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On Characterization of Entropy
Function via Information Inequalities

Zhen ZhangSenior Member, IEEEand Raymond W. Yeungsenior Member, IEEE

Abstract—Given n discrete random variables? = {X;,---, all joint entropies, conditional entropies, mutual informations,
X, }, associated with any subsetx of {1, 2,---.n}, there is and conditional mutual informations involving some of these

a joint entropy H(X.) where X, o Z{)"} € a}. This can  anqom variables. For any subseof A, = {1, ---, n}, let
be viewed as a function defined or2t*>= " taking values in

[0, +00). We call this function the entropy function of €2. The Xo={X;:i € a}. 1)
nonnegativity of the joint entropies implies that this function is

nonnegative; the nonnegativity of the conditional joint entropies Let X4, where¢ is the empty set, be a random variable taking
implies that this function is nondecreasing; and the nonnegativity a fixed value with probabilityl. Let

of the conditional mutual informations implies that this function

has the following property: for any two subsets« and 8 of Ig(a, Bly) = I(Xa; X X5) (2
{1,2,---.n}

HQ(&) + Hp(ﬁ) > HQ(OZ U 3) —i—HQ(Oz n 3).

be the conditional mutual information and let

. . . y Ho(a) = H(Xa) ©)
These properties are the so-called basic information inequalities
of Shannon’s information measures. Do these properties fully be the joint entropy. Sometimes, we drop the subscfipt
characterize the entropy function? To make this question more jn these notations, when no confusion may occur. It is well

precise, we view an entropy function as &" — 1-dimensional 0 that Shannon’s information measures satisfy the fol-
vector where the coordinates are indexed by the nonempty subsets, """ . L
lowing inequalities.

of the ground set{1. 2, ---.n}. Let ', be the cone inR?"~*
consisting of all vectors which have these three properties when Proposition 1: For any three subsets, 3, and~ of A

they are viewed as functions defined or2*:? "} Let I be o e ) )
the set of all2™ — 1-dimensional vectors which correspond to the any set ofn jointly distributed discrete random variables

entropy functions of some sets of. discrete random varigples. The @ ={Xi,i=1-,n}
question can be restated as: is it true that for anyn, I';, = T'»,? I 3l~) > 0 4
Here T, stands for the closure of the sef’’. The answer is ‘yes” (o, Blv) 2 0. 4)

when n = 2 and 3 as proved in our previous work. Based on e call these inequalities the basic inequalities of Shannon’s
intuition, one may tend to believe that the answer should be information measures, or simply the basic inequalities. By

“yes” for any n. The main discovery of this paper is a new f the chai le f diti | | inf .
information-theoretic inequality involving four discrete random Means of the chain rule for conditional mutual informations,

variables which gives a negative answer to this fundamental We can see that these inequalities are implied by a subset of
problem in information theory: T, is strictly smaller than I, these inequalities of the form
whenevern > 3. While this new inequality gives a nontrivial

outer bound to the coneT;, an inner bound for T, is also I({i}a {J}|’7) = 0. (5)
8;?;5@2_6 inequality is also extended to any number of random That is, the subset of inequalities (4) in which the cardinalities

) o _ of o« and 5 are both1l. This subset of basic information
Index Terms—Entropy, inequality, information measure, mu-  jnequalities is referred to as elemental information inequalities
tual information. [35]
For any set of: jointly distributed discrete random variables
I. INTRODUCTION Q = {X;,« = 1,---,n}, the associated joint entropies

ETQ, = {X;:i =1, ---, n} ben jointly distributed Hgq () can be viewed as a function defined 2M-

discrete random variables. The basic Shannon’s informa- Hg: 2NV — [0, o). (6)

tion measures associated with these random variables include

. ) ) The goal of this paper is to study this function for all possible
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Proposition 2: For any set ofn jointly distributed discrete

random variables2 {X;,¢ = 1,---, n}, the entropy

1441

Theorem 2: For any four discrete random variables =
{X,Y, 2z, U}

function H associated with these random variables has the

following properties.
» For any two subsetsa and 3 of A,

H(a U p)+H(an B) < H@) +HPB).  (®)
e o C f implies
H(a) < H(B). ©)
and
H(¢) =0. (10)

Let F, be the set of all functions defined @V~ taking
values in[0, o). Define

T, FeF:F(¢)=0;aCB= Fla) < F(B);

Va, €2V Fla) + F(8) > Fla + Fla n A)}. (11)

I(X;V)=I(X;Y|Z)=0 (16)
implies
IX;Y|2, U)<I(Z, UX, YY)+ I(X;Y|U). (17)
We also proved in [39] that this result implies
I #£T,. (18)

Therefore, it lends some evidence for the following conjecture.
Conjecture 1: Forn > 4
T #T,. (19)

To give an affirmative answer to this problem is the goal of
the current paper.

The paper is organized as follows: in the next section,
we state the main results and introduce some definitions and

Apparently, for anyQ = {X;: i =1, ---, n}, Ho € [',,. This notations; Sections Il and IV are devoted to the proofs of the
means that the sdf,, characterizes some of the propertiesesults; in Section V, we summarize the findings of the paper
of the entropy function. A natural question to ask is whethand raise some problems for future study.
or not this set “fully” characterizes the entropy function. To Before closing this section, we would like to give a brief
make the question more precise, we have introduced in [3count of the works we found in the literature which are
the following definitions. relevant to the subject matter of the current paper. As Shan-
non’s information measures are the most important measures
in information theory, researchers in this area have been
investigating their structural properties since the 1950’s. The
early works on this subject have been done along various
directions by Campbell [2], Hu [10], McGill [21], Watanabe
[31], [32].

