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Abstract—Given n discrete random variables
 = fX1; � � � ;
Xng, associated with any subset� of f1; 2; � � � ; ng, there is
a joint entropy H(X�) where X� = fXi: i 2 �g. This can
be viewed as a function defined on2f1; 2; ���; ng taking values in
[0; +1). We call this function the entropy function of 
. The
nonnegativity of the joint entropies implies that this function is
nonnegative; the nonnegativity of the conditional joint entropies
implies that this function is nondecreasing; and the nonnegativity
of the conditional mutual informations implies that this function
has the following property: for any two subsets � and � of
f1; 2; � � � ; ng

H
(�) +H
(�) � H
(� [ �) +H
(� \ �):

These properties are the so-called basic information inequalities
of Shannon’s information measures. Do these properties fully
characterize the entropy function? To make this question more
precise, we view an entropy function as a2n � 1-dimensional
vector where the coordinates are indexed by the nonempty subsets
of the ground set f1; 2; � � � ; ng. Let �n be the cone inR2 �1

consisting of all vectors which have these three properties when
they are viewed as functions defined on2f1; 2; ���; ng. Let ��n be
the set of all2n� 1-dimensional vectors which correspond to the
entropy functions of some sets ofn discrete random variables. The
question can be restated as: is it true that for anyn, �

�
n = �n?

Here �
�
n stands for the closure of the set��n. The answer is “yes”

when n = 2 and 3 as proved in our previous work. Based on
intuition, one may tend to believe that the answer should be
“yes” for any n. The main discovery of this paper is a new
information-theoretic inequality involving four discrete random
variables which gives a negative answer to this fundamental
problem in information theory: �

�
n is strictly smaller than �n

whenever n > 3. While this new inequality gives a nontrivial
outer bound to the cone �

�
4, an inner bound for �

�
4 is also

given. The inequality is also extended to any number of random
variables.

Index Terms—Entropy, inequality, information measure, mu-
tual information.

I. INTRODUCTION

L ET be jointly distributed
discrete random variables. The basic Shannon’s informa-

tion measures associated with these random variables include

Manuscript received December 12, 1996; revised November 15, 1997. The
work of Z. Zhang was supported in part by the National Science Foundation
under Grant NCR-9502828. The work of R. W. Yeung was supported in part
by The Research Grant Council of Hong Kong under Earmarked Grant CUHK
332/96E.

Z. Zhang is with the Department of Electrical Engineering–Systems,
Communication Sciences Institute, University of Southern California, Los
Angeles, CA 90089-2565 USA (e-mail: zzhang@milly.usc.edu).

R. W. Yeung is with the Department of Information Engineering, the
Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China (e-mail:
whyeung@ie.cuhk.edu.hk).

Publisher Item Identifier S 0018-9448(98)03630-X.

all joint entropies, conditional entropies, mutual informations,
and conditional mutual informations involving some of these
random variables. For any subsetof , let

(1)

Let , where is the empty set, be a random variable taking
a fixed value with probability . Let

(2)

be the conditional mutual information and let

(3)

be the joint entropy. Sometimes, we drop the subscript
in these notations, when no confusion may occur. It is well
known that Shannon’s information measures satisfy the fol-
lowing inequalities.

Proposition 1: For any three subsets, , and of ,
any set of jointly distributed discrete random variables

(4)

We call these inequalities the basic inequalities of Shannon’s
information measures, or simply the basic inequalities. By
means of the chain rule for conditional mutual informations,
we can see that these inequalities are implied by a subset of
these inequalities of the form

(5)

That is, the subset of inequalities (4) in which the cardinalities
of and are both . This subset of basic information
inequalities is referred to as elemental information inequalities
[35].

For any set of jointly distributed discrete random variables
the associated joint entropies

can be viewed as a function defined on

(6)

The goal of this paper is to study this function for all possible
sets of discrete random variables.

