ‖Φ−0 · f‖ = 〈Φ+

0 · f, 1〉+ 〈Φ−0 · f, 1〉

= 〈Φ+
0 , f · 1〉+ 〈Φ−0 , f · 1〉.

Since for every x ∈ G,

(f · 1)(x) = (1 ∗ f̌)(x) =

∫
1(y)f̌(y−1x)dy =

∫
f(x−1y)dy =

∫
f(y)dy = 1,

it follows that ‖Φ+
0 · f‖ + ‖Φ− · f‖ = 〈Φ+

0 , 1〉 + 〈Φ−0 , 1〉 = ‖Φ+
0 ‖ + ‖Φ−0 ‖ = ‖Φ0‖.

By the uniqueness of the Jordan decomposition [32, Theorem III.4.2(ii), p. 140],

we have

Φ+
0 · f = Φ+

0 , Φ−0 · f = Φ−0 for every f ∈ P (G).

Therefore if, say, Φ+
0 6= 0, Ψ := Φ+

0 /Φ
+
0 (1) is the required TLIM on L∞(G).

The proof for the case that Φ0 is a TRIE is similar. Let Φ be a TRIE. By the

definition of TRIE, we have f · Φ = Φ, for every f ∈ P (G). Then for f ∈ P (G),

f · Φ∗ = Φ∗, where 〈Φ∗, ϕ〉 := 〈Φ, ϕ̄〉 (ϕ ∈ L∞(G)).

Indeed, since ϕ ∈ L∞(G),

〈f · Φ∗, ϕ〉 = 〈Φ∗, ϕ · f〉L∞(G)∗,L∞(G)

= 〈Φ∗, f̄ ∗ ∗ ϕ〉L∞(G)∗,L∞(G)

= 〈Φ, f ∗ ∗ ϕ̄〉

= 〈Φ, f̄ ∗ ∗ ϕ̄〉 since f ≥ 0, f̄ = f

= 〈Φ, ϕ̄ · f〉

= 〈f · Φ, ϕ̄〉

= 〈Φ∗, ϕ〉 since f · Φ = Φ.

Thus replacing Φ0 with Φ0 + Φ0
∗ if necessary, we may assume Φ0 is self-adjoint.

Using the Jordan decomposition theorem, there is a unique decomposition of Φ0
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such that

Φ0 = Φ+
0 − Φ−0 where Φ±0 ∈ (L∞(G))∗+ and ‖Φ0‖ = ‖Φ+

0 ‖+ ‖Φ−0 ‖.

So if f ∈ P (G), we have

f ·Φ0 = f ·Φ+
0 −f ·Φ−0 , where f ·Φ±0 ∈ L∞(G)∗+ and ‖f ·Φ+

0 ‖+‖f ·Φ−0 ‖ = ‖Φ0‖.

In fact, for every ϕ ∈ L∞(G),

〈f · Φ±0 , ϕϕ̄〉 = 〈f · Φ±0 , |ϕ|2〉

= 〈Φ±0 , |ϕ|2 · f〉

= 〈Φ±0 , f̄ ∗ ∗ |ϕ|2〉

= 〈Φ±0 , ψ2〉 for some ψ ∈ L∞(G)+

= 〈Φ±0 , ψψ̄〉 ≥ 0.

Then

‖f · Φ+
0 ‖+ ‖f · Φ−0 ‖ = 〈f · Φ+

0 , 1〉+ 〈f · Φ−0 , 1〉

= 〈Φ+
0 , 1 · f〉+ 〈Φ−0 , 1 · f〉.

Since for every x ∈ G,

(1 · f)(x) = (f̄ ∗ ∗ 1)(x) =

∫
∆(y−1)f(y−1)1(y−1x)dy =

∫
f(y)dy = 1,

it follows that ‖f · Φ+
0 ‖ + ‖f · Φ−‖ = 〈Φ+

0 , 1〉 + 〈Φ−0 , 1〉 = ‖Φ+
0 ‖ + ‖Φ−0 ‖ = ‖Φ0‖.

Applying the uniqueness of the Jordan decomposition , we have

f · Φ+
0 = Φ+

0 , f · Φ−0 = Φ−0 for every f ∈ P (G).

Consequently if, say, Φ+
0 6= 0, Ψ := Φ+

0 /Φ
+
0 (1) is the required TRIM on L∞(G). �

Lemma 2.2.13. Let G be a locally compact group and x ∈ G. Let Mx = {Φ ∈

Ap(G)∗∗, ‖Φ‖ = Φ(ϕx) = 1}. Then Mx is a w∗-compact, nonempty subset of

Ap(G)∗∗.
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Proof. Since Mx is a subset of the unit ball of Ap(G)∗∗, Mx will be a w∗-

compact if we can show it is w∗-closed in Ap(G)∗∗. In fact, let (Φα)α be a net in

Mx such that Φα
w∗−→ Φ ∈ Ap(G)∗∗ and ‖Φ‖ ≤ 1. Then 〈Φ, ϕx〉 = limα〈Φα, ϕx〉 =

limα 1 = 1, which implies ‖Φ‖ ≥ 1. Therefore Φ ∈ Mp. To show Mx is nonempty,

let U be a compact symmetric neighborhood of x ∈ G and define

uU = |U |−11U ∗ 1̌x−1U ∈ Ap(G).

Then

‖uU‖Ap = |U |−1‖1U ∗ 1̌x−1U‖Ap ≤ |U |−1‖1̌x−1U‖p‖1U‖q

= |U |−1|Ux|
1
p |U |

1
q = |U |−1|U |

1
p |U |

1
q = 1,

and

uU(x) = |U |−11U ∗ 1̌x−1U(x) = |U |−1

∫
U

1U(y)1̌x−1U(y−1x)dy

= |U |−1

∫
U

1x−1U(x−1y)dy = |U |−1

∫
U

1dy = |U |−1|U | = 1

Hence the canonical image of uU in Ap(G)∗∗ belongs to Mx, so Mx is not empty. �

For x ∈ G, define

ϕx : Ap(G)→ C, u 7→ ϕx(u) = u(x),

to be the evaluation functional at x. Then it is well-known that the spectrum of

Ap(G) consists of all evaluation functionals at every x ∈ G (see [18, Theorem 3,

p. 102]).

Let us define the multipler algebra Bp = Bp(G) of Ap(G) by

Bp(G) = Bp = {u ∈ C0(G), uv ∈ Ap(G) for all v ∈ Ap(G)}

with the norm ‖u‖Bp = sup{‖uv‖Ap , v ∈ Ap, ‖v‖Ap = 1}. Let Sp(G) = Sp = {u ∈

Bp, ‖u‖Bp = u(e) = 1}.

Lemma 2.2.14. Let Φ ∈Me be such that u ·Φ = Φ for every u ∈ Sp. If u ∈ Bp

such that u = 1 on some neighborhood V of e, then u ·Φ = Φ. Similarly, if u ∈ Bp

is such that u = 0 on some neighborhood V of e, then u · Φ = 0.
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Proof. Assume that u = 1 on V and let U be open such that U = U−1 and

U2 ⊂ V. Then the function ϕU = |U |−11U ∗ 1̌U ∈ Sp and

{x : ϕU(x) 6= 0} ⊂ {x : x−1U ∩ U 6= 0} ⊂ U2 ⊂ V.

So u(x)ϕU(x) = ϕU(x) for all x. Then

u · Φ = u · (ϕU · Φ) = (uϕU) · Φ = ϕU · Φ = Φ.

Suppose that u = 0 on V and u ∈ Bp. Then 1 − u ∈ Bp and 1 − u = 0 on V .

Applying the first part, we have for every Φ ∈ Me, Φ = (1 − u) · Φ = Φ − u · Φ,

i.e., u · Φ = 0. �

Lemma 2.2.15. Let Φ ∈ Me be such that u · Φ = Φ for every u ∈ Sp. Then

u · Φ = u(e)Φ for every u ∈ Bp.

Proof. Suppose that v ∈ Ap(G) with v(e) = 0. Then the set {e} is a set

of spectral synthesis for the algebra Ap(G) [18, Theorem B, p. 91]. Hence there

exists a sequence vn in Ap(G) such that vn = 0 on some neighborhood Vn of e,

vn has compact support and ‖vn − v‖Ap → 0. Applying lemma 2.2.14, we have

vn · Φ = 0. Furthermore ‖v · Φ‖ = ‖(vn − v) · Φ‖ ≤ ‖vn − v‖Ap‖Φ‖ → 0. Hence if

v ∈ Ap(G) with v(e) = 0, then v · Φ = 0.

Now assume u ∈ Ap(G) with u(e) = 1 and let v ∈ Ap(G) such that v = 1

on some neighborhood V of e. Then (u − v) · Φ = 0 by the above argument and

v · Φ = v by lemma 2.2.14. Thus if u(e) = 1, then u · Φ = v · Φ = Φ = u(e)Φ.

Let u be an arbitrary element of Bp and v ∈ Ap(G) with v(e) = 1. Then

uv ∈ Ap(G) and (uv)(e) = u(e). By the above argument, we have u·Φ = u·(v ·Φ) =

(uv) · Φ = u(e)Φ, as required. �

Theorem 2.2.16. Let G be a locally compact group and x ∈ G. Then Ap(G)

has a ϕx-topological invariant mean.

Proof. First of all, Sp is a nonempty subset of Bp since uU constructed in

lemma 2.2.13 belongs to Sp. Put u ∈ Sp, ϕe ∈ σ(Ap(G)),Φ ∈Me. Then

〈u · Φ, ϕe〉 = 〈Φ, ϕe · u〉 = 〈Φ, ϕe(u)ϕe〉 = 〈Φ, u(e)ϕe〉 = 〈Φ, ϕe〉 = 1.
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So u · Φ ∈ Me and consequently we can define F = {Tu : u ∈ Sp}, where Tu is

defined by

Tu : Me →Me, Φ 7→ u · Φ.

Since Ap(G) is abelian and

TuTvΦ = Tu(v · Φ) = u · (v · Φ) = (uv) · Φ = (vu) · Φ = v · (TuΦ) = TvTuΦ,

it follows that Tu and Tv commute. Moreover, the multiplication by u is a linear

map so that Tu is affine on Me and is w∗-continuous. Therefore F is a family of

abelian continuous affine maps of Me into itself. By the Markov-Kakutani fixed

point theorem [6, Theorem 10.1, p. 151], {Tu} has a fixed point in Me, so there

exists an element Φ ∈ Me such that Tu(Φ) = Φ for all u ∈ Sp. In other words,

u · Φ = Φ = u(e)Φ = ϕe(u)Φ for every u ∈ Sp. By lemma 2.2.15, Ap(G) has a

ϕe-TIM Φ. Now if x ∈ G is arbitrary, and Lx is the left translation operator on

Ap(G), then it is easy to check that Φx := L∗∗x Φ is the required ϕx-TIM. �

The next theorem in [31, Corollary 2.4, p. 699] shows that the character

amenability of L1(G) and Ap(G) are completely characterized by the amenability

of their underlying group G.

Theorem 2.2.17. Let 1 < p < +∞ and G be a locally compact group. Then

the following are equivalent:

(i) G is amenable.

(ii) L1(G) is character amenable.

(iii) Ap(G) is character amenable.

Proof. (i) ⇒ (ii) By Johnson’s theorem 1.2.13, if G is amenable then L1(G)

is amenable, and hence left character amenable or right character amenable.

On the other hand, if L1(G) is left character amenable, then for the character

1G ∈ σ(L1(G)) there exists 1G-TLIE Φ ∈ (L1(G))∗∗ such that Φ(1G) 6= 0. So

〈Φ, f · ϕ〉 = 1G(f)〈Φ, ϕ〉 = (

∫
f(x)dx)〈Φ, ϕ〉, (f ∈ L1(G), ϕ ∈ L∞(G)).

That is Φ ·f = (
∫
f(x)dx)Φ which coincides the definition of TLIE. By the lemma

2.2.12, it follows that there exists a TLIM Φ′ ∈ (L∞(G))∗. But Φ′ is also a left
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invariant mean as defined in definition 1.2.10 [29, Lemma 1.1.7, p.20]. Thus G

is amenable. Similarly if L1(G) is right character amenable, then G must be

amenable.

(iii)⇔ (i) By Herz [18, Theorem 6, p. 120] if G is an amenable locally compact

group, then Ap(G) has an approximate identity of bound 1 for all p. Conversely if

Ap(G) has a bounded approximate identity for any p, then G is amenable. In other

words, Ap(G) has a bounded approximate identity if and only if G is amenable.

So the implication (iii)⇒ (i) holds.

To complete the proof, we only need to find a ϕ-TLIE Φ ∈ (Ap(G))∗∗ such that

Φ(ϕ) 6= 0 for every ϕ ∈ σ(Ap(G)). But the existence has been shown in theorem

2.2.16. �



CHAPTER 3

Additional Properties of Character Amenability

3.1. Hereditary properties of character amenability

The following result shown in [31, Theorem 2.6, p. 700] summarizes the main

hereditary properties of left character amenability. A similar result holds for right

character amenability.