McGill [21] has proposed a multiple mutual information

In [39], we have seen that the structure of this set could be vef(r)r any number of random variables, which is a generalization

complicated and we mentioned that the following conce to Shannon’s mutual information for two random variables.
P . 9 P Eroperties of the multiple mutual information have been in-
more manageable:

vestigated in the subsequent works of Kawabata and Yeung
Definition 2: A function F' € F,, is calledasymptotically [6], Tsujishita [30], and Yeung [37].

constructibleif and only if there exist a sequence of sets The work of Hu [10] was the first attempt to establish an

of n discrete random variable®* for k& = 1, --- such that analogy between information theory and set theory. Toward

the joint entropy functionsH,» associated with2* satisfy this end, he defined the following formal substitution of

limg oo Hor = F. symbols:

Definition 1: A function F' € F,, is calledconstructibleif
and only if there exists a set af jointly distributed discrete
random variable$? such that the joint entropy functiof,
associated with these random variables satigfigs= F'.
Define

I = {F' € F,: I is constructiblé. (12)

Obviously, a functionZ” is asymptotically constructible if H/I < p
and only if 7 € T}, the closure of the sdt*. o o= U
In [39], we proved the following results. ; < N
Theorem 1: | -
. wherey, is any set-additive function. In the above substitution,
Iy=1% (13) on the left are symbols in information theory, while on the right
and are symbols in set theory. He showed that a linear information-
% =TIs. (14) theoretic identity holds for all distributions if and only if the

corresponding set-theoretic identity obtained via the formal

Up to this work, it was not known whether or not this result cagpstitution of symbols holds for all additive functipn For
be generalized. That is, we did not know whether#ors 3 example, the information-theoretic identity

I =T (15) HX)+ HY) = HX, Y) + I(X; Y)
This is a fundamer_w;al prqblem N information th’eo_ry. In [3.9 ]COrresponds to the set-theoretic identity
we proved a conditional inequality of Shannon’s information
measures. p(X)+p(Y)=p(X UY)+ (X NY).
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Hu’s work was originally published in Russian, and it was ndietweenl”;, and information inequalities was not known. This
widely known in the west until it was reported in Csdszand question is the starting point of the work by the authors in
Koérner [3]. [39] and in the current paper. With the result in [39] tht
Important progress has been made in the mid 1970’s aisda convex cone, answering the question raised by Han in
the early 1980’s, mainly by Han [7], [9]. Let us point ouf9] is equivalent to determining. In a recent paper [37],
that any linear information expression can be expressed aw@have used the regidry, to study the so-called distributed
linear combination of unconditional joint entropies by repeatesburce-coding problem.
applications (if necessary) of the following identity: As a consequence of the work in [35], a software called
. , , ITIP (Information Theoretic Inequality Prover) [38] has been
HX;Y|2) =H(X, 2)+ H(Y, Z) - H(X, Y, Z) - H(Z). developed which can verify all linear information inequalities
In [7], Han proved the fundamental result that a linear confvolving a definite number of random variables that are
bination of unconditional joint entropies is always equal ténplied by the basic inequalities for the same set of random
zero if and only if all the coefficients are zero. This resulariables.
was also obtained independently by Caisand Korner [3].  Along another line, motivated by the study of the logic
Han further established a necessary and sufficient conditi®h integrity constraints from databases, researchers in the
for a symmetrical linear information expression to be alway€a of probabilistic reasoning have spent much effort in
nonnegative, and a necessary and sufficient condition forclaracterizing the compatibility of conditional independence
linear information expression involving three random variabléglation among random variables. This effort was launched
to be always nonnegative [9]. In [9], he raised the importaRy & seminal paper by Dawid [4], in which he proposed four
question of what linear combinations of unconditional joingxioms as heuristical properties of conditional independence.
entropies are always nonnegative. In his work, Han viewdd information-theoretic terms, these four axioms can be
a linear combination of unconditional joint entropies as smmarized by the following statement:
vector space, and he developed a lattice-theoretic description
of Shannon’s information measures with which some notations I(X; Y, Z)U) =0 & I(X; Y|U) =0
can be greatly simplified. During this time, Fujishige [5] foun@nd
that the entropy function is a polymatroid [33]. I(X; Z]Y, U) =0.
In the 1990's, Yeung [34] further developed Hu'’s work into
an explicit set-theoretic formulation of Shannon’s informatiofubsequent work on this subject has been done by Pearl and
measures. Specifically, he showed that Shannon’s informatfdi collaborators in the 1980’s, and their work is summarized
measures uniquely define a signed meawneca”ed thel- in the book by Pearl [23] Pearl ConjeCtured that Dawid'’s four
measure, on a properly defined field. With this formulatio@xioms completely characterize the conditional independence
Shannon’s information measures can formally be viewed ggucture of any joint distribution. This conjecture, however,
a signed measure, and McGil's multiple mutual informatiowas refuted by the work of Studgri25]. Since then, Mafs
is naturally included. As a consequence, all set-theoretic te@fld Studey have written a series of papers on this problem
niques can now be used for the manipulation of informatidd3]-[29]. They have solved the problem for up to four random
expressions. Furthermore, the use of information diagrai¥@fiables. It has been shown in [35] that the problem of
to represent the structure of Shannon’s information measuf&@racterizing the compatibility of conditional independence
becomes justified. We note that information diagrams haf@lations among random variables is a subproblem of the
previously been used informally to illustrate the structure §fetermination ofl’;.
Shannon’s information measures [1], [22], [24]. Subsequently,
Kawabata and Yeung [6] studied the structureubfwhen the Il. STATEMENT OF MAIN RESULTS
random variables form a Markov chain. Recently, Yeletg
al. [36] have extended the study in [6] to random variables
forming a Markov random field. Theorem 3: For any four discrete random variablég Y,
Recently, Yeung [35] defined the Sé&t of all constructible Z, U, let
entropy functions and observed that whether an informatio
inequality (linear or nonlinear) always holds is completely&(z’ UIX,Y) = I(Z; U) = I(Z; UIX) = I(Z; UY). (20)
characterized by“f, This ge(_)m_etrical framework _enaples hi”_‘l’hen the following inequality holds:
to develop a unified description of all information inequali-
ties (unconstrained or constrained) which are implied by the  A(Z, U|X,Y) <i[I(X;Y)+1(X; ZU)
nonnegativity c_>f Shar_mon's mforma_tlon measures, called t_he +1(Z; UIX) — I(Z; UY)]. (21)
basic inequalities. This gives a partial answer to the question
raised by Han in [9], and it directly leads to the question dflote that the right-hand side of (21) is not symmetriciin
whether all information inequalities which always hold arandY’, whereas the left-hand side is. Therefore, we also have
implied by the basic inequalities for the same set of randotie following inequality:
variables, or equivalently, whethér: = I',, is true. In fact,
the same question was raised in [26] and [34], although at A(Z. UIX,Y) <5 [I(X;Y) + I(Y; ZU)
that time [’} had not been defined and the intimate relation - I(Z; UX)+ I(Z; UY)]. (22)