All basic Shannon’s information measures can be expressed
as linear functions of the joint entropies. Actually, we have

(7)

The basic inequalities can be interpreted as a set of inequalities
for the entropy function as follows:
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Proposition 2: For any set of jointly distributed discrete
random variables the entropy
function associated with these random variables has the
following properties.

• For any two subsets and of

(8)

• implies

(9)

and
•

(10)

Let be the set of all functions defined on taking
values in . Define

(11)

Apparently, for any . This
means that the set characterizes some of the properties
of the entropy function. A natural question to ask is whether
or not this set “fully” characterizes the entropy function. To
make the question more precise, we have introduced in [39]
the following definitions.

Definition 1: A function is calledconstructibleif
and only if there exists a set of jointly distributed discrete
random variables such that the joint entropy function
associated with these random variables satisfies .
Define

is constructible (12)

In [39], we have seen that the structure of this set could be very
complicated and we mentioned that the following concept is
more manageable:

Definition 2: A function is calledasymptotically
constructible if and only if there exist a sequence of sets
of discrete random variables for such that
the joint entropy functions associated with satisfy

.

Obviously, a function is asymptotically constructible if
and only if , the closure of the set .

In [39], we proved the following results.

Theorem 1:

(13)

and

(14)

Up to this work, it was not known whether or not this result can
be generalized. That is, we did not know whether for

(15)

This is a fundamental problem in information theory. In [39],
we proved a conditional inequality of Shannon’s information
measures.

Theorem 2: For any four discrete random variables

(16)

implies

(17)

We also proved in [39] that this result implies

(18)

Therefore, it lends some evidence for the following conjecture.

Conjecture 1: For

(19)

To give an affirmative answer to this problem is the goal of
the current paper.

The paper is organized as follows: in the next section,
we state the main results and introduce some definitions and
notations; Sections III and IV are devoted to the proofs of the
results; in Section V, we summarize the findings of the paper
and raise some problems for future study.

Before closing this section, we would like to give a brief
account of the works we found in the literature which are
relevant to the subject matter of the current paper. As Shan-
non’s information measures are the most important measures
in information theory, researchers in this area have been
investigating their structural properties since the 1950’s. The
early works on this subject have been done along various
directions by Campbell [2], Hu [10], McGill [21], Watanabe
[31], [32].

McGill [21] has proposed a multiple mutual information
for any number of random variables, which is a generalization
of Shannon’s mutual information for two random variables.
Properties of the multiple mutual information have been in-
vestigated in the subsequent works of Kawabata and Yeung
[6], Tsujishita [30], and Yeung [37].

The work of Hu [10] was the first attempt to establish an
analogy between information theory and set theory. Toward
this end, he defined the following formal substitution of
symbols:

where is any set-additive function. In the above substitution,
on the left are symbols in information theory, while on the right
are symbols in set theory. He showed that a linear information-
theoretic identity holds for all distributions if and only if the
corresponding set-theoretic identity obtained via the formal
substitution of symbols holds for all additive function. For
example, the information-theoretic identity

corresponds to the set-theoretic identity
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Hu’s work was originally published in Russian, and it was not
widely known in the west until it was reported in Csiszár and
Körner [3].

Important progress has been made in the mid 1970’s and
the early 1980’s, mainly by Han [7], [9]. Let us point out
that any linear information expression can be expressed as a
linear combination of unconditional joint entropies by repeated
applications (if necessary) of the following identity:

In [7], Han proved the fundamental result that a linear com-
bination of unconditional joint entropies is always equal to
zero if and only if all the coefficients are zero. This result
was also obtained independently by Csiszár and K̈orner [3].
Han further established a necessary and sufficient condition
for a symmetrical linear information expression to be always
nonnegative, and a necessary and sufficient condition for a
linear information expression involving three random variables
to be always nonnegative [9]. In [9], he raised the important
question of what linear combinations of unconditional joint
entropies are always nonnegative. In his work, Han viewed
a linear combination of unconditional joint entropies as a
vector space, and he developed a lattice-theoretic description
of Shannon’s information measures with which some notations
can be greatly simplified. During this time, Fujishige [5] found
that the entropy function is a polymatroid [33].