Theorem 3.1.1. Let A,B be Banach algebras and I be a closed two-sided ideal

of A.

(i) If A is left character amenable, and u : A → B is a continuous homo-

morphism with dense range (i.e. u(A) = B), then B is also left character

amenable. In particular, if A is left character amenable, then A/I is

character amenable for every closed ideal I of A.

(ii) If A is left character amenable, then I is left character amenable if and

only if I has a bounded left approximate identity.

(iii) If both I and A/I are left character amenable then A is also left character

amenable.

(iv) The unitization algebra A] is left character amenable if and only if A is

left character amenable.

(v) A × B is left character amenable if and only if both A and B are left

character amenable.

Proof. (i) It suffices to show that B is left ϕ-amenable for every ϕ ∈ σ(B) ∪

{0}. Let ϕ ∈ σ(B) ∪ {0} and E be a Banach B-bimodule for which the right

module action is given by x · b = ϕ(b)x, where b ∈ B, x ∈ E. Clearly if ϕ 6= 0, then

ϕ ◦ u 6= 0 and for every a, b ∈ A,

ϕ ◦ u(ab) = ϕ(u(a)u(b)) = ϕ ◦ u(a)ϕ ◦ u(b).

32
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So ϕ ◦u ∈ σ(A)∪{0}. Then E can be identified as a Banach A-bimodule with the

following operations:

x · a = x · u(a) = ϕ(u(a))x, a · x = u(a) · x, (a ∈ A, x ∈ E).

Now take d ∈ Z1(B,E∗). It is routine to check d ◦ u ∈ Z1(A,E∗). In fact, for

a, a′ ∈ A,

d◦u(aa′) = d(u(a)u(a′)) = d(u(a)) ·u(a′)+u(a) ·d(u(a′)) = d◦u(a) ·a′+a ·d◦u(a′).

Since A is left character amenable, it follows that there exists f ∈ E∗ such that

for every a ∈ A,

d ◦ u(a) = δf (a) = a · f − f · a.

Since u(A) = B, for every b ∈ B, there exists a sequence (an)n ⊂ A such that

u(an)→ b. Using the continuity of module actions, we have

d(b) = d(lim
n
u(an)) = lim

n
d ◦ u(an) = lim

n
δf (an) = lim

n
(an · f − f · an)

= lim
n

(u(an) · f − f · u(an)) = b · f − f · b = δf (b).

Thus there exists f ∈ E∗ such that d(b) = δf (b). Hence B is left ϕ-amenable for

every ϕ ∈ σ(B) ∪ {0} and hence is left character amenable.

(ii) If I is left character amenable, then I has a bounded left approximate

identity by proposition 2.2.2. For the converse, let I C A, ϕ ∈ σ(I). Let u0 ∈ I

be such that ϕ(u0) = 1 and let a ∈ A. We first show ϕ̃(a) = ϕ(au0) defines an

element of σ(A) extending ϕ on A. Indeed, put J = kerϕ. If a ∈ A, b ∈ J, then

ab ∈ I and

ϕ(ab) = ϕ(u0)ϕ(ab) = ϕ(u0ab) = ϕ(u0a)ϕ(b) = 0.

So J is a closed ideal of A. Obviously, ϕ̃ is a linear functional. For the multiplicative

property of ϕ̃, given every a, b ∈ A,

ϕ̃(ab) = ϕ(abu0) = ϕ(au0bu0) = ϕ(au0)ϕ(bu0) = ϕ̃(a)ϕ̃(b),

since au0bu0 − abu0 = a(u0bu0 − bu0) ⊂ J. Hence ϕ̃ ∈ σ(A) and ϕ̃|I = ϕ. By the

assumption of left character amenability of A, there exists ϕ̃-TLIE Φ̃ ∈ A∗∗ such

that Φ̃(ϕ̃) 6= 0.
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Since I∗∗ = (I∗)∗ = (A∗/I⊥)∗, if we can show Φ̃(I⊥) = {0}, then Φ(f + I⊥) :=

Φ̃(f) where f ∈ A∗ will be a well defined element of I∗∗. Take λ ∈ I⊥, then

〈Φ̃, λ〉 = ϕ̃(u0)〈Φ̃, λ〉 = 〈Φ̃, u0 · λ〉 = 〈Φ̃, 0〉 = 0,

since 〈u0 · λ, a〉 = 〈λ, au0〉 = 0, for every a ∈ A. Moreover, for f ∈ A∗ and a ∈ I,

〈Φ, a · (f + I⊥)〉 = 〈Φ, a · f + I⊥〉 = 〈Φ̃, a · f〉 = ϕ̃(a)〈Φ̃, f〉 = ϕ(a)〈Φ, f + I⊥〉,

and

〈Φ, ϕ〉 = 〈Φ, ϕ̃+ I⊥〉 = 〈Φ̃, ϕ̃〉 6= 0.

Thus Φ is the required ϕ-TLIE, so I is also left character amenable.

(iii) Suppose ϕ ∈ σ(A) and d ∈ Z1(A,E∗), where E ∈ MA
ϕ . Since E can be

identified with a Banach I-bimodule such that E ∈ MI
ϕ, it follows that d|I ∈

Z1(I, E∗). By the left character amenability of I, there exists f ∈ E∗ such that

d|I = δ′f ,

where δ′f : I → E∗ is the inner derivation by f , in other words, d(a) = δ′f (a) =

a · f − f · a, for every a ∈ I. If we denote δf to be the natural extension of δ′f on

A, then for a ∈ A, b ∈ I,

0 = (d− δf )(ab) = a · (d− δf )(b) + (d− δf )(a) · b,

so (d− δf )(a) · b = 0. Similarly, we have

0 = (d− δf )(ba) = b · (d− δf )(a) + (d− δf )(b) · a,

so b · (d− δf )(a) = 0. Thus for x ∈ E,

〈(d− δf )(a), b · x〉 = 〈(d− δf )(a) · b, x〉 = 0,

and

〈(d− δf )(a), x · b〉 = 〈b · (d− δf )(a), x〉 = 0.

Let EI be a closed linear span of I ·E ∪E · I. The above two identities imply that

d − δf maps A into E⊥I , and d − δf ∈ Z1(A,E⊥I ) = Z1(A, (E/EI)
∗). We already
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know that E/EI is a Banach A-bimodule since

a · (x+EI) = a · x+EI , (x+EI) · a = x · a+EI = ϕ(a)x+EI , (a ∈ A, x ∈ E)

are both well-defined. We distinguish two cases.

Case I: If I ⊂ kerϕ, we can define a character ϕ̂ of A/I by ϕ̂(a + I) = ϕ(a). We

will construct a derivation d̃− δf ∈ Z1(A/I, (E/EI)
∗) induced by d− δf . Indeed,

the module operations from I to E give rise to trivial operators on E/EI , so E/EI

is an A/I-bimodule in which the module structures on E/EI are defined by:

(x+EI) · (a+ I) := (x+EI) ·a = ϕ(a)x+EI = ϕ̂(a+ I)x+EI = ϕ̂(a+ I)(x+EI),

(a+ I) · (x+ EI) := a · (x+ EI) = a · x+ EI , (a ∈ A, x ∈ E).

Therefore E/EI ∈MA/I
ϕ̂ . Furthermore, d− δf = 0 on I and d− δf ∈ Z1(A,E⊥I ) =

Z1(A, (E/EI)
∗). Define d̃− δf (a+ I) := (d− δf )(a) for a ∈ A. We will show that

d̃− δf ∈ Z1(A/I, (E/EI)
∗). Firstly since d − δf = 0 on I, the map d̃− δf is well

defined and also continuous. For the derivation property, for a + I, a′ + I ∈ A/I,

then

d̃− δf ((a+ I)(a′ + I)) = d̃− δf (aa′ + I) = (d− δf )(aa′)

= (d− δf )(a) · a′ + a · (d− δf )(a′)

= (d− δf )(a) · (a′ + I) + (a+ I) · (d− δf )(a′)

= ˜(d− δf )(a+ I) · (a′ + I) + (a+ I) · ˜(d− δf )(a′ + I).

By the left character amenability of A/I, there exists g ∈ (E/EI)
∗ = E⊥I ⊂ E∗

such that d̃− δf = δg. So for every a ∈ A,

(d− δf )(a) = d̃− δf (a+ I) = δg(a+ I) = (a+ I) · g − g · (a+ I) = a · g − g · a.

Thus d = δf + δg = δf+g, as was to be shown.

Case II: If I * kerϕ then there exists b0 ∈ I such that ϕ(b0) 6= 0. Then d̃ :=

d− δf = 0 on A. Indeed, for every a ∈ A, b0 · d̃(a) = d̃(b0 · a)− d̃(b0) · a = 0. Thus

b0 · d̃(a) = 0 for every a ∈ A. By the definition of module action on E∗, we have

b0 · d̃(a) = ϕ(b0)d̃(a). So d̃(a) = 0 for every a ∈ A. Then d̃ = d− δf = 0. In other
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words, d = δf , as required.

Note: for the case of I * kerϕ, we do not have to use character amenability of A/I.

Instead, character amenability of I will be sufficient to show character amenability

of A.

(iv) If A is left character amenable, then since A is a closed ideal of A] = A⊕C,

and C is left character amenable, it follows that A] is left character amenable by

(iii).

Conversely, suppose A] is left character amenable, and let ϕ ∈ σ(A), E ∈MA
ϕ

and d ∈ Z1(A,E∗). We construct ϕ̃ ∈ σ(A]) by

ϕ̃ : A] → C (a, α) 7→ α + ϕ(a).

It is easy to check ϕ̃ is linear and ϕ̃ ∈ σ(A]). In fact for (a, α), (a′, α′) ∈ A],

ϕ̃((a, α)(a′, α′)) = ϕ̃(aa′ + αa′ + α′a, αα′) = αα′ + ϕ(aa′) + αϕ(a′) + α′ϕ(a)

= (α + ϕ(a))(α′ + ϕ(a)) = ϕ̃(a, α) ϕ̃(a′, α′).

Next E can be viewed as a Banach A]-bimodule by the following module actions:

(a, α) · x = αx+ a · x, x · (a, α) = αx+ x · a = ϕ̃(a, α)x, ((a, α) ∈ A], x ∈ E).

Hence E ∈ MA]

ϕ̃ . Define d̃ : A] → E∗ by d̃(a, α) = d(a), (a, α) ∈ A]. Clearly d̃ is

linear and continuous. It is also a derivation. Since for (a, α), (a′, α′) ∈ A],

d̃((a, α)(a′, α′)) = d̃(aa′ + α′a+ αa′, αα′) = d(aa′ + α′a+ αa′)

= αd(a′) + α′d(a) + d(aa′) = αd(a′) + α′d(a) + a · d(a′) + d(a) · a′

= αd(a′) + α′d(a) + ϕ(a)d(a′) + d(a) · a′.

On the other hand,

(a, α) · d̃(a′, α′) + d̃(a, α) · (a′, α′) = (a, α)d(a′) + d(a) · (a′, α′)

= ϕ̃(a, α)d(a′) + α′d(a) + d(a) · a′

= (ϕ(a) + α)d(a′) + α′d(a) + d(a) · a′

= ϕ(a)d(a′) + αd(a′) + α′d(a) + d(a) · a′.
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Therefore d̃ ∈ Z1(A], E∗), so there exists f ∈ E∗ such that d̃ = δf . Then for every

a ∈ A,α ∈ C,

d(a) = d̃(a, α) = δf (a, α) = (a, α) · f − f · (a, α) = a · f − f · a.

Hence d = δf on A. Then A is also left character amenable.

(v) Let π : A×B → A, (a, b) 7→ a be the projection map. Then π is a continuous

surjective homomorphism. If A × B is left character amenable, then applying (i)

we have A is left character amenable. Similarly B is also left character amenable.

Conversely, if both A and B are left character amenable, clearly B ∼= {(0, b), b ∈

B}, B / A× B and (A× B)/B = A, so by (iii), we have A× B is left character

amenable. �

For the rest of this section our aim is to give an alternative proof of theo-

rem 3.1.1 (ii) just using the original definition of character amenability involving

derivations. But we require an extra condition that I has a bounded two-sided

approximate identity. More precisely, we will prove that if A is left character

amenable and I has a bounded two-sided approximate identity then I is left char-

acter amenable.

Definition 3.1.2. Let A be a Banach algebra. A Banach A-bimodule E is

called left pseudo-unital if

E = A · E = {a · x : a ∈ A, x ∈ E}.

Similarly, one defines right pseudo-unital and pseudo-unital Banach modules.

The next lemma is similar to lemma 2.2.1.

Lemma 3.1.3. Let A be a Banach algebra with a bounded right approximate

identity and let E be a Banach A-bimodule such that A·E = {0}. ThenH1(A,E∗) =

{0}.