The key result of this paper is the following theorem:
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Averaging inequalities (21) and (22) gives Theorem 5: For any set of + 2 discrete random variables
U,Z, X;:i=1,2,---,nand anyi € {1, 2, ---, n}
AZ,UIX,Y)< S I(X; Y) + 2 [I(X; Z2U) + 1(Y; ZU)). n
(23) )= > IU; Z|1X;) —nl(Us Z]X)
j=1

This theorem will be proved in the next section.

Let I € F,,. Define for three subsets, 3, and~ of A/, < I(X:; UZ) + Z H(X)) — HX.X - X,). (27)
j=1

Ip(a; Blv) = F(aUy)+F(BU~)—Fla U BU~Y)—F(y). _ ,
Furthermore, by averaging (27) ovgrwe obtain

When+~ is the empty set, we simply writér(«; 3) in place n
of Ir(e; Bl7y). Let nI(U; Z) -2 I(U; Z|X,)
j=1
Ar(, jlk, 1) =Ir({i}; {5}) — Ir({i}; {GIHF}) 1y
— Ie((s}; GHEY). Quy =, 2 AU+ Z HX) = HXiXa - Xo)
Define (28)
. The proof of this theorem is omitted because it can be proved
I'y ={F € I'y: for any permutationr of {1, 2, 3, 4} using exactly the same idea used in the proof of Theorem 3
AF( (1), 7(2)|7(3), 7(4)) and an inductive argument.
[ p(1(3); 7(4)) + Ir(n(1); 7(2)|7(3)) So far, when we study the entropy function, it is viewed
as a function defined o2V». That is, we use the subsets of
= Ip(r(1); m(2)|n(4)) N, as coordinatesd («) is simply the joint entropyH ( X,,).
+Ip(r(3); m(1)m(2))]} (25) It is more convenient to use another coordinate system when
we study the inner bound of the sEf.. To introduce this
(Notice that, if we replacer(s) for ¢ = 1,2,3,4 by new coordinate system, we employ the concept of atoms.
Z, U, X, Y, respectively, then the inequality in (25) is jusiThe atoms are also indexed by the subsets\@f or the
(21).) Theorem 3 says that elements of2"=. To motivate the definitions we are going
L to introduce, we first check the definitions of the conditional
I'; cly. mutual informations of more than two random variables.
Let Xy, ---, X,, be n discrete random variables, then the
Theorem 3 implies the following result. conditional mutual information of: random variables given
Theorem 4:Forn > 4 Xo [37] is defined as
_ (X1 -5 Xl Xa) = Z (—1)1+|”’|H(XA,UQ).
Iy #1,. (26) YC{in, i}
(29)

Proof: Apparently, we need to prove the theorem onl{onsider an arbitrary functiof' in %,,. We define a function
for n = 4. This will imply the conclusion of the theorem for F'[a|3] for any pair of subsetsy, 3 of the ground setV,

any n > 4. Define a function¥ by letting where« is nonempty. The values of the original function are
denoted byF'(.), while for the values of the functiof’[«|/5],
F(¢)=0 we use].] to replace(.) to indicate that these are different
F(X)=FY)=F(Z)=FU)=2a>0 from the values of the original function.
F(X,Y)=4a, F(X,U)=F(X, Z) = F(Y, U) FlalA] = S (-1 E(y u ). (30)
IF(KZ)IFZ,U)=3G YCa
F(X,Y,Z)=F(X,Y,U)=FX, Z U) Flo] € Fla]a] (31)
=FY,Z, U)=F(X,Y, Z,U) = 4a.

where o¢ stands for the complement aef with respect to

i , the ground set{1, 2, ---, n}. As we said, this concept is

'll;henfTheorem 4 is proved by checking théit € I'y ar|1:(|1 parallel to the concept of conditional mutual informations of
¢ Ly more than two random variables. We have, for instance, when
From Theorem 4, we have a={1, 2, 3},n =5, Fis the entropy function of five random

variables Xy, ---, X5

F4 7& F4 F4 - F4- F[a] = I(){Vl7 XQ; X3|X4X5).