In the 1990’s, Yeung [34] further developed Hu’s work into
an explicit set-theoretic formulation of Shannon’s information
measures. Specifically, he showed that Shannon’s information
measures uniquely define a signed measure, called the -
measure, on a properly defined field. With this formulation,
Shannon’s information measures can formally be viewed as
a signed measure, and McGill’s multiple mutual information
is naturally included. As a consequence, all set-theoretic tech-
niques can now be used for the manipulation of information
expressions. Furthermore, the use of information diagrams
to represent the structure of Shannon’s information measures
becomes justified. We note that information diagrams have
previously been used informally to illustrate the structure of
Shannon’s information measures [1], [22], [24]. Subsequently,
Kawabata and Yeung [6] studied the structure ofwhen the
random variables form a Markov chain. Recently, Yeunget
al. [36] have extended the study in [6] to random variables
forming a Markov random field.

Recently, Yeung [35] defined the set of all constructible
entropy functions and observed that whether an information
inequality (linear or nonlinear) always holds is completely
characterized by . This geometrical framework enables him
to develop a unified description of all information inequali-
ties (unconstrained or constrained) which are implied by the
nonnegativity of Shannon’s information measures, called the
basic inequalities. This gives a partial answer to the question
raised by Han in [9], and it directly leads to the question of
whether all information inequalities which always hold are
implied by the basic inequalities for the same set of random
variables, or equivalently, whether is true. In fact,
the same question was raised in [26] and [34], although at
that time had not been defined and the intimate relation

between and information inequalities was not known. This
question is the starting point of the work by the authors in
[39] and in the current paper. With the result in [39] that
is a convex cone, answering the question raised by Han in
[9] is equivalent to determining . In a recent paper [37],
we have used the region to study the so-called distributed
source-coding problem.

As a consequence of the work in [35], a software called
ITIP (Information Theoretic Inequality Prover) [38] has been
developed which can verify all linear information inequalities
involving a definite number of random variables that are
implied by the basic inequalities for the same set of random
variables.

Along another line, motivated by the study of the logic
of integrity constraints from databases, researchers in the
area of probabilistic reasoning have spent much effort in
characterizing the compatibility of conditional independence
relation among random variables. This effort was launched
by a seminal paper by Dawid [4], in which he proposed four
axioms as heuristical properties of conditional independence.
In information-theoretic terms, these four axioms can be
summarized by the following statement:

and

Subsequent work on this subject has been done by Pearl and
his collaborators in the 1980’s, and their work is summarized
in the book by Pearl [23]. Pearl conjectured that Dawid’s four
axioms completely characterize the conditional independence
structure of any joint distribution. This conjecture, however,
was refuted by the work of Studen´y [25]. Since then, Mat´us̆
and Studeńy have written a series of papers on this problem
[13]–[29]. They have solved the problem for up to four random
variables. It has been shown in [35] that the problem of
characterizing the compatibility of conditional independence
relations among random variables is a subproblem of the
determination of .

II. STATEMENT OF MAIN RESULTS

The key result of this paper is the following theorem:

Theorem 3: For any four discrete random variables
, let

(20)

Then the following inequality holds:

(21)

Note that the right-hand side of (21) is not symmetric in
and , whereas the left-hand side is. Therefore, we also have
the following inequality:

(22)
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Averaging inequalities (21) and (22) gives

(23)
This theorem will be proved in the next section.

Let . Define for three subsets and of

When is the empty set, we simply write in place
of . Let

(24)

Define

for any permutation of

(25)

(Notice that, if we replace for by
, respectively, then the inequality in (25) is just

(21).) Theorem 3 says that

Theorem 3 implies the following result.