Lemma 3.1.4. Let A be a Banach algebra with a bounded two-sided approximate

identity and ϕ ∈ σ(A). The following are equivalent:

(i) H1(A,E∗) = {0} for each E ∈MA
ϕ .

(ii) H1(A,E∗) = {0} for each left pseudo-unital E ∈MA
ϕ .
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Proof. That (i) implies (ii) is trivial. For the converse, let E ∈ MA
ϕ , and let

d ∈ Z1(A,E∗). Let

E0 = A · E = {a · x : a ∈ A, x ∈ E}.

By Cohen’s factorization theorem, E0 is a closed bimodule of E. Define π : E∗ →

E0
∗ to be the restriction map. It is routinely checked that π is a continuous

module homomorphism. So π ◦d ∈ Z1(A,E0
∗) and E0 ∈MA

ϕ . By our assumption,

H1(A,E0
∗) = {0}. So there exists f0 ∈ E0

∗ such that

π ◦ d(a) = δf0(a) = a · f0 − f0 · a, (a ∈ A). (∗)

By the Hahn-Banach theorem, there exists f ∈ E∗ such that f |E0 = f0. Define

d̃ := d − δf . Then d̃ is a continuous derivation from A to E∗. We show that

d̃ ∈ Z1(A,E⊥0 ). Indeed, for every a ∈ A, x ∈ E0,

〈(d− δf )(a), x〉E∗,E0 = 〈d(a), x〉E∗,E0 − 〈δf (a), x〉E∗,E0

= 〈d(a), x〉E∗,E0 − 〈f, x · a〉E∗,E0 + 〈f, a · x〉E∗,E0

= 〈d(a)|E0 , x〉E∗0 ,E0 − 〈f |E0 , x · a〉E∗0 ,E0 + 〈f |E0 , a · x〉E∗0 ,E0

= 〈(π ◦ d)(a), x〉E∗0 ,E0 − 〈f0, x · a〉E∗0 ,E0 + 〈f0, a · x〉E∗0 ,E0

= 〈(π ◦ d)(a)− a · f0 + f0 · a, x〉E∗0 ,E0 = 0,

where the last identity followed from (∗). The quotient space E/E0 can be identified

with a A-bimodule and from the definition of E0, we have

A · (E/E0) = {a · (x+ E0) : a ∈ A, x ∈ E} = {a · x+ E0 : a ∈ A, x ∈ E} = {0}.

So H1(A, (E/E0)∗) = H1(A,E0
⊥) = {0} by lemma 3.1.3. Hence, there is ϕ ∈

E0
⊥ ⊂ E∗ such that for every a ∈ A, d̃(a) = δϕ(a) = a · ϕ − ϕ · a. Then d =

δf + δϕ = δf+ϕ, as required. �

Alternative proof of Theorem 3.1.1 (ii): our objective is to give a direct proof

that if A is left character amenable and I has a bounded two-sided approximate

identity, then I is left character amenable.
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By the result of lemma 3.1.4, it suffices to show that H1(I, E∗) = {0} for each

left pseudo-unital E ∈MI
ϕ provided that I has a bounded two-sided approximate

identity.

In the proof of theorem 3.1.1 (ii) we already showed that every ϕ ∈ σ(I) extends

to some ϕ̃ ∈ σ(A). More precisely, we defined ϕ̃(a) = ϕ(au0) where a ∈ A and

u0 ∈ I with ϕ(u0) = 1. Let (eα)α be a bounded two-sided approximate identity for

I with ‖eα‖ ≤ M. Let E ∈ MI
ϕ be left pseudo-unital and d ∈ Z1(I, E∗). We will

construct E ∈MA
ϕ̃ from E ∈MI

ϕ and extend d to a continuous derivation d̃ on A.

The Banach A-bimodule structure on E extending its I-bimodule structure is

defined as follows: for a ∈ A, x ∈ E with x = b · y, b ∈ I and y ∈ E, we set

a · x = a · (b · y) := (ab) · y, x · a = ϕ̃(a)x.

We first show that the left action above does not depend on the particular rep-

resentation of x as b · y, that is, the left module action is well-defined. In fact,

let b′, y′ ∈ E with x = b′ · y′ = b · y, then using the fact that (eα)α is a bounded

two-sided approximate identity for I,

(ab′) ·y′ = a · (b′ ·y′) = lim
α

(aeα) · (b′ ·y′) = lim
α

(aeα) · (b ·y) = lim
α

(aeαb) ·y = (ab) ·y.

It is routinely checked that the two operations of A on E turn E into a Banach

A-bimodule and E ∈MA
ϕ̃ .

Next, we extend d to a continuous derivation d̃ on A. Define

d̃ : A→ E∗, a 7→ w∗- lim
α
d(eαa).

To show that the limit exists, we verify that for a ∈ A, x ∈ E and x = b · y with

b ∈ I, y ∈ E, we have

〈d̃(a), x〉E∗,E := lim
α
〈d(eαa), x〉E∗,E = 〈d(ab)− ϕ̃(a)d(b), y〉E∗,E.

In fact,

lim
α
〈d(eαa), x〉E∗,E = lim

α
〈d(eαa), b · y〉E∗,E

= lim
α
〈d(eαa) · b, y〉E∗,E



3.1. HEREDITARY PROPERTIES OF CHARACTER AMENABILITY 40

Since d is a derivation, it follows that

lim
α
〈d(eαa), x〉E∗,E = lim

α
〈d(eα(ab))− (eαa) · d(b), y〉E∗,E

= lim
α
〈d(eα(ab)), y〉E∗,E − lim

α
〈(eαa) · d(b), y〉E∗,E

= lim
α
〈d(eα(ab)), y〉E∗,E − lim

α
ϕ(eαa)〈d(b), y〉E∗,E (3.1.1)

= 〈d(ab), y〉E∗,E − ϕ(au0)〈d(b), y〉E∗,E (3.1.2)

= 〈d(ab)− ϕ̃(a)d(b), y〉E∗,E.

The equation (3.1.1) holds since E∗ ∈ ϕMI . The equation (3.1.2) holds since d is

continuous and in addition

lim
α
ϕ(eαa) = lim

α
ϕ(eαau0) since ϕ(u0) = 1

= lim
α
ϕ(eαu0au0) (3.1.3)

= lim
α
ϕ(eαu0)ϕ(au0)

= ϕ(u0)ϕ(au0) = ϕ(au0).

The equation (3.1.3) holds since kerϕ is an ideal of I and eαau0 − eαu0au0 =

eα(au0 − u0au0) ∈ kerϕ.

Therefore w∗- limα d(eαa) exists and d̃ is well-defined. Next we will show that

d̃ ∈ Z1(A,E∗) when E is equipped with the above module actions.

Fix a ∈ A, the linearity of d̃(a) and d̃ are both clear. For the continuity,

‖d̃(a)‖E∗ = sup
x∈E,‖x‖≤1

|〈d̃(a), x〉| = sup
x∈E,‖x‖≤1

| lim
α
〈d(eαa), x〉|

= sup
x∈E,‖x‖≤1

lim
α
|〈d(eαa), x〉| ≤ sup

x∈E,‖x‖≤1

lim
α
‖d(eαa)‖‖x‖

≤ lim
α
‖d(eαa)‖ ≤ ‖d‖‖M‖‖a‖.

So d̃(a) ∈ E∗. Moreover,

‖d̃‖ = sup
a∈A,‖a‖≤1

‖d̃(a)‖ ≤ sup
a∈A,‖a‖≤1

‖d‖‖M‖‖a‖ ≤ ‖d‖‖M‖.
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Hence d̃ ∈ B(A,E∗). Next we show that d̃(aeαc)
w∗−→ d̃(ac). In fact for each x =

b · y ∈ E with b ∈ I, y ∈ E,

〈d̃(a), x〉 = 〈d̃(a), b · y〉 = 〈d(ab)− ϕ̃(a)d(b), y〉,

so

〈d̃(aeαc), x〉 = 〈d̃(aeαc), b · y〉

= 〈d(aeαcb)− ϕ̃(aeαc)d(b), y〉

→ 〈d(acb)− ϕ̃(ac)d(b), y〉 = 〈d̃(ac), b · y〉 = 〈d̃(ac), x〉.

It remains to show d̃ is also a derivation, i.e., d̃(ac) = a · d̃(c)+ d̃(a) · c, for a, c ∈ A.

Indeed,

d̃(ac) = w∗- lim
α
d̃(aeαc) = w∗- lim

α
[w∗- lim

β
d(eβaeαc)]

= w∗- lim
α

[w∗- lim
β
d(eβa) · (eαc) + w∗- lim

β
(eβa) · d(eαc)]

= w∗- lim
α

[d̃(a) · (eαc) + a · d(eαc)] (3.1.4)

= d̃(a) · c+ a · d̃(c). (3.1.5)

The equation (3.1.4) holds since for every x ∈ E,

lim
β
〈d(eβa) · (eαc), x〉 = lim

β
〈d(eβa), (eαc) · x〉

= 〈d̃(a), (eαc) · x〉 = 〈d̃(a) · (eαc), x〉,

and

lim
β
〈(eβa) · d(eαc), x〉 = lim

β
〈d(eαc), x · (eβa)〉

= lim
β
〈d(eαc), ϕ̃(eβa)x〉

= lim
β
〈d(eαc), ϕ̃(eβ)ϕ̃(a)x〉

= 〈d(eαc), ϕ̃(a)x〉 since lim
β
ϕ̃(eβ) = 1

= 〈d(eαc), x · a〉 = 〈a · d(eαc), x〉.
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The reason why equation (3.1.5) holds is similar. Therefore we have shown d̃ ∈

Z1(A,E∗) where E ∈MA
ϕ̃ .

Finally we show that d is the restriction of d̃ on I. For every a ∈ I, d̃(a) = w∗-

limα d(eαa) = d(a), since ‖a − eαa‖ → 0 and d is continuous. Hence d = d|I . By

the left character amenability of A, there exists f ∈ E∗ such that

d̃(a) = δf (a) = a · f − f · a.

Since d̃|I = d it follows that for every a ∈ I,

d(a) = d̃(a) = δf (a) = a · f − f · a,

So I is left character amenable, which is what we wanted to show.

3.2. Bounded approximate identities and ϕ-amenability

The following characterization of left ϕ-amenability is due to Kaniuth, Lau and

Pym in [25, Proposition 2.1, p. 90].

Theorem 3.2.1. Let A be a Banach algebra and ϕ ∈ σ(A). If the ideal I =

kerϕ has a bounded left approximate identity, then A is left ϕ-amenable and has

a bounded left approximate identity.

Proof. Let (dβ)β be a bounded left approximate identity for I. Choose u ∈ A

with ϕ(u) = 1. Trivially for each a ∈ A, a = ϕ(a)u+ (a− ϕ(a)u), so A = I ⊕Cu,

and codim(I) = 1. Therefore A also has a bounded left approximate identity [9,

Proposition 7.1, p. 43], say (eα)α. By Cohen’s factorization theorem, both I · A∗

and A · A∗ are closed linear subspaces of A∗. Since A = I ⊕ Cu, it follows that

A · A∗ = I · A∗ + u · A∗. Since for every a ∈ A,

〈u · ϕ, a〉 = 〈ϕ, au〉 = ϕ(a)ϕ(u) = ϕ(a),

we have u · ϕ = ϕ(u)ϕ = ϕ.

We claim that u · ϕ = ϕ /∈ I · A∗. Assume towards a contradiction that ϕ =

u · ϕ = b · f for some b ∈ I, f ∈ A∗. Then

〈f, b〉A∗,A = lim
β
〈f, dβb〉 = lim

β
〈b · f, dβ〉 = lim

β
〈ϕ, dβ〉 = 0.
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But on the other hand, since u = limα(eαu), it follows that 1 = limα ϕ(eαu) =

limα ϕ(eα), and hence

〈f, b〉A∗,A = lim
α
〈f, eαb〉 = lim

α
〈b · f, eα〉 = lim

α
ϕ(eα) = 1,

which is a contradiction. Thus u·ϕ /∈ I ·A∗. Since I ·A∗ ⊂ A·A∗ and u·ϕ ∈ A·A∗, by

the Hahn-Banach theorem, there exists n ∈ (A ·A∗)∗ such that n(I ·A∗) = {0} and

n(u·ϕ) = 1. Let us define Φ on A∗ by Φ(g) = n(u·g), (g ∈ A∗). Then it is routinely

checked that Φ is a bounded linear functional on A∗ and Φ(ϕ) = n(u · ϕ) = 1.

Let a = b+ λu, with b ∈ I, λ ∈ C. It follows that for every f ∈ A∗,

〈Φ, a · f〉 = 〈n, u · (a · f)〉 = 〈n, u · ((b+ λu) · f)〉

= 〈n, u · (b · f)〉+ λ〈n, u2 · f〉

= 〈n, (ub) · f〉+ λ〈n, (u2 − u) · f〉+ λ〈n, u · f〉

= λ〈n, u · f〉 since ub, u2 − u ∈ kerϕ

= ϕ(λu)〈Φ, f〉 = ϕ(b+ λu)〈Φ, f〉 = ϕ(a)〈Φ, f〉.