That is, the sef, is a nontrivial outer bound of the sBt.  We sayF|«] is the value of the functiod” at the atomx. The
Theorem 3 can be generalized to the following informatioatoms are also indexed by the subsets\@f The weight of
inequalities forn + 2 random variables where > 2. an atom is defined as the cardinality of its index set.
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The basic information inequalities can be restated under thithen F* is the entropy function of four discrete random
new coordinate system as follows:F' is the entropy function variablesX;, X», X3, and X4

of a set of n random variablex? = {X;, ---, X, }, then for
any subsety of \V,, of cardinality of2 and any subsefi of Sr(1, 2|3, 4) =I(X1; Xo) + I(X3; X4|X1)
Nn -« +I(X3; X4|X2) — I(X?); X4)
Flo|p] 2 0 (32) . . . . .
This quantity may be negative. This fact will be proved at the
and for any single element set end of this section. The importance of this information quantity
will be seen in Theorem 6 stated in this section. Theorem 3
Fla] > 0. (33) can be restated as follows.

This includes only a subset of the basic inequalities (calleg T"€orem 3:For four random variable(;, Xy, X3, Xy, if
the elemental inequalities in [35]). But as we mentionefi IS the entropy function, then
before, this subset of basic inequalities implies all other basic
inequalities. Sp(l, 213, 4) + F[1, 3|4] + F[1, 4)3] + F[3, 4]1] = 0. (39)
We use some simplified notations: as an exampley i
{1,2,3}, B = {4, 5, 6}, we write '[1, 2, 3|4, 5, 6] in place |nequalities (22) and (23) are now
of F[{1, 2, 3}|{4, 5, 6}]. A useful formula for the function

F[.]is the following lemma. Sp(1, 2|3, 4) + F[2, 3)4] + F[2, 43] + F[3, 4/2] > 0 (40)
Lemma 1: and
25p(1, 2|3, 4) + F[1, 3/4] + F[1, 4]3] + F[2, 3|4
e + F[2, 4]3] + F[3, 4]1] + F[3, 4[2] > 0.

(41)
where A¢ stands for the complement of the sét
For four random variableX;, X,, X3, X4, if F'isthe en- That is, although the guantit§ can be negative for some
tropy function of the four random variables, the basic irentropy functionsF, but it is bounded from below by the
equalities are as follows: lefi, j, k,{} be a permutation of maximum of the following two quantities:
{1, 2, 3, 4}
— (F[1, 3[4] + F[1, 4]3] + F[3, 4/1])

Fli, j] 20 — (F[2, 3[4] + F[2, 43] + F[3, 4]2)).

Fli, j]+ Fli, j, k] 20

Fli, g1+ F[, g, K+l g, U+ Fl 5, k. ] 20 We notice thatF[¢, j|k] is the conditional mutual information
and of the two random variables’; and X; given X; which is
Fli] >0. always nonnegative.
Define

We have from (20)
[y = {F e Iy: for any permutationr of {1, 2, 3, 4}

A(Xy, Xl X5, Xy) =11, 2, 3,4 — F[1, 2]. 35
(X1, XolXo, Xo) = FIL, 2,3, 4] - F[1, 2. (35) Selr(L), (Dm(3), 54 > O, “2)

We useAr(i, jlk, 1) in place of A(X;, X;| X, X;) when

I is the entropy function. By the same formulas can be The last theorem of the paper is

extended to any functiot” which may not be an entropy Theorem 6:

function, that is,
Ap(i. gk DS Fli, .k, ) - Fli,jl. (36) FycTy (43)

The following is an interesting quantity useful in the studyheorem 6 has been previously proven in [20]. The example
of I'%: in [22, Sec. V and Lemma 4.1] imply this result. But their
o def o o o proof is very abstract and [22, Lemma 4.1] is based on further
S, jlk, 1) = F[i, 1+ F[i, j, K1+ F[i, 3, 0+Fk, 1]. (37) references. To make this result more understandable, we give a
direct proof of Theorem 6 in Section IV. This theorem provides
Let ¢ be the empty set, we have an inner bound to the cong;.
.. .. .. The following nontrivial example shows that this inner
Sp(i, jlk, 1) = F[i, jlo] — Ap(k, Ui, j) bound is not tight. In other words, this example shows that
=F[i, j1+ F[i, j, K|+ F[i, 4, the information quantitys; can be negative for some entropy
Y F[i, gk 0 — Ap(k, Ui, 5).  (38) functions F.
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A Counterexample for the Positivity 6f: A  projective This gives that for these four random variables
plane (forp) is a collection ofp? — p + 1 subsets of{0, 1,
2,---,p? — p} of cardinality p such that the intersection S(1, 2[3, 4) =1(X1; X2) + I(X3; X4|X1)
of ar:ly 1p?ir offsupsetts frorFliheA colleé:_tiog])h?:s c_ardtinality + (X35 X4|X2) — I(Xs; Xy)
exactly 1 (see, for instance, [14, Appendix B]). For instance, o ) e
012, 034, 056, 135, 146, 236, 245 is a projective plane for = 1og(13/12) +2 x log,(4/3) — log,(13/6)
p = 3 on the ground sef0, 1, 2, 3, 4, 5, 6. = log,(52/27) — log,(13/6) = —log,(9/8)
<0.
0123, 0456, 0789, Oabc, 147a, 158D,
169c, 248c, 259a, 267b, 349b, 357¢, 368  1his example shows that the functisi may be negative for
some entropy functiong’ and that our inner bound is not tight.