Theorem 4: For

(26)

Proof: Apparently, we need to prove the theorem only
for . This will imply the conclusion of the theorem for
any . Define a function by letting

Then Theorem 4 is proved by checking that and
.

From Theorem 4, we have

That is, the set is a nontrivial outer bound of the set .
Theorem 3 can be generalized to the following information

inequalities for random variables where .

Theorem 5: For any set of discrete random variables
and any

(27)

Furthermore, by averaging (27) over, we obtain

(28)

The proof of this theorem is omitted because it can be proved
using exactly the same idea used in the proof of Theorem 3
and an inductive argument.

So far, when we study the entropy function, it is viewed
as a function defined on . That is, we use the subsets of

as coordinates. is simply the joint entropy .
It is more convenient to use another coordinate system when
we study the inner bound of the set . To introduce this
new coordinate system, we employ the concept of atoms.
The atoms are also indexed by the subsets of, or the
elements of . To motivate the definitions we are going
to introduce, we first check the definitions of the conditional
mutual informations of more than two random variables.
Let be discrete random variables, then the
conditional mutual information of random variables given

[37] is defined as

(29)
Consider an arbitrary function in . We define a function

for any pair of subsets , of the ground set
where is nonempty. The values of the original function are
denoted by , while for the values of the function ,
we use to replace to indicate that these are different
from the values of the original function.

(30)

(31)

where stands for the complement of with respect to
the ground set . As we said, this concept is
parallel to the concept of conditional mutual informations of
more than two random variables. We have, for instance, when

, , is the entropy function of five random
variables

We say is the value of the function at the atom . The
atoms are also indexed by the subsets of. The weight of
an atom is defined as the cardinality of its index set.
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The basic information inequalities can be restated under this
new coordinate system as follows:If is the entropy function
of a set of random variables , then for
any subset of of cardinality of and any subset of

(32)

and for any single element set

(33)

This includes only a subset of the basic inequalities (called
the elemental inequalities in [35]). But as we mentioned
before, this subset of basic inequalities implies all other basic
inequalities.

We use some simplified notations: as an example, if
, , we write in place

of . A useful formula for the function
is the following lemma.

Lemma 1:

(34)

where stands for the complement of the set.

For four random variables , if is the en-
tropy function of the four random variables, the basic in-
equalities are as follows: let be a permutation of

and

We have from (20)

(35)

We use in place of when
is the entropy function. By the same formula, can be

extended to any function which may not be an entropy
function, that is,

(36)

The following is an interesting quantity useful in the study
of :

(37)

Let be the empty set, we have

(38)

When is the entropy function of four discrete random
variables , and

This quantity may be negative. This fact will be proved at the
end of this section. The importance of this information quantity
will be seen in Theorem 6 stated in this section. Theorem 3
can be restated as follows.

Theorem 3: For four random variables , if
is the entropy function, then

(39)

Inequalities (22) and (23) are now

(40)

and

(41)

That is, although the quantity can be negative for some
entropy functions , but it is bounded from below by the
maximum of the following two quantities:

We notice that is the conditional mutual information
of the two random variables and given which is
always nonnegative.

Define

for any permutation of

(42)

The last theorem of the paper is

Theorem 6:

(43)

Theorem 6 has been previously proven in [20]. The example
in [22, Sec. V and Lemma 4.1] imply this result. But their
proof is very abstract and [22, Lemma 4.1] is based on further
references. To make this result more understandable, we give a
direct proof of Theorem 6 in Section IV. This theorem provides
an inner bound to the cone .