Hence Φ is a ϕ-TLIE and Φ(ϕ) 6= 0, which implies A is left ϕ-amenable. �

Our next objective is to prove a converse to theorem 3.2.1. First however,

we need some definitions. Richard Arens [1] defined two products on A∗∗ under

which A∗∗ becomes a Banach algebra. More precisely, the first and second Arens

products denoted by � and ♦ respectively, are defined as follows:

A∗∗ × A∗∗ → A∗∗, (Φ,Ψ) 7→ Φ�Ψ

〈Φ�Ψ, f〉A∗∗,A∗ := 〈Φ,Ψ · f〉A∗∗,A∗

and Ψ · f is defined by

〈Ψ · f, a〉A∗,A = 〈Ψ, f · a〉A∗∗,A∗ , (f ∈ A∗, a ∈ A). (∗)

Also, for the left multiplication,

A∗∗ × A∗∗ → A∗∗, (Φ,Ψ) 7→ Φ♦Ψ

〈Φ♦Ψ, f〉A∗∗,A∗ := 〈Ψ, f · Φ〉A∗∗,A∗ .
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and f · Φ is defined by

〈f · Φ, a〉A∗,A = 〈Φ, a · f〉A∗∗,A∗ , (f ∈ A∗, a ∈ A).

It is easy to show that A∗ is a Banach left A∗∗-module with the module multiplica-

tion given by (∗). With either of there products, A can be viewed as a subalgebra

of A∗∗. In general, the multiplication (Φ,Ψ) 7→ Φ�Ψ is not separately continuous

with respect to the w∗-topology on A∗∗. But for fixed Ψ ∈ A∗∗, the maps Φ→ Φ�Ψ

and Φ→ Ψ♦Φ are both w∗-continuous.

We also need to use the following well-known result for the proof of which we

refer to [9, Theorem 33.3, p. 224].

Lemma 3.2.2. Let A be a Banach algebra.

(i) (A∗∗,�) has a right identity if and only if A has a bounded right approx-

imate identity.

(ii) (A∗∗,♦) has a left identity if and only if A has a bounded left approximate

identity.

The following result which is a converse of theorem 3.2.1 is shown in [25,

Proposition 2.2, p. 90].

Theorem 3.2.3. Let A be a Banach algebra and ϕ ∈ σ(A). Suppose A is left

ϕ-amenable, and A has a bounded left approximate identity, then I = kerϕ has a

bounded left approximate identity.

Proof. By lemma 3.2.2 it suffices to verify that (kerϕ)∗∗ has a left identity

with respect to the second Arens product ♦. Let Φ ∈ A∗∗ be such that 〈Φ, a · f〉 =

ϕ(a)〈Φ, f〉, for all a ∈ A, f ∈ A∗ and Φ(ϕ)=1. Put

J(ϕ) = {Φ ∈ A∗∗, 〈Φ, ϕ〉 = 0}.

We claim that J(ϕ) is a w∗-closed ideal of (A∗∗,♦). Indeed, suppose (Φα)α ⊂ J(ϕ)

with Φα
w∗−→ Φ, Φ ∈ A∗∗, then 〈Φ, ϕ〉 = limα〈Φα, ϕ〉 = 0, i.e., Φ ∈ J(ϕ). And for

every a ∈ A,Ψ ∈ A∗∗ and Φ ∈ J(ϕ),

〈ϕ · Φ, a〉A∗,A = 〈Φ, a · ϕ〉A∗∗,A∗ = 〈Φ, ϕ(a)ϕ〉 = ϕ(a)〈Φ, ϕ〉 = 0.
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Thus ϕ · Φ = 0, and hence

〈Φ♦Ψ, ϕ〉A∗∗,A∗ = 〈Ψ, ϕ · Φ〉 = 0,

which implies Φ♦Ψ ∈ J(ϕ). Similarly

〈ϕ ·Ψ, a〉 = 〈Ψ, a · ϕ〉 = 〈Ψ, ϕ(a)ϕ〉 = 〈Ψ(ϕ)ϕ, a〉.

Thus ϕ ·Ψ = Ψ(ϕ)ϕ and

〈Ψ♦Φ, ϕ〉 = 〈Φ, ϕ ·Ψ〉 = 〈Φ,Ψ(ϕ)ϕ〉 = Ψ(ϕ)〈Φ, ϕ〉 = 0,

which implies Ψ♦Φ ∈ J(ϕ). Moreover J(ϕ) can be canonically identified with

I∗∗ = (kerϕ)∗∗. In fact,

(kerϕ)⊥ = {f ∈ A∗ : f |kerϕ = 0} = Cϕ.

It follows that

((kerϕ)∗)∗ ∼= (A∗/(kerϕ)⊥)∗ = (A∗/Cϕ)∗ ∼= (Cϕ)⊥ = J(ϕ).

Let (eα)α be a bounded left approximate identity for A. Then there exist Φ0 ∈ A∗∗

such that Φ0 is a w∗-cluster point of the canonical image of (eα)α inA∗∗ by Alaoglu’s

theorem [10, Theorem V.4.2, p. 424]. Without loss of generality, we may assume

Φ0 = w∗-limα eα. Let Φ1 = Φ0−Φ ∈ A∗∗. It remains to show Φ1 is the left identity

for J(ϕ). Firstly, Φ1 ∈ J(ϕ) since

〈Φ1, ϕ〉 = 〈Φ0, ϕ〉 − 〈Φ, ϕ〉 = lim
α
〈eα, ϕ〉 − Φ(ϕ) = lim

α
〈ϕ, eα〉 − Φ(ϕ) = 1− 1 = 0.

Next, for a ∈ I and f ∈ A∗,

〈Φ1 · a, f〉 = 〈Φ1, a · f〉 = 〈Φ0 − Φ, a · f〉

= lim
α
〈eα, a · f〉 − 〈Φ, a · f〉

= lim
α
〈a · f, eα〉 − ϕ(a)〈Φ, f〉 since Φ is ϕ-TLIE

= lim
α
〈f, eαa〉 − ϕ(a)〈Φ, f〉

= 〈f, a〉 = 〈a, f〉 since a ∈ I = kerϕ.
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Since I ↪→ I∗∗ is w∗-dense in I∗∗, for each Ψ ∈ J(ϕ) = I∗∗, there exists a net

(aβ)β ⊂ I such that Ψ = w∗-limβ aβ. It follows that for all f ∈ A∗,

〈Φ1♦Ψ, f〉 = lim
β
〈Φ1 · aβ, f〉 = lim

β
〈aβ, f〉 = 〈Ψ, f〉.

That is Φ1♦Ψ = Ψ for each Ψ ∈ I∗∗. Therefore Φ1 is a left identity for J(ϕ). �

As an immediate consequence of theorem 3.2.1 and theorem 3.2.3 we obtain

the following corollaries.

Corollary 3.2.4. Let A be a Banach algebra and ϕ ∈ σ(A). Then I = kerϕ

has a bounded left approximate identity if and only if A is left ϕ-amenable and A

has a bounded left approximate identity.

Corollary 3.2.5. Let A be Banach algebra. A is left (right) character amenable

if and only if kerϕ has a bounded left (right) approximate identity for every

ϕ ∈ σ(A) ∪ {0}.

Corollary 3.2.6. Every C∗-algebra is character amenable.

Proof. The result follows from corollary 3.2.5 and the fact that every closed

two-sided ideal of a C∗-algebra has a bounded approximate identity [32, Theorem

7.4, p. 27]. �

3.3. Character amenability of projective tensor products

We turn to projective tensor product A⊗̂B of two Banach algebras A and B.

Recall that, if m ∈ A⊗̂B, then

m =
∞∑
i=1

ai ⊗ bi,
∞∑
i=1

‖ai‖‖bi‖ <∞, (ai ∈ A, bi ∈ B),

and ‖m‖π = inf

{
∞∑
i=1

‖ai‖ ‖bi‖, m =
∞∑
i=1

ai ⊗ bi

}
.

For f ∈ A∗, g ∈ B∗, we denote by f ⊗ g the element in (A⊗̂B)∗ which is defined

by (f ⊗ g)(a⊗ b) := f(a)g(b). In particular, if ϕ ∈ σ(A), φ ∈ σ(B), then we have

ϕ⊗ φ ∈ σ(A⊗̂B). In fact, for

m =
∑
i

ai ⊗ bi, m′ =
∑
j

a′j ⊗ b′j,
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〈ϕ⊗ φ,mm′〉 = 〈ϕ⊗ φ,
∑
i

∑
j

aia
′
j ⊗ bib′j〉

=
∑
i

∑
j

〈ϕ⊗ φ, aia′j ⊗ bib′j〉

=
∑
i

∑
j

ϕ(ai)ϕ(a′j)φ(bi)φ(b′j)

= (
∑
i

ϕ(ai)φ(bi))(
∑
j

ϕ(a′j)φ(b′j))

= 〈ϕ⊗ φ,m〉〈ϕ⊗ φ,m′〉.

To see whether A⊗̂B also preserves the character amenability if its factor algebras

are character amenable, we need the following lemma in [25, lemma 3.1, p. 92].

Lemma 3.3.1. Let A be a Banach algebra and I a closed ideal of A. Let ϕ ∈

σ(A) be such that ϕ|I 6= 0. If A is left ϕ-amenable, then I is left ϕ|I-amenable.

Proof. Let Φ ∈ A∗∗ be a ϕ-TLIE such that Φ(ϕ) 6= 0. Since A ↪→ A∗∗ is

w∗-dense in A∗∗, for such Φ ∈ A∗∗, there exists a net (eα)α in A such that Φ = w∗-

limα eα. Then for every f ∈ I⊥, a ∈ I,

〈Φ, a · f〉 = lim
α
〈eα, a · f〉 = lim〈a · f, eα〉 = lim

α
〈f, eαa〉 = 0.

Choose a ∈ I with ϕ(a) = 1, we conclude that Φ(I⊥) = {0}. Since I∗∗ = (I∗)∗ =

(A∗/I⊥)∗, it follows that for g ∈ A∗, Φ̃(g + I⊥) := Φ(g) will be a well defined

element of I∗∗. So

Φ̃(ϕ|I) = Φ̃(ϕ+ I⊥) = Φ(ϕ) 6= 0.

Moreover, for every a ∈ I, g ∈ A∗,

〈Φ̃, a · (g + I⊥)〉 = 〈Φ̃, a · g + I⊥〉 = 〈Φ, a · g〉 = ϕ(a)〈Φ, g〉 = ϕ|I(a)〈Φ̃, g + I⊥〉,

which implies Φ̃ is a ϕ|I-TLIE. Therefore I is left ϕ|I-amenable. �

Theorem 3.3.2. Let A and B be Banach algebras and ϕ ∈ σ(A), φ ∈ σ(B).

Then A⊗̂B is left ϕ⊗φ-amenable if and only if A is left ϕ-amenable and B is left

φ-amenable.
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Proof. (⇒) If A⊗̂B is left ϕ ⊗ φ-amenable, then there exists Φ ∈ (A⊗̂B)∗∗

such that Φ(ϕ⊗ φ) = 1 and for all a⊗ b ∈ A⊗̂B, T ∈ (A⊗̂B)∗ = B(A,B∗),

〈Φ, (a⊗ b) · T 〉 = (ϕ⊗ φ)(a⊗ b)〈Φ, T 〉 = ϕ(a)φ(b)〈Φ, T 〉.

In particular, if f ∈ A∗, then T = f ⊗ φ ∈ (A⊗̂B)∗ and we have

〈Φ, (a× b) · (f ⊗φ)〉(A⊗̂B)∗∗,(A⊗̂B)∗ = (ϕ⊗φ)(a⊗ b)〈Φ, f ⊗φ〉 = ϕ(a)φ(b)〈Φ, f ⊗φ〉.

Choose a0 ∈ A, b0 ∈ B with ϕ(a0) = φ(b0) = 1 and define Φφ ∈ A∗∗ by Φφ(f) =

Φ(f ⊗ φ), f ∈ A∗. So Φφ(ϕ) = Φ(ϕ⊗ φ) = 1. Furthermore, for all a ∈ A, f ∈ A∗,

〈Φφ, a · f〉 = Φ((a · f)⊗ φ)

= ϕ(a0) φ(b0)〈Φ, (a · f)⊗ φ〉

= 〈Φ, (a0 ⊗ b0) · ((a · f)⊗ φ)〉 (3.3.1)

= 〈Φ, (a0 · (a · f))⊗ (b0 · φ)〉

= 〈Φ, ((a0a) · f)⊗ (b0 · φ)〉

= 〈Φ, ((a0a)⊗ b0) · (f ⊗ φ)〉 (3.3.2)

= ϕ(a0a) φ(b0)〈Φ, f ⊗ φ〉 (3.3.3)

= ϕ(a)〈Φ, f ⊗ φ〉

= ϕ(a)〈Φφ, f〉.