is another example of a projective plane on the ground set
{0,1,2,3,4,5,6,7,8,9,a,b, ¢} for p = 4. We are going

to construct four discrete random variables for which the
function Sr is negative. In our construction, we use a pair Let X, Y, Z, U be four jointly distributed discrete ran-
of projective planes of the same size satisfying an additiorf#®m variables with distribution(z, y, z, v). We denote all

property that, if we take one subset from each projective p|ar{g§\rginals of this distribution by the same letteFor instance,

the intersection of the two subsets taken always has cardinalifymarginal onz, « is denoted byp(z, v). Define

at most2. An example for such a pair is the previous projective

plane forp = 4 and the following projective plane of the same (. 4, 2, u, z1, y1) def P(&. Y, 2 Wp(rL, Y1, 2 w) (44)

I1l. PROOF OF THEOREMS 3 AND 5

<

cardinality and on the same ground set: p(z, w)

0148, 025¢, 037a, 069b, 1279, 156a, 13bc, Since bothp(z, y, z, w) and p(z1, y1, 2, u) are absolutely
. . continuous with respect to(z, ), we can see that is a dis-
2346, 457b, 49ac, 28ab, 3589, 678c. tribution of six random variables. LeX;, Y7 be two random

variables jointly distributed withX, Y, Z, I/ according to the
joint distribution q.

Actually, we can expresa&\(Z, U|X, Y) in terms of the
information quantities of the six random variables defined
above.

Let the ground set of the projective plane B let D =
Usepr(a, a) be the diagonal o x P. Any projective plane
A has the property that

Usea(AXxA-D)=PxP-D
Lemma 2:
where the setsl x A — D are disjoint. Let the two projective
planes we constructed above Heg for i =1, 2. ForAc A,  A(Z, U|X,Y) =I1(X; Y1) - I(X; Y1|U) — I(X; Y1|Z)
and B € A,, if the intersection of the two sets has cardinality - I(Z; U)X, Y1). (45)
2, thenA x A—D andB x B—D intersect at a set of cardinality
2. Otherwise, they are disjoint.
We define the following random variables, X,, X3, X4: Proof:
let both X; and X, take values inP and the pairX;, X,

has the uniform joint distribution oveP x P — D. Let the AZ, UIX,Y)=I1(Z;U) - 1(Z; U|X) - I(Z; U|Y)
first projective plane bed; = {4, ---, A;3} and the second —HZ- U — (7 UX) — I( 7 UlY:
projective plane bed, = {By, ---, Bis}. Let X3 take value =1(%;U) i (Z; U1X) (,7 Y1)
tonA x A —Dfori e {1,2,---,13}. Let X, take =1(Z; U; X; 1) - I(Z; UlXT)
valuei on B; x B; — D for i € {1,2,---, 13}. We have =1(X; Y1) - I(X; Yh|U) - I(X; Y1|Z)
I(X1; X») = logy(13/12). +I(X;Y4|2U) - I(Z; U|X YY)
H(X3) = H(X4) =log, 13 =1(X; Y1) - I(X; M|U) — I(X; Y1 Z)
H(X5X,) = log, 6 + log, 13. - 1(2; U]x1).
H(X3|X1) = H(X3|X2) = H(X4|Xy) The last step is due to the fact thAtX; Y;|ZU/) = 0. The
= H(X4|X3) =log, 4 lemma is proved. O

H(X3X4|X1) = H(X3X4|X5) =log, 12. Proof of Theorem 3:From Lemma 2, we have

Therefore, Iz; U) - I(Z; U|X) - I(Z; UlY) < I(X; Y1).

. I(X3; Xy) =logy 13— log, 6 Similarly, we can prove
an

(X35 Xu|X1) = I( X35 Xu|Xz) = log,(4/3). I(z; U) - 21(Z; U|X) < I(X; Xy).



1446 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 4, JULY 1998

By means of these two inequalities, Theorem 3 is proved inApparently, the following function is i
the following way:

21(Z; U) = 31(Z; UIX) — I(Z; UY)

F(¢)=0, F(X)=F(Y)=F(Z)=FU)=
F(XY)=12a, F(XZ)=F(YZ)=F(YU)=F(XU)=

S I(X V) +I(X5 X F(ZU)=10a, F(XZU)=F(YZU)=F(XZY)
= I(X; XuY1) + I(X; Xy; V1) =F(XYU)=F(XZYU)=12a.
= I(X; X0Y1) + I(Xy; Y1) — I(Xy; V1| X) For this funct ¢ . lities is satisfied with
or this function, one of our new inequalities is satisfied wi

< ; ; ; : : :
< TG Xadh) 4+ 1(X; 1) equality. A natural question to ask is whether or not this
< I(X; Z2U) + I(Xy; 1) function is asymptotically constructible. If this is true, then
=I(X; ZU)+ I(X; Y). it is likely that

In the penultimate step, we used the data processing inequality r;= Iy.