The following nontrivial example shows that this inner
bound is not tight. In other words, this example shows that
the information quantity can be negative for some entropy
functions .
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A Counterexample for the Positivity of : A projective
plane (for ) is a collection of subsets of

of cardinality such that the intersection
of any pair of subsets from the collection has cardinality
exactly (see, for instance, [14, Appendix B]). For instance,

is a projective plane for
on the ground set .

is another example of a projective plane on the ground set
for . We are going

to construct four discrete random variables for which the
function is negative. In our construction, we use a pair
of projective planes of the same size satisfying an additional
property that, if we take one subset from each projective plane,
the intersection of the two subsets taken always has cardinality
at most . An example for such a pair is the previous projective
plane for and the following projective plane of the same
cardinality and on the same ground set:

Let the ground set of the projective plane be, let
be the diagonal of . Any projective plane

has the property that

where the sets are disjoint. Let the two projective
planes we constructed above be for . For
and , if the intersection of the two sets has cardinality
, then and intersect at a set of cardinality
. Otherwise, they are disjoint.
We define the following random variables :

let both and take values in and the pair
has the uniform joint distribution over . Let the
first projective plane be and the second
projective plane be . Let take value

on for . Let take
value on for . We have

.

Therefore,

and

This gives that for these four random variables

This example shows that the function may be negative for
some entropy functions and that our inner bound is not tight.

III. PROOF OF THEOREMS 3 AND 5

Let be four jointly distributed discrete ran-
dom variables with distribution . We denote all
marginals of this distribution by the same letter. For instance,
its marginal on is denoted by . Define

(44)

Since both and are absolutely
continuous with respect to , we can see that is a dis-
tribution of six random variables. Let be two random
variables jointly distributed with according to the
joint distribution .

Actually, we can express in terms of the
information quantities of the six random variables defined
above.

Lemma 2:

(45)

Proof:

The last step is due to the fact that . The
lemma is proved.

Proof of Theorem 3:From Lemma 2, we have

Similarly, we can prove



1446 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 4, JULY 1998

By means of these two inequalities, Theorem 3 is proved in
the following way:

In the penultimate step, we used the data processing inequality
and the fact that . The theorem is
proved.

Using the six random variables , we can
actually determine all the missing terms of the inequality in
Theorem 3. This is done as follows: from Lemma 2

Let . This
equality is restated as

Similarly, we have

Let . This
equality is restated as

Therefore,

This implies that the missing terms of the first inequality in
Theorem 3 are

Apparently, the following function is in :

For this function, one of our new inequalities is satisfied with
equality. A natural question to ask is whether or not this
function is asymptotically constructible. If this is true, then
it is likely that

Unfortunately, we were unable to prove this. Therefore, we
doubt the correctness of this plausible conjecture.

IV. PROOF OF THEOREM 6

In this section, we prove Theorem 6, the inner bound of
. The result is proven via a series of basic constructions.

Before we start to work on the proof of the result, we present
first the basic constructions. In all constructions that follow,
we use three independent and identically distributed ternary
random variables , , and taking values in the set

. The common distribution of the random variables is
the uniform distribution. Let represent a constant random
variable taking a fixed value with probability. To make
the notations simpler, in this section, we assume that the
logarithmic function is based to. Therefore, the random
variables has entropy for . The entropy of

is zero. In this section, we are going to use the concept
of atoms. There are 15 atoms in the case of four random
variables. They are represented by the nonempty subsets of

. For any function , we will use the values
of the function at atoms. The values of at atoms are
linear functions of the values of the function at subsets of

. The values of the function at subsets will be
denoted, for instance, for , by . When
is an entropy function, this is the joint entropy. To distinguish
from the values at subsets, the values of the function at atoms
are represented, for instance, at atom , by .
When is the entropy function of four discrete random
variables , we have

Construction 1:For any nonempty subsetof
let if and , otherwise. The function
defined by this construction is denoted by . It is easy to
check that, for this construction, for any ,
and .

Construction 2:
. The function defined by this con-

struction is denoted by . For this construction, the function
has value zero at all weight-one atoms, has valueat all
weight-two and weight-four atoms, and has value at all
weight-three atoms.
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Construction 3:
. The function defined by this construction

is denoted by where indicates that random variable
. The construction is actually symmetric for the

other three random variables. We also have the other three
similar constructions obtained by permuting the four random
variables. The functions so constructed are denoted by
where indicates that . For this construction

and

At all other atoms the values are zero.