The equations (3.3.1) and (3.3.3) hold since Φ is a ϕ⊗φ-TLIE. The identity (3.3.2)

holds since for x⊗ y ∈ A⊗̂B,

〈((a0a)⊗ b0) · (f ⊗ φ), x⊗ y〉 = 〈f ⊗ φ, (x⊗ y)((a0a)⊗ b0)〉

= 〈f ⊗ φ, (xa0a)⊗ (yb0)〉

= 〈f, x(a0a)〉〈φ, yb0〉

= 〈(a0a) · f, x〉〈b0 · φ, y〉

= 〈((a0a) · f)⊗ (b0 · φ), x⊗ y〉
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Thus A is left ϕ-amenable. Likewise, if we define Φϕ ∈ B∗ by Φϕ(g) = Φ(ϕ⊗ g),

g ∈ B∗, then Φϕ is a φ-TLIE with Φϕ(φ) = 1, hence B is also left φ-amenable.

Conversely, let A and B be left ϕ-amenable and left φ-amenable, respectively.

Suppose A] and B] are unitization of A and B, and eA, eB are their identities, then

an arbitrary element of A]⊗̂B] is of the form

αeA ⊗ eB + eA ⊗ b+ a⊗ eB +
∞∑
n=1

an ⊗ bn, (α ∈ C, a, ai ∈ A, b, bi ∈ B).

It follows that A⊗̂B is a closed two-sided ideal of A]⊗̂B]. In addition, if ϕ′ and φ′

are the extension of ϕ and φ to A] and B], then ϕ′ ⊗ φ′|A⊗̂B = ϕ ⊗ φ. It follows

from lemma 3.3.1 that if we can show A]⊗̂B] is left ϕ′ ⊗ φ′-amenable, then A⊗̂B

is left ϕ⊗φ-amenable. So without loss of generality, we can always assume A and

B are unital with respective identities eA and eB.

It remains to show that if E is a Banach A⊗̂B-bimodule such that

x · (a⊗ b) = (ϕ⊗ φ)(a⊗ b)x = ϕ(a)φ(b)x, (x ∈ E, a⊗ b ∈ A⊗̂B),

then H1(A⊗̂B,E∗) = {0}. Let d ∈ Z1(A⊗̂B,E∗). Since E can be identified with

a Banach A-bimodule with the following operations:

a · x = (a⊗ eB) · x, x · a = x · (a⊗ eB) = ϕ(a)φ(eB)x = ϕ(a)x, (a ∈ A, x ∈ E),

it follows that E ∈MA
ϕ . Define dA : A→ E∗ by dA(a) = d(a⊗eB), a ∈ A. It is easy

to check that dA is a continuous derivation from A to E∗. By the left ϕ-amenability

of A, there exists f ∈ E∗ such that for every a ∈ A, dA(a) = a · f − f · a. Let δf

be the inner derivation from A⊗̂B to E∗. Then

d(a⊗ eB) = dA(a) = a · f − f · a = (a⊗ eB) · f − f · (a⊗ eB) = δf (a⊗ eB).

So d̃ := d − δf = 0 on A ⊗ eB. Since A ⊗ eB and eA ⊗ B commute, i.e., for all

a ∈ A, b ∈ B,

a⊗ b = (a⊗ eB)(eA ⊗ b) = (eA ⊗ b)(a⊗ eB),

it follows that

d̃(a⊗ b) = (a⊗ eB) · d̃(eA ⊗ b) = d̃(eA ⊗ b) · (a⊗ eB).
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So

(a⊗ eB) · d̃(eA ⊗ b)− d̃(eA ⊗ b) · (a⊗ eB) = 0,

and therefore by taking closure in w∗-topology of E∗,

δg(A⊗ eB) = {0} for every g ∈ d̃(eA ⊗B)
w∗

. (∗)

Let F be the annihilator of d̃(eA⊗B) in E. Viewing E as a Banach B-bimodule

in which the module structures are given by

b · x = (eA ⊗ b) · x, x · b = x · (eA ⊗ b) = ϕ(eA)φ(b)x = φ(b)x, (x ∈ E, b ∈ B),

then F is a Banach B-submodule of E. Indeed, for every y ∈ F and b1, b2 ∈ B,

〈d̃(eA ⊗ b1), y · b2〉 = 〈d̃(eA ⊗ b1), y · (eA ⊗ b2)〉

= 〈d̃(eA ⊗ b1), φ(b2)y〉

= φ(b2)〈d̃(eA ⊗ b1), y〉 = 0,

which shows y · b2 ∈ F and hence F is a right B-module. Moreover,

〈d̃(eA ⊗ b1), b2 · y〉 = 〈d̃(eA ⊗ b1), (eA ⊗ b2) · y〉

= 〈d̃(eA ⊗ b1) · (eA ⊗ b2), y〉

= 〈d̃((eA ⊗ b1)(eA ⊗ b2))− (eA ⊗ b1) · d̃(eA ⊗ b2), y〉

= 〈d̃(eA ⊗ b1b2)− (eA ⊗ b1) · d̃(eA ⊗ b2), y〉

= 〈d̃(eA ⊗ b1b2), y〉 − 〈(eA ⊗ b1) · d̃(eA ⊗ b2), y〉

= 〈d̃(eA ⊗ b1b2), y〉 − 〈d̃(eA ⊗ b2), y · (eA ⊗ b1)〉

= −〈d̃(eA ⊗ b2), y · b1〉 = 0,

where the last identity holds since y ∈ F and y · (eA ⊗ b1) ∈ F by the previous

step. Therefore E/F is a Banach B-bimodule satisfying

(x+ F ) · b = x · b+ F = φ(b)x+ F = φ(b)(x+ F ), (x ∈ E, b ∈ B),
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that is, E/F ∈ MB
φ . Moreover, by the bipolar theorem [6, corollary 1.9, p. 127],

we have

(E/F )∗ = F⊥ = (⊥d̃(eA ⊗B))⊥ = d̃(eA ⊗B)
w∗

.

Define dB(b) = d̃(eA ⊗ b). Then dB is a continuous derivation of B into (E/F )∗.

Since B is left φ-amenable, it follows that there exists g ∈ (E/F )∗ ⊂ E∗ such that

for all b ∈ B,

d̃(eA ⊗ b) = dB(b) = b · g − g · b = (eA ⊗ b) · g − g · (eA ⊗ b).

For such g ∈ (E/F )∗, δg|A⊗eB = 0 by the identity (∗), so d̃ − δg is a continuous

derivation of A⊗̂B vanishing on A ⊗ eB and eA ⊗ B. Since (A ⊗ eB) ∪ (eA ⊗ B)

generates A⊗̂B, it follows that d̃− δg vanishes on all of A⊗̂B, thus

δg = d̃ = d− δf ,

and hence d = δf+g, as required. �

In general, it is not known whether for two arbitrary Banach algebras A and

B we must have

σ(A⊗̂B) = σ(A)× σ(B). (∗)

[14]. However, the identity in (∗) is known to be true for some special cases, for

example it both A and B are commutative or when both A and B are unital.

The result in the commutative case was shown independently by Tomiyama [33,

Theorem 2, p. 150] and by Gelbaum [15, Proposition 2, p. 529].

If A and B are unital, then every Φ ∈ σ(A⊗̂B) is of the form Φ = ϕ⊗ φ with

ϕ ∈ σ(A) and φ ∈ σ(B), where

ϕ(a) := Φ(a⊗ eB), φ(b) := Φ(eA ⊗ b), (a ∈ A, b ∈ B).

Corollary 3.3.3. Let A and B be Banach algebra such that σ(A⊗̂B) =

σ(A) × σ(B). Then A⊗̂B is left character amenable if and only if A and B are

left character amenable.

Proof. We only need to show the existence of bounded left approximate iden-

tity in A⊗̂B versus their existences in A and B. In fact, the equivalence was shown
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in [9, Theorem 8.2, p. 48] and [9, Theorem 8.3, p. 49] since the projective tensor

product norm is an algebra admissible norm. �



CHAPTER 4

Banach Function Algebras and their Character

Amenability

4.1. Banach function algebras

In this chapter, we will discuss character amenability of Banach function al-

gebras and uniform algebras. We will show in theorem 4.2.4 that in the case of

natural unital uniform algebras, character amenability is completely determined

by its Choquet boundary. We first introduce some elementary definitions.

Definition 4.1.1. Let S be a nonempty set and CS be the commutative alge-

bra of all functions on S. Let E be a subset of CS.

(i) E separates the points of S if for each s, t ∈ S with s 6= t, there exists

f ∈ E such that f(s) 6= f(t). E separates strongly the points of S if E

separates the points of S and if for each s ∈ S there exists f ∈ E such

that f(s) 6= 0.

(ii) The weakest topology τ on S such that each f ∈ E is continuous with

respect to τ is called E-topology on S.

(iii) If f ∈ CS, and F ⊂ S, we write ‖f‖F = sup
x∈F
|f(x)|.

Definition 4.1.2. Let X be a topological space.

(i) A is a function algebra on X if A is a subalgebra of CX which separates

strongly the points of X and the A-topology on X is the given topology.

(ii) A Banach function algebra on X is a function algebra on X which is also

a Banach algebra with respect to some norm.

(iii) A Banach function algebra A is called natural if σ(A) = {τx : x ∈ X},

where τx is the evaluation functional at x.

(iv) A uniform algebra on X is a Banach function algebra on X with the norm

‖ · ‖X .

53
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If A is a Banach function algebra on X, then for each f ∈ A, and x ∈ X,

|f(x)| = |τx(f)| ≤ ‖τx‖‖f‖ ≤ ‖f‖.

It follows that ‖f‖X ≤ ‖f‖ for every f ∈ A since τx is a character hence continuous

and ‖τx‖ ≤ 1 [8, Theoerm 2.1.29 (ii), p. 167].

Definition 4.1.3. Let X be a compact space and A is a unital Banach function

algebra on X. The Choquet boundary of A, denoted by Γ0(A), is the set of all

x ∈ X such that the point mass δx is the unique probability measure µ on X with

f(x) =
∫
X
fdµ for every f ∈ A.

Lemma 4.1.4. Let A be a unital Banach function algebra on a compact space

X and x ∈ X. If Mx = {f ∈ A : f(x) = 0} has a bounded approximate identity,

then there exists α, β with 0 < α < β < 1, such that for each open neighborhood

N of x there exists f ∈ A, with ‖f‖ ≤ 1, f(x) > β and f(y) < α for all y /∈ N.

Proof. Let (fα)α be a bounded approximate identity for Mx with ‖fα‖ ≤M

for some M ≥ 0. Let r = 1
1+M

. Since A separates strongly the points of X, it

follows that for each y ∈ X \ N, there exists f ∈ A, such that f(y) 6= 0 and

f(x) = 0. Multiplying f by some constant if necessary, we may assume f(y) > 1.

So there exists a neighborhood V of y such that ‖f‖V > 1. Compactness of X \N

implies that we can find f1, f2, · · · , fn ∈ M, such that for every y ∈ X \ N,

there exists 1 ≤ k ≤ n with |fk(y)| > 1. Let 0 < ε < r
2

and α0 ∈ I be such

that ‖fkfα0 − fk‖ < ε, for each k = 1, 2, · · ·n. Define f =
1−fα0
1+M

, then f ∈ A,

f(x) = 1
1+M

= r and ‖f‖ < 1+M
1+M

= 1. Also, for every y ∈ X \ N and for every

1 ≤ k ≤ n,

|(fkf)(y)| = 1

1 +M
|fk(y)− fk(y)fα0(y)| ≤ ‖fk − fkfα‖

1 +M
< ε.

But since for at least one k, |fk(y)| > 1, we have |f(y)| < ε for every y ∈ X \ N.

The assertion of the lemma follows if we put α = ε and β = r − ε. �

4.2. Character amenability of Banach function algebras

The following lemma which we shall need later is shown in [5, Theorem 2.2.1,

p. 88].
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Lemma 4.2.1. Let X be a compact space and A be a unital Banach function

algebra on X. Suppose there exists constants α, β with 0 < α < β < 1, such that

for every open neighborhood N of x, there exists f ∈ A, with ‖f‖ ≤ 1, f(x) > β,

and |f(y)| < β for every y /∈ N. Then x ∈ Γ0(A).

If we combine the previous two lemmas, we will get the following result due to

Hu, Sangani Monfared and Traynor in [21, Theorem 5.1, p. 69].

Theorem 4.2.2. If A is a character amenable unital Banach function algebra

on a compact space X, then Γ0(A) = X.