and the fact that/(X;Y) = I(X;;Y1). The theorem is

proved. O Unfortunately, we were unable to prove this. Therefore, we

. . . doubt the correctness of this plausible conjecture.
Using the six random variables, Y, U, Z, Xy, Y, we can P J

actually determine all the missing terms of the inequality in
Theorem 3. This is done as follows: from Lemma 2 IV. PROOF OF THEOREM 6
A UIX,Y) =I(G; 0)~ (5 UIX) ~1(3; UY) e secton, we prove hearern 6 he e pound o
— . _ . _ . 4 '
=X 1) - I(X; V) - I(X; | 2) Before we start to work on the proof of the result, we present
—I(Z; U|XY1). first the basic constructions. In all constructions that follow,
_ - - ) . . we use three independent and identically distributed ternary
Let R.1 - I 1 |U) + (X5 112) + 1(Z; U]AY:). This random variabledV;, W,, and W3 taking values in the set
equality is restated as D ) .
{0, 1, 2}. The common distribution of the random variables is

AZ, UIX,Y)=I(X; Y1) - Ry. the uniform distribution. Let¥,; represent a constant random
o variable taking a fixed value with probability. To make
Similarly, we have the notations simpler, in this section, we assume that the
AZ, U|X, X)) =1(Z; U) — 1(Z; U|X) — I(Z; U|X}) logarithmic function is based t@. Therefore, the random

i variablesW; has entropyl for ¢ = 1, 2, 3. The entropy of
=1(z;U) - 21(Z; U] X) Wy is zero. In this section, we are going to use the concept
=I(X; X,) - I(X; X;|U) - I(X; X1|Z) of atoms. There are 15 atoms in the case of four random

—I(Z; U|XX,). variables. They are represented by the nonempty subsets of
{1, 2, 3, 4}. For any functionF', we will use the values
Let Ry = I(X; Xu|U) + I(X; X1|Z) + 1(Z; U|XX1). This  of the function at atoms. The values d@ at atoms are
equality is restated as linear functions of the values of the function at subsets of
1, 2, 3, 4}. The values of the function at subsets will be
A2, UX, &) = I(X; %) = By élenoted, f}or instance, fofl, 2, 3}, by F(1, 2, 3). When I’
Therefore, is an entropy function, this is the joint entropy. To distinguish
from the values at subsets, the values of the function at atoms

21(Z; U) = 31(Z; U|X) - I(Z; U]Y) are represented, for instance, at atbm2, 3}, by F[1, 2, 3].

=I(X; Y1) +I1(X; X1)— R — R When F' is the entropy function of four discrete random
=I(X; X,Y))+ I(X; X1; Y1) — R — Ry variables X, X,, X3, X4, we have
= I(X; ZU) — I(X; ZU|XiY1) + I(Xq; Y7) F[1,2,3] = I(X1; Xy; Xa|Xy).
—I(X;; Y1|X) — R, — Ry
= I(X; ZU) +I(X~ Y) — I(X; ZU|X. Y1) Construction 1:For any nonempty subsetof {1, 2, 3, 4},

L i let X; = W, if ¢ € o and X; = W, otherwise. The function
— I(Xy; Y| X) - Ry - Ry defined by this construction is denoted B}. It is easy to
This implies that the missing terms of the first inequality ,,qhecklthat for this construction, for any # «, F[f] = 0
Theorem 3 are and Fllo] =

R(X, Y, Z, U, Xy, 1) Construction 2.X; = Wy, Xo = Wy, X3 = W3, Xy =
= § [[(X; ZU|X1Y1) 4+ I(X1; Y1|X) 4+ Ry + Ro] W1 + Wy + Wamod (3). The function defined by this con-
=L [I(X; X1|\U) + I(X; X1|Z) + I(Z; U|1 X Xy) struction is denoted by™. For this construction, the function

41X Yi|X) + I(X; ZUIX0T) has value zero at all weight-one atoms, has valuat all

weight-two and weight-four atoms, and has valué at all
+ I(X; Yi|U) + I(X; Y1[Z) + 1(Z; U XY1)]. weight-three atoms.
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Construction 3:.X; = Wy, Xo = W,, X3 = Wi + W, The values of the functions 2—-7 are given as follows using
(mod 3), X4 = Wy. The function defined by this constructionthis chart.

is denoted byF} where 4 indicates that random variable (1)
X, = Wy. The construction is actually symmetric for the |
other three random variables. We also have the other three (H - (-1 - (1)
similar constructions obtained by permuting the four random | | |
variables. The functions so constructed are denoted:py (-) — (1) — (-=1) - (1
wheres indicates thatX; = W,. For this construction | | |
FJ[1,2]=F2[1,3] = F2[2,3] =1 O - = - @
and Function F2,
F3[1,2,3] = —1. (1)
At all other atoms the values are zero. |
. H - (-1 - (1
Construction 4.X; = Wy, Xo = Wy, X3 = Xy = W1 + (|) ( | ) (|)
W(mod 3). The function so constructed is denoted By . © — (0 - (© — (0
We can also construct a functiohi!; and its meaning is | | |
self-explanatory. For this construction, © - (© - (0
Fyalt, 21 =1 Function 3.
F?i4[27 3, 4] = F§4[1, 3, 4] =1
and ((|))
Fy 41,2, 3,4 = -1 1 - 0 - (0

At all other atoms it has zero value. | | |
Construction 5:X; = Wi, Xo = Wy, X3 = Wy + W,