Construction 4:
. The function so constructed is denoted by .

We can also construct a function and its meaning is
self-explanatory. For this construction,

and

At all other atoms it has zero value.

Construction 5:
. The function constructed

by this method is denoted by . For this construction,
at all weight-one and -two atoms the value is zero; at all
weight–three atoms the value is; and .

Construction 6:
, . The function con-

structed by this method is denoted by . We can also
construct functions for other values of by the same
method. For this construction, ; at all weight-
two atoms containing, the values are; and

. At all other atoms the values are zero.

Construction 7:
, . The function constructed by this

method is denoted by . We can also construct for other
values of by the same method. For this construction, at
all atoms of weight at most two the value is zero; at all
weight-three atoms except the atom the values are
; and .
To help the reader to understand the proof, we give charts

for the values of the functions constructed in Constructions
2–7. Since these functions take zero values at all weight-one
atoms, we give their values at atoms of weight at least two.
The atoms of weight at least two are arranged as follows:

The values of the functions 2–7 are given as follows using
this chart.

Function

Function

Function

Function

Function

Function
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In [39], we proved the following result:

Lemma 3: If and , then . If
, then .

That is, is a convex cone.
Proof of Theorem 6:A function in the region

should satisfy the following conditions in terms of atoms: Let
the four indices of the random variables be which
is a permutation of the set . From the definition of
the region , the inequalities the function should satisfy
include:

1) is nonnegative at all atoms of weight one;
2)

, where is the empty set;

The atoms involved in inequality (2).

3) ;

The atoms involved in inequality (3).

4) ;

The atoms involved in inequality (4).

5) .

Notice that the fourth condition comes from the constraint

Other inequalities come from the nonnegativity of conditional
mutual informations of two random variables and the non-
negativity of the conditional entropies. Lemma 1 is useful in
finding the atoms involved in these inequalities. These five
conditions will be referred to as Conditions 1–5 in the proof.
The readers can extremely reduce the difficulty in subsequent
reading by familiarizing themselves with these five conditions
in the atom chart for all permutations of and .

A function is called nonnegative if its values at all
atoms are nonnegative.

Lemma 4: Nonnegative functions are asymptotically con-
structible.

Proof: If is a function that takes nonnegative values
at all atoms, then

where is nonnegative for all . It is asymptotically
constructible from Construction 1 and Lemma 4. The lemma
is proved.

The basic idea for the proof is that for any function
in , we can find a sequence of basic functions from

Constructions 1–7 for some and a
sequence of nonnegative reals such that

Once we can prove this, then the theorem is proved by
invoking Lemma 4. Suppose is in and is a basic
function from Constructions 1–7 and . If ,
then we say that subtracting from is a legal operation.
We prove the theorem by finding a sequence of legal operations
to reduce to a nonnegative function, which is asymptotically
constructible by Lemma 5. This implies by invoking Lemma
4 that the original function is asymptotically constructible.

Construction 1 is used only in Lemma 5. In the proof that
follows, we use only the other six constructions. We notice
that in Constructions 2–7, no atom of weight one is involved.
As long as the values of the function at the weight-one atoms
are nonnegative to start with, upon subtracting a nonnegative
multiple of any of these constructions, Condition 1 remains
satisfied. Therefore, we can always ignore the weight-one
atoms when we consider subtracting a nonnegative multiple
of any of these constructions.