Proof. Clearly Γ0(A) ⊂ X, to complete the proof, it remains to show the

converse containment. SinceA is character amenable, it follows from corollary 3.2.5

that kerϕ has a bounded approximate identity for every ϕ ∈ σ(A). In particular,

for each x ∈ X, ker τx = Mx has a bounded approximate identity. So by lemma

4.1.4 and lemma 4.2.1, x ∈ Γ0(A) for every x ∈ X. �

For unital uniform algebras, we have the following characterization of the Cho-

quet boundary, for the proof of which we refer to [8, Theorem 4.3.5, p. 448].

Lemma 4.2.3. Let A be a unital uniform algebra on a compact space X and

x ∈ X. Then the following are equivalent:

(i) x ∈ Γ0(A).

(ii) x is a strong boundary point for A, that is, for every open neighborhood

of x, there exists f ∈ A such that f(x) = ‖f‖X = 1 and |f(y)| < 1 for all

y /∈ N.

(iii) Mx = {f ∈ A : f(x) = 0} has a bounded approximate identity.

Choquet boundary can completely characterize character amenability of a nat-

ural unital uniform algebra, in fact:

Theorem 4.2.4. A natural unital uniform algebra A on a compact space X is

character amenable if and only if Γ0(A) = X.

Proof. By theorem 4.2.2, character amenability of A implies that Γ0(A) = X.

For the converse, if Γ0(A) = X and σ(A) = {τx, x ∈ X}, then for every x ∈ X =
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Γ0(A), ker τx = {f ∈ A, f(x) = 0} has a bounded approximate identity by lemma

4.2.3. Then by corollary 3.2.5, A must be character amenable. �

Let X be a nonempty compact space. It is known that uniform algebra C(X) is

amenable. M.V. Sheinberg showed that if A is a unital amenable uniform algebra

on X, then A = C(X) [8, Theorem 5.6.2, p.709]. A natural question is to ask

whether classical amenability can be replaced by character amenability in Shein-

berg’s result. As we will show below, the analogue of Sheinberg’s result does not

hold for character amenable uniform algebras. Before that, we first define various

standard uniform algebras on a compact subset of Cn.

Definition 4.2.5. Let K be a nonempty compact subset of Cn.

(i) P(K) is the subalgebra of C(K) consisting of uniform limits of polynomials.

(ii) R(K) is the subalgebra of C(K) consisting of uniform limits of rational

functions which have the form p/q, where p and q are polynomials and

0 /∈ q(K).

(iii) A(K) is the subalgebra of C(K) consisting of functions analytic on the

interior of K.

Definition 4.2.6. Let A be an algebra of functions on a topological space X.

(i) A subset S of X is a peak set for A if there exists f ∈ A such that f(x) = 1

for every x ∈ S and |f(y)| < 1 for y ∈ X \ S.

(ii) A point x ∈ X is called a peak point for A if {x} is a peak set.

Definition 4.2.7. Let A be a unital uniform algebra on a compact space X

and ϕ ∈ σ(A). A probability measure µ on X is a Jensen measure for ϕ if for every

f ∈ A,

log |ϕ(f)| ≤
∫
X

log |f |dµ.

Example 4.2.8. In this example, we show that there exists a character amenable

uniform algebra other than the C∗-algebra C(X). Let M be the closed unit ball

in C2, that is, M = {(z, w) : |z|2 + |w|2 ≤ 1} and K be an arbitrary compact

subset of the open unit disk in C. We associate with K a subset of the 3-sphere
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{|z|2 + |w|2 = 1} by defining

ΩK = {(z, w) ∈ ∂M, z ∈ K} = {(z, w) ∈ C2, z ∈ K, |z|2 + |w|2 = 1}.

Suppose thatK is chosen so that the only Jensen measures for R(K) are point mass

measures and R(K) 6= C(K). For this Ωk, Basener [4, Lemma 10, p. 372] showed

that R(Ωk) 6= C(Ωk). However, for any (z0, w0) ∈ Ωk, there exists a polynomial,

such as, p(z, w) = (z̄0z + w̄0w + 1)/2 peaking at (z0, w0). Since Ωk is metrizable,

it follows that the Choquet boundary and the set of all peak points for R(Ωk)

coincide [8, p. 447]. In other words, Γ0(R(Ωk)) = Ωk. Note that for compact

subset K in C, R(K) is natural [8, Proposition 4.3.12 (iii), p. 453], by theorem

4.2.4, we have R(Ωk) is character amenable.

In the remaining of this section we show that for a compact subset K of C,

character amenable version of Sheinberg’s result holds for P (K).

Definition 4.2.9. Let K be a compact subset of Cn. Then polynomially con-

vex hull of K, denoted by K̂, is defined by

K̂ = {z ∈ Cn : |p(z)| ≤ ‖p‖K for all polynomials p} .

K is called polynomially convex if K̂ = K.

Lemma 4.2.10. Let K be a compact subset of Cn. If P (K) is character amenable,

then K has empty interior and is polynomially convex.

Proof. Suppose P (K) is character amenable, let ϕ ∈ σ(P (K)) and E = Cϕ,ϕ.

It follows from character amenability of P (K) that every continuous derivation

d : P (K)→ Cϕ,ϕ is inner. But for each z ∈ Cϕ,ϕ, the inner derivation δz(f) = z·f−

f ·z = 0 for all f ∈ P (K). Thus P (K) doesn’t have any non-zero inner derivations.

So K must have an empty interior. Indeed, assume towards a contradiction that

w = (z1, z2, · · · , zn) ∈ intK. For any 1 ≤ k ≤ n, the map

D : P (K)→ Cϕ,ϕ, f 7→ ∂f

∂zk
(w)
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is a non-zero continuous derivation since

D(fg) =
∂(fg)

∂zk
(w) =

∂f

∂zk
(w)g(w) + f(w)

∂g

dzk
(w) = D(f)g(w) + f(w)D(g),

which is a contraction since character amenability of P (K) implies that D must

be inner and hence 0.

Let K̂ be the polynomially convex hull of K. Since σ(P (K)) = K̂ [8, Proposi-

tion 4.3.12, p. 453], P (K) = P (K̂) [13, Theorem 1.4, p. 27], and P (K) is character

amenable, it follows that K̂ = Γ0(P (K̂)) and Γ0(P (K)) = K by theorem 4.2.2. It

remains to show Γ0(P (K̂)) ⊂ Γ0(P (K)). In fact, since K is metrizable, Choquet

boundary is just the set of peak points. If x0 ∈ K̂ is a peak point for P (K̂), then

there exists f ∈ P (K̂) such that f(x0) = 1 and |f(y)| < 1 for every y 6= x0. Assume

by contradiction that x0 /∈ K, then by the definition of K̂, for each polynomial p,

p(x0) ≤ ‖p‖K . Let pn
‖·‖

K̂−−→ f, for some sequence polynomials (pn). Let y0 ∈ K be

arbitrary but fixed. Then for some ε > 0,

f(x0) > 1− ε > |f(y0)|.

Since pn
‖·‖

K̂−−→ f, there exists n0 such that

|pn0(x0)− 1| < ε

2
, and |pn0(y0)− f(y0)| < ε

2
.

But then

|pn0(x0)| > 1− ε

2
, and |pn0(y0)| < |f(y0)|+ ε

2
< 1− ε

2
,

which is a contradiction since |p(x0)| ≤ ‖p‖K . Thus x0 ∈ K and x0 ∈ Γ0(P (K)).

Hence K is polynomially convex. �

The following characterization of character amenability of P (K) is due to Hu,

Sangani Monfared and Traynor in [21, Theorem 5.4, p. 71].

Theorem 4.2.11. For a compact subset K of C, the uniform algebra P (K) is

character amenable if and only if P (K) = C(K).

Proof. Since C(K) is a C∗-algebra, it follows that C(K) is character amenable

by corollary 3.2.6.
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Conversely if P (K) is character amenable then K is polynomially convex and

has empty interior by lemma 4.2.10. Applying the Lavrentieff’s theorem [13, II

Theorem 8.7, p. 48] we have P (K) = C(K). �



CHAPTER 5

Reduction of Order of Cohomology Groups and Splitting

Properties of Modules

5.1. Reduction of order formula

In previous chapters, we introduced the first cohomology groups of Banach

algebras with coefficients in Banach bimodules. In this chapter, we study the

higher order cohomology groups of A with coefficients in a Banach A-bimodule E.

As it turns out, it is always possible to express Hn(A,E) as the first cohomology

group of A with coefficients in another Banach A-bimodule, using an identity which

is called the reduction of order (dimension) formula. One application of reduction

of order formula is the following theorem of Johnson shown for example in Runde

[29, Theorem 2.4.7, p. 58].

Theorem 5.1.1. Let A be a Banach algebra. Then the following are equivalent:

(i) A is amenable.

(ii) Hn(A,E∗) = {0} for every Banach A-bimodule E and for all n ∈ N.

Our main objective in this chapter is to show that the character amenable

version of theorem 5.1.1 also holds. Before that we need some preparations.

Definition 5.1.2. Let A be a Banach algebra and Aop be the Banach algebra

with multiplication ◦ defined by a◦ b = ba. Then Aop is called the opposite algebra

of A.

Remark 5.1.3. It is clear that σ(A) = σ(Aop). Moreover, every Banach A-

bimodule E has a canonical Aop-bimodule structure given by

a ◦ x = x · a, x ◦ a = a · x, (a ∈ Aop, x ∈ E). (∗)

In fact,

a ◦ (b ◦ x) = a ◦ (x · b) = (x · b) · a = x · (ba) = (ba) ◦ x = (a ◦ b) ◦ x,
60
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(x ◦ a) ◦ b = b · (x ◦ a) = b · (a · x) = (ba) · x = x ◦ (ba) = x ◦ (a ◦ b),

(a ◦ x) ◦ b = b · (a ◦ x) = b · (x · a) = (b · x) · a = (x ◦ b) · a = a ◦ (x ◦ b).

In particular, let ϕ ∈ σ(A) ∪ {0}. If E ∈ ϕMA, then E ∈MAop

ϕ since

x ◦ a = a · x = ϕ(a)x, (a ∈ Aop, x ∈ E).

Denote Bn(A,E) to be the space of bounded n-linear maps from A × · · · × A

(n-times) to E and we put B0(A,E) to be E.

Definition 5.1.4. Let A be a Banach algebra and E be a Banach A-bimodule.

For x ∈ E, define δ0(x) = δx ∈ B1(A,E) (where δx is the inner derivation by x)

and for n ∈ N, define a continuous linear map

δn : Bn(A,E)→ Bn+1(A,E)

by

(δnT )(a1, a2, · · · an+1) = a1 · T (a2, a3, · · · , an+1) + (−1)n+1T (a1, a2, · · · , an) · an+1

+
n∑
j=1

(−1)jT (a1, a2, · · · , aj−1, ajaj+1, aj+2, aj+3, · · · , an+1).

The maps δn, n = 0, 1, · · · are called the connecting maps. Moreover, the elements

of ker δn and im δn−1 are called the n-cocycles and the n-coboundaries, respectively.

We denote these linear spaces by

Zn(A,E) = ker δn, N n(A,E) = im δn−1.

Remark 5.1.5. The definition of Z1(A,E) and N 1(A,E) coincide with our

previous notation in definition 1.2.6. A direct but tedious calculation shows that

δn ◦ δn−1 = 0 and so im δn−1 ⊂ ker δn, that is, N n(A,E) ⊂ Zn(A,E).

Definition 5.1.6. Let A be a Banach algebra and E be a Banach A-bimodule.

For n ∈ N, the nth cohomology group of A with coefficients in E is defined as the

quotient vector space

Hn(A,E) = Zn(A,E)/N n(A,E).
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Also

H0(A,E) = Z0(A,E) = ker δ0 = {x ∈ E : a · x = x · a, a ∈ A}.

Remark 5.1.7. The quotient space Hn(A,E) is in general only a seminormed

space since N n(A,E) may not be a closed subspace of Zn(A,E) and therefore

the norm on Zn(A,E) (which is the same as that of Bn(A,E)) can only induce a

seminorm on the quotient space Hn(A,E). It should be also noted that the group

structure onHn(A,E) is the vector space addition which it has as a quotient space.

Theorem 5.1.8. Let A be a Banach algebra and E be a Banach A-bimodule.

Suppose E is turned into a Banach Aop-bimodule in (∗). Then for every n ≥ 1,

Hn(A,E) ∼= Hn(Aop, E).

Proof. Define the map

π : Bn(A,E)→ Bn(Aop, E), T 7→ T 0

where T 0(a1, a2, a3, · · · , an) := T (an, an−1, · · · , a1), (a1, a2, · · · , an ∈ A).

It is easy to check that π is an isometric linear isomorphism. We will show that

this map sends Zn(A,E) onto Zn(Aop, E) and N n(A,E) onto N n(Aop, E). Then

the theorem will follow by passing to the quotient. In fact, let T ∈ Zn(A,E).

Then δnT = 0 and hence

δnT (a1, a2, a3, · · · , an+1) = 0, (a1, a2, a3, · · · , an+1 ∈ A).