(mod 3), Xy = W1 — W> (mod 3). The function constructed © - (1) — (0
by this method is denoted by™. For this construction,
at all weight-one and -two atoms the value is zero; at all FunctionFy ,.
weight-three atoms the value isand F3[1, 2, 3, 4] = —2.
Construction 6:X; = Wi, Xo = Wy, X3 = W3, Xy = (T)
(Wl + W, (1n0d3), Wi 4+ Ws (and 3)) The function con- (0) _ (1) _ (0)
structed by this method is denoted Wy{. We can also | | |
construct functionsF® for other values ofi by the same o _ _
o T . (1) (-2) (1) (0)
method. For this constructiod;?[1, 2, 3] = 1; at all weight- | | |
two atoms containing, the values are; and F2[1, 2, 3, 4] = © — 1) — (0
—1. At all other atoms the values are zero. }
Construction 7.X; = Wy, Xo = Wy, X3 = Wy + Ws Function ™.
(mod 3), Xy = (W7, W,). The function constructed by this (0)
method is denoted by. We can also construdt; for other |
values of¢ by the same method. For this construction, at _ _
. . (0) (1) (0)
all _atoms of weight at most two the value is zero; at all | | |
weight-three atoms except the atdh, 2, 3} the values are 0 - (1) — (0 - (1)
1; F{[1,2,3,4 = -1 and F{[1, 2, 3] = 0. | | |
To help the reader to understand the proof, we give charts 1 - (0 - (1)
for the values of the functions constructed in Constructions
2-7. Since these functions take zero values at all weight-one Function 7.
atoms, we give their values at atoms of weight at least two.
The atoms of weight at least two are arranged as follows: ((|))
i <(|)> - <(|)> - <(|)>
rr (P - (-1 - (P - (0)
124 — 1234 — 134 — 14 © - 1 - (0

| | |
24 — 234 — 34 Function £ .
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In [39], we proved the following result: Lemma 4: Nonnegative functions are asymptotically con-

Lemma3:If F/ € I'¥ anda > 0, thenaF € I[F. If struct|ble.. . . .
= " gy " Proof: If J is a function that takes nonnegative values
Fy, F eI, thenFy + F> € T,
LA n at all atoms, then
That is,['} is a convex cone.
Proof of Theorem 6:A function F in the regionl 7o TalF!
should satisfy the following conditions in terms of atoms: Let - Z [o] 25
the four indices of the random variables e j, &k, 1} which o
is a permutation of the sdtl, 2, 3,4}. From the definition of
the regionl'y, the inequalities the functiod’” should satisfy
include:

where J[«] is nonnegative for alle. It is asymptotically
constructible from Construction 1 and Lemma 4. The lemma

is proved. O
1) Fis nonnegative at all atoms of weight one, o _ .
2) Fli, jl¢| = F[i,j] + F[i,j, k] + F[i,j. 1 + TheA basic idea 'for the proof is that fpr any function
Fli, j, k, 1] > 0, whereg is the empty set; F in I'y, we can find a sequence of basic functions from
Constructions 1-7f3, ---, F,,, for somem > 0 and a
2|3 sequence of nonnegative reals - - -, a,, such that
(12) — (123) - 13 m
| | | F = Z CLij.
(124) — (1234) — 134 — 14 =1
| | |
24 — 234 - 34 Once we can prove this, then the theorem is proved by
. - . invoking Lemma 4. Supposé’ is in I'y and I is a basic
The atoms involved in inequality (2). function from Constructions 1-7 and> 0. If F — aF’ € 'y,
3) Fli, jlk] = F[i, 51+ F[i, 3,1 > 0; then we say that subtracting™ from I is a legal operation.
23 We prove the theorem by finding a sequence of legal operations
| to reducef’ to a nonnegative function, which is asymptotically
12) - (123) — 13 constructible_ b_y Lemmz_i 5._This implie_s by invoking L_emma
| | | 4 that the opgmal_funcuon is a_symptot|cally constructible.
194 — 1234 — 134 — 14 Construction 1 is used only in !_emma 5. Ip the proof that
| | | fO||OWS, we use _onIy the other six constructions. We notice
24 — 934 — 34 that in Constructions 2—7, no atom of weight one is involved.
As long as the values of the function at the weight-one atoms
The atoms involved in inequality (3). are nonnegative to start with, upon subtracting a nonnegative
L T T . multiple of any of these constructions, Condition 1 remains
A Fli g+ Fli g, K]+ P G0+ Flk 1] 210 satisfied. Therefore, we can always ignore the weight-one
23 atoms when we consider subtracting a nonnegative multiple
| of any of these constructions.
(12) - (123) - 13 We find these legal operations in the following steps.
| | | Step 1: We notice thatF? satisfies all inequalities in Con-
(174) - 12|34 - 1:|54 - 4 ditions 2—4 with equalities. So subtracting™ from F where
24 - W - (39 a= min Fi, 4]
) L. ) {i,5}1C{1,2,3,4}
The atoms involved in inequality (4).
5) Fli, j] > 0. is a legal operation because 1) Conditions 2—4 will remain to

Notice that the fourth condition comes from the constrainf€ satisfied since subtracting zero does not change the direction
of the inequalities and 2) sinceis defined as the minimum

Sk(is J, k, 1) =2 0. of the values of the function at all weight-two atoms, after

Other inequalities come from the nonnegativity of conditiongUPtractingz the values off” at these atoms are at ledst
mutual informations of two random variables and the non-herefore, Condition 5 holds. Without loss of generality, we
negativity of the conditional entropies. Lemma 1 is useful iASSume that
finding the atoms involved in these inequalities. These five
conditions will be referred to as Conditions 1-5 in the proof. F[1, 2] = Gy, 4}F['L} Jl-
The readers can extremely reduce the difficulty in subsequent S
reading by familiarizing themselves with these five conditior]_set F' — F — oF?. We have
in the atom chart for all permutations af j, &, and!. S o '