We find these legal operations in the following steps.
Step 1: We notice that satisfies all inequalities in Con-

ditions 2–4 with equalities. So subtracting from where

is a legal operation because 1) Conditions 2–4 will remain to
be satisfied since subtracting zero does not change the direction
of the inequalities and 2) since is defined as the minimum
of the values of the function at all weight-two atoms, after
subtracting the values of at these atoms are at least.
Therefore, Condition 5 holds. Without loss of generality, we
assume that

Let . We have

i) ;
ii) .
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In the following chart, the atoms are marked either by a
indicating that the value of the function at this atom is

zero, or by a indicating that the value of the function at
this atom is nonnegative, or by an indicating that the value
of the function at this atom may be negative.

The Function

Step 2: A function is called seminonnegative if its values
at all atoms of weight up to three are nonnegative. In this step,
we prove that can be reduced to a seminonnegative function
via a series of legal operations. From the chart for, we see

is not seminonnegative if and only if at least one of two
values of , and , is negative. Suppose

Let . We prove that subtracting from
is legal. Let . We notice that

for any . These observations and imply that

From , we see that

Similarly, we have

For other pairs , since the values of are not affected by
the operation, we still have

To show that , we need to check only Condition 4

There are six of them for

The inequalities for are triv-
ial because all entries are nonnegative. The proofs for

are the same. We prove it only for

. We need also to prove it for . For

In the next to the last step, we used the fact that
and in the last step, we used the fact that . For

In the next to the last step, we used the fact that
and in the last step, we used the fact that

. This proves that . If ,
then is already seminonnegative. Otherwise, repeating the
same proof by replacing atom by , we can
obtain a seminonnegative function. Therefore, without loss of
generality, we assume that is already seminonnegative.

Step 3: Since is seminonnegative, if the value of
at is nonnegative, then the function is already
nonnegative and therefore asymptotically constructible from
Lemma 5. Otherwise, we continue to find legal operations to
convert the function to a nonnegative function. In doing so, the
inequalities we need to consider are those in which the atom of
weight four is involved. That is, the following six inequalities

for all six pairs from . The following obser-
vations will be useful in the remaining part of the proof.

Observation 1: Let be a permutation of ,
and let be a seminonnegative function. Then

implies that subtracting from is legal and results in a
seminonnegative function where
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Observation 2: Let be a permutation of ,
and let be a seminonnegative function. Then

implies that subtracting from is legal and results in a
nonnegative function where

The validity of these propositions is obvious.
Since functions , , and satisfy all these six in-

equalities with equalities, as long as at atoms of weight up to
three the values of the function are not reduced below zero,
subtracting a nonnegative multiple of one of these functions
is always legal and results in a seminonnegative function.
Suppose we keep performing these legal operations until no
more legal operations resulting in a seminonnegative function
using these three functions are possible. We distinguish the
following cases according to the function that is resulted
in.

Because no operation using function is legal, for any
subset of , is zero at least one of the
following atoms: , , (cf., the atom chart for

). There are only two possible cases:

Case 1: There exists a-subset, say , such that
is zero at all three atoms: , , .

Case 2: There exist two disjoint weight-two atoms, say
and , such that the values of the function at

these two atoms are both zero.

In Case 1, without loss of generality, we assume that

Since does not give a legal operation resulting in a
seminonnegative function, the function takes value zero at one
of the following four atoms: , , , .
This gives two subcases,

Case 1.1: The function is zero at (or equivalently
one of two other weight-two atoms listed above).

Case 1.2: The function is zero at .

In Case 1.1, since does not give a legal operation
resulting in a seminonnegative function, at least one of the four
weight-three atoms, the function takes zero value. We consider
only the cases where at one of the three atoms ,

, and , the value of the function is zero.
The case where the function is zero at the atom is
equivalent to Case 1.2. Since the first two atoms are symmetric
in this context, we consider only the case that the function
is zero at . We can see that Condition 2 implies

because both and are zero

The Function in Case 1.1 for

Let

The inequalities above imply that subtracting from
is legal and results in a seminonnegative function. If
is zero at either or , then
. The function obtained is already nonnegative. Otherwise,

. This implies

Let , if then subtracting is a
legal operation and this results in a function that is nonnegative
at all atoms.