This means that

a1 · T (a2, a3, · · · , an+1) + (−1)n+1T (a1, a2, · · · , an) · an+1

+
n∑
j=1

(−1)jT (a1, a2, · · · , aj−1, ajaj+1, aj+2, aj+3, · · · , an+1) = 0.

Then (−1)n+1a1 · T (a2, a3, · · · , an+1) + T (a1, a2, · · · , an) · an+1

+
n∑
j=1

(−1)n+j+1T (a1, a2, · · · , aj−1, ajaj+1, aj+2, aj+3, · · · , an+1) = 0,
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if we multiply both sides of the equation by (−1)n+1. Put A0 = (−1)n+1a1 ·

T (a2, a3, · · · , an+1) and B0 = T (a1, a2, · · · , an) · an+1. Then

A0+B0+(−1)n
n∑
j=1

(−1)j+1T (a1, a2, · · · , aj−1, ajaj+1, aj+2, aj+3, · · · , an+1) = 0. (∗∗)

We use the above identity to verify that δnT 0 = 0. In fact, for a1, a2, · · · , an+1 ∈

Aop, we have

(δn T 0)(an+1, · · · , a1) = an+1 ◦ T 0(an, · · · , a1) + (−1)n+1T 0(an+1, · · · , a2) ◦ a1

+
n−1∑
j=0

(−1)j+1T 0(an+1, · · · , an+1−j ◦ an−j, · · · , a1).

= T (a1, · · · , an) · an+1 + (−1)n+1a1 · T (a2, · · · , an+1)

+
n−1∑
j=0

(−1)j+1T (a1, · · · , an−jan+1−j, · · · , an+1)

= B0 + A0 − T (a1, a2, · · · , an−1, anan+1) + T (a1, a2, · · · , an−1an, an+1)

− T (a1, a2, · · · , an−2an−1, an, an+1) + · · ·+ (−1)nT (a1a2, a3, · · · , an, an+1)

=A0 +B0 + (−1)nT (a1a2, a3, · · · , an, an+1) + (−1)n−1T (a1, a2a3, · · · , an+1)

+ · · ·+ (−1)n−(n−3)T (a1, a2, · · · , an−2an−1, an, an+1)

+ (−1)n−(n−2)T (a1, a2, · · · , an−1an, an+1) + (−1)n−(n−1)T (a1, a2, · · · , an−1, anan+1)

=A0 +B0 + (−1)n[T (a1a2, a3, · · · , an+1)− T (a1, a2a3, · · · , an+1) + · · ·

+ (−1)n−3T (a1, · · · , an−2an−1, an, an+1) + (−1)n−2T (a1, · · · , an−1an, an+1)

+ (−1)n−1T (a1, · · · , anan+1)]

=A0 +B0 + (−1)n
n∑
j=1

(−1)j+1T (a1, a2, · · · , aj−1, ajaj+1, aj+2, aj+3, · · · , an+1)

=0,

by (∗∗). Essentially the same argument also shows that given T ∈ Zn(Aop, E),

then T 0 ∈ Zn((Aop)op, E) = Zn(A,E) and of course (T 0)0 = T. Thus the map

T 7→ T 0 sends Zn(A,E) onto Zn(Aop, E).
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Next we show if T ∈ N n(A,E), then T 0 ∈ N n(Aop, E). Since T ∈ N n(A,E),

it follows that there exists S ∈ Bn−1(A,E) such that T = δn−1S.

Thus for all a1, a2, a3, · · · , an ∈ A,

T (a1, a2, a3, · · · , an) = δn−1S(a1, · · · , an) = a1 · S(a2, a3, · · · , an)

+ (−1)nS(a1, · · · , an−1) · an +
n−1∑
j=1

(−1)jS(a1, · · · , ajaj+1, · · · , an).

If we put A′ = S0(an, · · · , a2) ◦ a1 and B′ = (−1)nan ◦ S0(an−1, · · · , a1), then

T 0(an, · · · , a1) =T (a1, a2, · · · , an) = S0(an, · · · , a2) ◦ a1 + (−1)nan ◦ S0(an−1, · · · , a1)

+
n−1∑
j=1

(−1)jS0(an, · · · , aj+1 ◦ aj, · · · , a1)

=A′ +B′ +
n−1∑
j=1

(−1)jS0(an, · · · , aj+1 ◦ aj, · · · , a1).

So that

T 0(an, · · · , a1)

=A′ +B′ + (−1)S0(an, · · · , a3, a2 ◦ a1) + (−1)2S0(an, · · · , a3 ◦ a2, a1)

+ (−1)3S0(an, · · · , a4 ◦ a3, a2, a1) + · · ·+ (−1)n−3S0(an, an−1, an−2 ◦ an−3, · · · , a1)

+ (−1)n−2S0(an, an−1 ◦ an−2, · · · , a1) + (−1)n−1S0(an ◦ an−1, an−2, · · · , a1).

Rewriting the above expression in reverse order and using the identity (−1)j =

(−1)2n−j, we get

T 0(an, · · · , a1)

=A′ +B′ + (−1)n+1S0(an ◦ an−1, an−2, · · · , a1) + (−1)n+2S0(an, an−1 ◦ an−2, · · · , a1)

+ (−1)n+3S0(an, an−1, an−2 ◦ an−3, · · · , a1) + · · ·+ (−1)2n−3S0(an, · · · , a4 ◦ a3, a2, a1)

+ (−1)2n−2S0(an, · · · , a3 ◦ a2, a1) + (−1)2n−1S0(an, · · · , a3, a2 ◦ a1)

=A′ +B′ +
n−1∑
j=1

(−1)n+jS0(an, · · · , an−j+1 ◦ an−j, · · · , a1).
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By substituting the values of A′ and B′, we get

T 0(an, · · · , a1)

=an ◦ [(−1)nS0](an−1, · · · , a1) + (−1)n[(−1)nS0](an, an−1, · · · , a2) ◦ a1

+
n−1∑
j=1

(−1)j[(−1)nS0](an, · · · , an−j+1 ◦ an−j, · · · , a1)

=δn−1[(−1)nS0](an, · · · , a1).

Thus T 0 = δn−1[(−1)nS0] ∈ N n(Aop, E). �

Corollary 5.1.9. Let A be a Banach algebra. Then A is left (right) character

amenable if and only if Aop is right (left) character amenable.

Proof. Let A be left character amenable, and let ϕ ∈ σ(Aop) ∪ {0}, E ∈

ϕMAop . By remark 5.1.3, we have ϕ ∈ σ(A) ∪ {0} and

E ∈M(Aop)op

ϕ =MA
ϕ .

Since A is left character amenable, it follows that H1(A,E∗) = {0}. Then

H1(Aop, E∗) ∼= H1(A,E∗) = {0}.

Hence Aop is right character amenable. The rest of the assertions follows similarly.

�

For the convenience of reference, we mention the following results from Dales

[8, p. 132].

Lemma 5.1.10. Let A be a Banach algebra and E be a Banach A-bimodule and

n ∈ N. Then Bn(A,E) can be viewed as a Banach A-bimodule, using the following

module actions:

(T ∗ a)(a1, a2, · · · , an) = T (aa1, a2, · · · , an) + (−1)nT (a, a1, a2, · · · , an−1) · an

+
n−1∑
j=1

T (a, a1, · · · , ajaj+1, · · · , an),

(a ∗ T )(a1, a2, · · · , an) = a · T (a1, a2, · · · , an), (T ∈ Bn(A,E)).
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Lemma 5.1.11. Let A be a Banach algebra and E be a Banach A-bimodule and

k, p ∈ N. Then Hk+p(A,E) and Hk(A, (Bp(A,E), ∗)) are linearly isomorphic as

seminormed spaces. Moreover, this identification is induced by the linear map

Λk,p : Bk+p(A,E)→ Bk(A,Bp(A,E)),

[(Λk,pT )(a1, a2, · · · , ak)](ak+1, ak+2, · · · , ak+p) = T (a1, a2, · · · , ak, ak+1, · · · , ak+p),

for a1, a2, · · · , ak+p ∈ A and T ∈ Bk+p(A,E).

In particular, the above lemma asserts that every Hochschild cohomology group

Hn(A,E) of order n can be viewed as a first Hochschild cohomology group. For

Hn(A,E∗), we have the following result shown by Johnson [24].

Lemma 5.1.12. Let A be a Banach algebra and E be a Banach A-bimodule.

Denote A⊗̂A⊗̂ · · · ⊗̂A⊗̂E by Bn(A,E).

(i) For n ≥ 1, (Bn(A,E))∗ and Bn(A,E∗) are isometrically isomorphic as

Banach A-bimodules, where the module actions on Bn(A,E) are defined

by

(a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ x) ∗ a = a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ (x · a),

and

a ∗ (a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ x) = aa1 ⊗ · · · ⊗ an ⊗ x+ (−1)na⊗ a1 ⊗ a2 ⊗ · · · ⊗ (an · x)

+
n−1∑
j=1

(−1)ja⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an ⊗ x.

(ii) For k, p ∈ N, Hk+p(A,E∗) and Hk(A, (Bp(A,E))∗) are linearly isomorphic

as seminormed spaces. More specifically, the identification is induced by

the linear map

Λk,p : Bk+p(A,E∗)→ Bk(A, (Bp(A,E)∗),

〈Λk,pT (a1, a2, · · · , ak), (ak+1 ⊗ ak+2 ⊗ · · · ak+p ⊗ x)〉 = 〈T (a1, a2, · · · , ak+p), x〉

for a1, a2, · · · , ak+p ∈ A, x ∈ E and T ∈ Bk+p(A,E∗).
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Lemma 5.1.11 and lemma 5.1.12 are often referred to as the reduction of order

or dimension formula. An application of reduction of order formula is the following:

Theorem 5.1.13. If A is left (right) character amenable, then Hn(A,E∗) =

{0} for all E ∈MA
ϕ (E ∈ ϕMA), where ϕ ∈ σ(A) ∪ {0}.

Proof. Let A be left character amenable and E ∈ MA
ϕ . By the reduction of

order formula mentioned in lemma 5.1.12 (ii), we have

Hn+1(A,E∗) ∼= H1(A, (Bn(A,E))∗),

where the module actions on Bn(A,E) are given by

(a1⊗a2⊗· · ·⊗an⊗x)∗a = a1⊗a2⊗· · ·⊗an⊗(x ·a) = ϕ(a)(a1⊗a2⊗· · ·⊗an⊗x),

and

a ∗ (a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ x) = aa1 ⊗ · · · ⊗ an ⊗ x+ (−1)na⊗ a1 ⊗ a2 ⊗ · · · ⊗ (an · x)

+
n−1∑
j=1

(−1)ja⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an ⊗ x.

for every a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ x ∈ Bn(A,E), a ∈ A. Therefore Bn(A,E) ∈MA
ϕ . So

H1(A, (Bn(A,E))∗) = {0}.

Thus

Hn+1(A,E∗) = {0} for n ≥ 0.

When A is right character amenable, we use the opposite algebra Aop. By corollary

5.1.9 we have Aop is left character amenable. If we equip E with natural module

action on Aop, then E ∈MAop

ϕ . Applying the above argument to Aop, we have

Hn+1(Aop, E∗) ∼= H1(A, (Bn(Aop, E))∗) = {0}.

Thus by theorem 5.1.8,

Hn+1(A,E∗) = {0} for every n ≥ 0. �

Corollary 5.1.14. For a Banach algebras A, the following are equivalent:
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(i) A is left (right) character amenable.

(ii) Hn(A,E∗) = {0} for every E ∈ MA
ϕ (E ∈ ϕMA), ϕ ∈ σ(A) ∪ {0}, and

n ∈ N.

IfA is a commutative amenable Banach algebra, then it is known thatH1(A,E) =

H2(A,E) = {0} for all Banach A-bimodules E [8, Theorm 2.8.74, p. 303].

A natural question is to ask whether Hn(A,E) = {0} if A is commutative

character amenable Banach algebras and E is an arbitrary Banach A-bimodule.

We will show this result is valid provided that E is of finite dimension. The

general case remains an open question. Before that, we first mention the following

result in [12, Lemma 2.10, p. 3651].

Lemma 5.1.15. Let A be a commutative character amenable Banach algebra

and let E be a Banach A-bimodule. Then there exists ϕi, ψi ∈ σ(A) ∪ {0}, i =

1, · · · , n, such that E ∼=
n⊕
i=1

Cϕi,ψi as Banach A-bimodules.

Proof. For each a ∈ A, let π(a) and π′(a) ∈ B(E) be defined by

π(a)x := a · x, π′(a)x := x · a.

Since A is commutative, the families of operators F = {π(a), π′(a) : a ∈ A} is

commutative and hence we can find a suitable basis of E such that every element

of F can be represented as an upper-triangular matrix [27, Theorem 1.1.5]. Thus

we may write

π(a) =


α11(a) α12(a) · · · α1n(a)

0 α22(a) · · · α2n(a)
...