If , we have

because both and are zero.

The Function in Case 1.1 for

Let

The inequalities above imply that subtracting from
is legal and results in a seminonnegative function. If
is zero at then . If is zero
at then this goes back to the previous case. In both
cases, either the function obtained is already nonnegative, or it
can be reduced to a nonnegative function by legal operations.
Otherwise, . For this function, we have

Let

The inequalities above imply that subtracting from
is legal and results in a seminonnegative function. If is
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zero at either or , then .
Otherwise, . For this function, we have

Let , if then subtracting is a
legal operation and this results in a function that is nonnegative
at all atoms.

In Case 1.2, we have

The Function in Case 1.2.

Let . If , then subtracting
is a legal operation. This results in a nonnegative function.
Otherwise, the function is already nonnegative.

We now consider Case 2. Without loss of generality, we
assume that . Since does not
give a legal operation resulting in a seminonnegative function,
the function has value zero at least one of the four
weight-three atoms. Without loss of generality, we assume

. Then we have

The Function in Case 2.

Let . Then sub-
tracting is legal. The function resulting from this
legal operation takes zero value at either , ,
or . In the first case, , we have

Apparently, subtracting is legal where

This results in a nonnegative function. In the second case,
, we have

Let

Subtracting is legal. Let be . Then either
or . In both cases, we must

have , that is, the function is nonnegative.
Otherwise, . This implies

and

Then, subtracting is legal and results in a nonnegative
function. In the third case, , must
be nonnegative. Hence, is a nonnegative function.

Thus we have proved that we can always reduce a function
in by legal operations to a function that takes nonnegative
values at all atoms. By Lemma 5, Theorem 6 follows.

V. CONCLUDING REMARKS

The key result of this paper is Theorem 3. This discovery
shows that the set of so-called basic information inequalities
cannot fully characterize Shannon’s entropy function in the
sense of Theorem 4. That is, the region is strictly greater
than the region . This is a surprising result because based
on intuition, one tends to believe that the opposite is true.
Actually, when we started to look into this problem, we tried
first to prove that

by finding all kinds of constructions for four random variables
as in the proof of Theorem 6. Only after we failed to find
a construction in one of many cases, we started to doubt the
correctness of our conjecture. This led to the discovery of this
new information inequality.

The full characterization of the region seems to be a
highly nontrivial problem. Even in the case of , we
were unable to determine the region. We, instead, provided an
inner bound of the region. This is Theorem 6 of the paper.
The inner bound and the outer bound we found in this paper
differ. It has been shown by an example that the inner bound
is not tight. Unfortunately, the construction method we used
in this example is not powerful enough to show that our outer
bound is tight.

The simplest case of the problem is the case of
because this number is the smallest integer for which
and differ. Although we mainly have concentrated on
this simplest case, we have proved Theorem 5 which is
a generalization of Theorem 3 to any number of random
variables.

We also determined the missing terms in the inequalities
in Theorem 3. They are expressed in terms of some auxiliary
random variables. We did so in hope that this may be helpful
in further searching for new information inequalities, as well
as in further searching for improved inner bounds.
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To get a better understanding of the behavior of the entropy
function, it is important to fully characterize the function at
least in the simplest case of . That is, the simplest task
in this research direction is to determine the region. Based
on our experience, we do not believe our outer bound to be
tight. That is, we believe that there may exist more linear
unconditional information inequalities involving four random
variables.

The meaning of the new information inequalities provided
by Theorems 3 and 5 are still not fully understood. Although
we have used the region to study the so-called distributed
source coding problem, it is still of great interest to find more
applications of the inequalities in other information-theoretical
problems, especially in multiuser channel coding or source
coding problems.

The problems studied in this paper have close connection
to some other areas such as probabilistic reasoning, relational
database, and so on. To study the implication of our results in
those areas is also of interest.
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