...
. . .

...

0 0 · · · αnn(a)

 ; π′(a) =


α′11(a) α′12(a) · · · α′1n(a)

0 α′22(a) · · · α′2n(a)
...

...
. . .

...

0 0 · · · α′nn(a)


where a ∈ A, αij, α

′
ij ∈ A∗ and αii, α

′
ii ∈ σ(A) ∪ {0} for all 1 ≤ i ≤ j ≤ n. By

induction we show that for i < j, αij : A → C is a continuous derivation of the

form

d(ab) = ϕ(a)d(b) + d(a)ψ(b), (a, b ∈ A, ϕ, ψ ∈ σ(A) ∪ {0}),
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and hence it must be zero by the definition of character amenability. Let 1 ≤ i ≤ n

be fixed. Using the above representation for π(a) and the identity π(ab) = π(a)π(b)

we have

αi i+1(ab) = αi i(a)αi i+1(b) + αi i+1(a)αi+1 i+1(b),

for which it follows that αi i+1 = 0. We assume αi i+k = 0, for k = 1, · · · l−1 < n−i.

Then once again we may write

αi i+l(ab) =
l∑

k=0

αi i+k(a)αi+k i+l(b) = αi i(a)αi i+l(b) + αi i+l(a)αi+l i+l(b),

and hence αi i+l = 0, as required. By a similar argument, we can show that

α′ij = 0 if i 6= j. Now the theorem follows if we put ϕi := αi i and ψi := α′i i,

i = 1, · · · , n. �

The following result is well-known (see, [8, p. 127]).

Lemma 5.1.16. Let A be a Banach algebra and E be a Banach A-bimodule.

Suppose that E = F ⊕ G where F and G are two Banach A-submodules of E.

Then

Hn(A,E) = Hn(A,F )
⊕
Hn(A,G).

The following result is due to Sangani Monfared in [31, Theorem 3.1, p. 702].

Theorem 5.1.17. If A is a commutative character amenable Banach algebra

and E is a finite-dimensional Banach A-bimodule, then Hn(A,E) = {0} for every

n ∈ N.

Proof. Since A is left character amenable, by lemma 5.1.15 it follows that

there is a decomposition for E such that

E =
n⊕
i=1

Cϕi,ψi , ϕi, ψi ∈ σ(A) ∪ {0}.

Moreover, applying the lemma 5.1.16, we have

Hn(A,E) =
n⊕
i=1

Hn(A,Cϕi,ψi).
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It suffices to verify for every ϕi, ψi ∈ σ(A) ∪ {0},

Hn(A,Cϕi,ψi) = {0}.

But this follows from corollary 5.1.14 since A is character amenable. �

5.2. Splitting properties of modules

Definition 5.2.1. Let A and B be two Banach algebras and I be a closed

two-sided ideal of B. If the Banach algebra B/I is isomorphic to A, then we call

B an extension of A by I. We may denote an extension by a short exact sequence

Σ = Σ(B, I),

Σ : 0→ I
ι−→ B

π−→ A→ 0,

where ι is the natural inclusion map and π : B → A is a continuous surjective

algebra homomorphism such that kerπ = I. The extension Σ(B, I) is called

(i) finite dimensional if I is finite-dimensional as a vector space, we say Σ is

of dimension m if dim(I) = m,

(ii) singular if ab = 0 for all a, b ∈ I.

Definition 5.2.2. An extension

Σ : 0→ I
τ−→ B

π−→ A→ 0

is called admissible if there exists a continuous linear map θ : A → B such that

π ◦ θ = idA. The extension splits strongly if there exists a continuous algebra

homomorphism θ : A→ B such that π ◦ θ = idA.

Obviously every short exact sequence of Banach algebras that splits strongly

is admissible. Admissibility is equivalent to the decomposition B = I ⊕ θ(A) as a

Banach space direct sum, while strong splitting is equivalent to B = I ⊕ A as a

Banach space direct sum.

Let Σ = Σ(B, I) be a singular extension of a Banach algera A. Clearly I can

be viewed as a Banach B-bimodule using the product actions on B. Moreover, I

is also a Banach A-bimodule with respect to the actions:

a · x = bx, x · a = xb (x ∈ I, a ∈ A, b ∈ B with π(b) = a).
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We show that these actions are well defined. Suppose there exists b1, b2 ∈ B such

that π(b1) = π(b2) = a, then (b1 − b2) ∈ kerπ = I, so (b1 − b2)x = 0, since I is

singular. Thus b1x = b2x and similarly we have xb1 = xb2.

Definition 5.2.3. Let Σ(B, I) be a singular extension of a Banach algebra A.

Let E be a Banach A-bimodule. The extension Σ is called a singular extension of

A by E if I is isomorphic to E as a Banach A-bimodule.

Let A be a Banach algebra and E be a Banach A-bimodule. Johnson [22,

Corollary 2.2, p. 868] showed that H2(A,E) = {0} if and only if every singular

admissible extension of A by E splits strongly. For finite dimensional extension,

Bade, Dales, and Lykova [3, Theorem 1.8 (ii), p. 13] have shown the following

result.

Theorem 5.2.4. Let A be a Banach algebra. Suppose that every singular ex-

tension of dimension at most m splits strongly. Then every extension of dimension

at most m splits strongly.

In view of Johnson’s result and the above theorem, the following result follows

immediately [3, Theorem 2.6, p. 28].

Theorem 5.2.5. Let A be a Banach algebra. Then the following are equivalent:

(i) H2(A,E) = {0} for every finite-dimensional Banach A-bimodule E.

(ii) Every singular, finite-dimensional extension of A splits strongly.

(iii) Every finite-dimensional extension of A splits strongly.

If we compare the statements in theorem 5.1.17 and theorem 5.2.5, we have

the following result shown in [31, Corollary 3.2, p. 704].

Corollary 5.2.6. Let A be a commutative character amenable Banach alge-

bra. Then every finite-dimensional extension of A splits strongly.

Dales [8, Propostion 2.8.24, p. 283] showed that if A is a commutative unital

Banach algebra, and ϕ, φ ∈ σ(A) with ϕ 6= φ, then H1(A,Cϕ,φ) = H2(A,Cϕ,φ) =

{0}. If we inspect the proof of theorem 5.1.17, we see that we did not use the

commutativity of A to show that Hn(A,Cϕ,φ) = {0}. So we obtain the following
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variant of Dale’s result, in which the two characters ϕ and φ of A may be the same

and A is not necessarily commutative, but character amenability of A is required.

Corollary 5.2.7. Let A be a left character amenable Banach algebra. Then

for all ϕ, φ ∈ σ(A) ∪ {0} and n ∈ N, we have Hn(A,Cϕ,φ) = {0}.

We now take a look at splitting properties of exact short sequences of Banach

modules.

Definition 5.2.8. Let A be a Banach algebra and X, Y, Z be Banach left

A-modules. Let Σ be a short exact sequence

Σ : 0→ X
f−→ Y

g−→ Z → 0,

in which f and g are continuous left module homomorphisms. The short exact

sequence Σ is called admissible if there exists a continuous linear map G : Z → Y

such that g ◦G = idZ . Furthermore, Σ splits strongly if there exists a continuous

left module homomorphism G : Z → Y such that g ◦G = idZ .

Clearly, every short exact sequence of Banach leftA-modules that splits strongly

is admissible. For modules over character amenable Banach algebras we have a

partial converse. The following is an analogue of splitting property [7, Theorem

2.3, p. 94] for amenable Banach algebras.

Theorem 5.2.9. Let A be a left character amenable Banach algebra and X

be a right Banach A-module such that X ∈ MA
ϕ . Let Y and Z be left Banach

A-modules. Then every admissible short exact sequence of Banach left A-modules

Σ : 0→ X∗
f−→ Y

g−→ Z → 0,

splits strongly.

Proof. If Σ is admissible then there exists G̃ ∈ B(Z, Y ) such that g◦G̃ = idZ .

Since B(Z, Y ) can be viewed as a Banach A-bimodules with respect to the following

module actions:

(a · T )(z) := a · T (z), (T · a)(z) := T (a · z) (a ∈ A, T ∈ B(Z, Y ), z ∈ Z),
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we can define the map

d : A→ B(Z, Y ), a 7→ a · G̃− G̃ · a.

The map d is a continuous inner derivation. Moreover, for z ∈ Z, a ∈ A,

(g ◦ d(a))(z) = g(d(a)(z))

= g((a · G̃)(z)− (G̃ · a)(z))

= g(a · G̃(z)− G̃(a · z))

= a · (g ◦ G̃)(z)− (g ◦ G̃)(a · z) since g is a left A module homomorphism

= a · z − a · z = 0.

So d(A) ⊂ B(Z, ker g) = B(Z, im f). Since f(X∗) ∼= X∗, we can view d as a

continuous derivation

d : A→ B(Z,X∗) ∼= (Z⊗̂X)∗.

Note that the canonical A-module action on Z⊗̂X are given by

a·(z⊗x) = (a·z)⊗x (z⊗x)·a = z⊗(x·a) = ϕ(a)(z⊗x) (a ∈ A, z ∈ Z, x ∈ X).

That is, Z⊗̂X ∈MA
ϕ . By the assumption of left character amenability of A, d must

be inner, and there exists Q ∈ (Z⊗̂X)∗ = B(Z,X∗) such that d(a) = a ·Q−Q · a,

for every a ∈ A. Viewing Q as an element of B(Z, Y ), we have

d(a) = a · G̃− G̃ · a = a ·Q−Q · a.

Put G = G̃ − Q ∈ B(Z, Y ). Then a · G = G · a for every a ∈ A. Thus for every

z ∈ Z, a ∈ A,

G(a · z) = (G · a)(z) = (a ·G)(z) = a ·G(z).

Hence G is a left A-module homomorphism. The problem is reduced to showing

G is also a bounded right inverse for g. Indeed, for every z ∈ Z,

g ◦G(z) = g ◦ G̃(z)− g ◦Q(z) = z − g(Q(z)) = z − 0 = z,

since g ◦ G̃ = idZ and im Q ⊂ ker g. �



CHAPTER 6

Conclusion and Future Work

Character amenability is weaker than the classical amenability introduced by

B.E. Johnson. The definition requires continuous derivations from A into dual

Banach A-bimodules to be inner, but only those modules are considered where

either of the left or right module action is defined by a character of A. In chap-

ter 2, we characterized character amenability in terms of bounded approximate

identities and certain topological invariant elements of the second dual. We also

saw the existence of certain topological invariant elements in the second dual is

equivalent to the existence of a bounded left ϕ-approximate diagonal, which in

turn is equivalent to the existence of a left ϕ-virtual diagonal. In theorem 2.2.17,

we showed that the character amenability for each of the Banach algebras L1(G)

and Ap(G) is equivalent to the amenability of G, which is the main advantage of

character amenability compared with classical amenability.

In chapter 3, we discussed the main hereditary properties of character amenabil-

ity. If we inspect the original proof of 3.1.1 (ii), we used the equivalent character-

ization of character amenability in terms of certain topological invariant element

of the second dual. The author’s main contribution in this thesis, was to give a

direct proof using only the original definition of character amenability involving

derivations. We showed that if A is left character amenable and I has a bounded

two-sided approximate identity, then I is left character amenable.

In chapter 4, we studied character amenability of Banach function algebras. In

theorem 4.2.2, we showed that if a unital Banach function algebra A on a compact

space X is character amenable, then the Choquet boundary of A must coincide

with X. In the case of uniform algebras we obtained complete characterization of

character amenability in term of the Choquet boundary of the underlying space

(Corollary 4.2.4).

74
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In chapter 5, we introduced character amenable version of the reduction of order

formula. We also discussed splitting properties of modules over character amenable

Banach algebras. In theorem 5.1.17, we showed triviality of cohomological groups

with coefficients in finite-dimensional Banach modules over character amenable

commutative Banach algebras. As a consequence we concluded that all finite-

dimensional extensions of commutative character amenable Banach algebra split

strongly. The section ends with another splitting property of short exact sequences

over character amenable Banach algebras.

There are also some open questions about character amenability which require

further investigation.

(1) Even though character amenability shows greater flexibility for particular

types of Banach algebras, are there some other properties of character

amenability not shared by classical amenability?

(2) It is not known whether for two arbitrary Banach algebras A and B we

must have

σ(A⊗̂B) = σ(A)× σ(B).

(3) It is not known whether Hn(A,E) = {0} if A is commutative character

amenable Banach algebras and E is an arbitrary Banach A-bimodule.

(4) Curits and Loy [7] showed that a Banach algebra A is amenable if and only

if A has a bounded approximate identity and for each essential Banach

A-bimodule E, every admissible short exact sequence

Σ : 0→ X∗
f−→ Y

g−→ Z → 0,

splits strongly. It is not known whether the analogue characterization of

character amenability also holds.
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