A function F[.] is called nonnegative if its values at all !_) F/ €Ly
atoms are nonnegative. i) F1,2] = 0.
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In the following chart, the atoms are marked either by @, 4). We need also to prove it fofi, j) = (3, 4). For
0 indicating that the value of the functioR” at this atom is (¢, j) = (2, 4)
zero, or by at indicating that the value of the functiafi’ at
this atom is nonnegative, or by at indicating that the value G, 3]+ G[1, 2, 4+G[2, 3, 4+G2, 4]
of the functionF” at this atom may be negative. —F[L, 34 F'[1, 2, 4+ F'[2, 3, 4]+ F'[2, 4]

(+) —a(F3[1, 3]+ F3[L, 2, 4]+ F3[2, 3, 4]+ F3[2, 4))
| — (L, 34+ F7[L, 2, 4]+ F'[2, 3, 4]+ F'[2, 4]— a1, 3]
F'[1, 3|+ F'[1, 2, 4+ F'[2, 3, 4|+ F'[2, 4]+ F'[1, 3, 4]

) - X - X - & 2 (L 3+ FL 3, A]+F(2, 3, 4]+ F7[2, 4]
| | | >0.
+ - X - )
The Functionf”. In the next to the last step, we used the fact #idt, 2, 4] > 0

and in the last step, we used the fact thét € I'y. For
Step 2: A function is called seminonnegative if its valueg;, j) = (3, 4)

at all atoms of weight up to three are nonnegative. In this step,
we prove that” can be reduced to a seminonnegative functiorb[1 2] + G2, 3, 4] + G[L, 3, 4] + G[3, 4]

via a series of legal operations. From the chartfforwe see T T o o

F’ is not seminonnegative if and only if at least one of two ~ FUL 2]+ FU[L, 3, 4]+ FU[2, 3, 4]+ F[3, 4]
values of F”, F'[1, 3, 4] and F'[2, 3, 4], is negative. Suppose —a(F3[1, 2]+ F3[1, 3, 4] + F3[2, 3, 4] + F3[3, 4])
= F'[1, 2] + F'[1, 3, 4] + F'[2, 3, 4] + F'[3, 4]

Leta = —F'[1, 3, 4]. We prove that subtractingf from £’ =F'[1, 2]+ F'[1, 3, 4] + F'[2, 3, 4] + F'[3, 4]

is legal. LetG = F’ — aF3. We notice that

P13, 4] <0,

> 0.
F3li, jl¢] =0
F3li, j|k] =0 In the next to the last step, we used the fact thgfl, 3, 4] +

2t ’ F3[3,4] = 0 and in the last step, we used the fact that

F' € Ty. This proves thatG € Ty. If G[2,3,4] > 0,

foranyk ¢ {, j}. These observations add < Iy imply that i - - - )
then G is already seminonnegative. Otherwise, repeating the

G[i, jl¢] >0 same proof by replacing ato#i, 3, 4} by {2, 3, 4}, we can
Gli, j|k] > 0. obtain a seminonnegative function. Therefore, without loss of
- generality, we assume thét is already seminonnegative.
From G[1, 3, 4] = 0, we see that Step 3: Since G is seminonnegative, if the value aF

at {1, 2, 3, 4} is nonnegative, then the function is already
G[1, 3] = G[1, 3] + G[1, 3, 4] = F'[1, 3]+ F'[1, 3,4 > 0. nonnegative and therefore asymptotically constructible from
Lemma 5. Otherwise, we continue to find legal operations to

Similarly, we have convert the function to a nonnegative function. In doing so, the
o inequalities we need to consider are those in which the atom of
G1, 41 20 weight four is involved. That is, the following six inequalities
G[3, 4] > 0.
For other pairg, 7, since the values of” are not affected by Z Gla] 20
the operation, we still have {i,jhca
Gli, 4] = 0. for all six pairsz, 5 from {1, 2, 3, 4}. The following obser-

vations will be useful in the remaining part of the proof.

To show thatG € T';, we need to check only Condition 4 . .
* y Observation 1:Let 4, 7, k, [ be a permutation of, 2, 3, 4,

Gli, j]+ Gli, j, k] + G[i, §, | + Gk, [] > 0. and letJ be a seminonnegative function. Then

There are six of them for Jli, 3, K]+ J[1, 2, 3,41 >0

i, 7)) =1(3,4), (1, 4), (1, 3), (1, 2), (2, 3), (2,4). . . . . .
() =64, (1,4, 1,3, 1,2), 23, (2 9) implies that subtractlngFfj from .J is legal and results in a
The inequalities for(s, j) = (1, 2), (1, 3), (1, 4) are triv- Seminonnegative function where

ial because all entries are nonnegative. The proof$ifoi) =

(2, 3), (2,4) are the same. We prove it only fdi, j) = a =min{J[k, 1], J[, k, 1], J[j, k, 1]}



1450 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 4, JULY 1998

Observation 2: Let <, j, k, [ be a permutation of, 2, 3, 4, because botl7'[1, 4] and G’[1, 2, 4] are zero
and let.J be a seminonnegative function. Then

((|))
- © - H - ©
J[Zv Jy l] + J[L 27 37 4] ZO | | |
Jé, k, I+ J[L, 2,3,4] >0 0 - (X) = () - (0
|
implies that subtracting.F;” from .J is legal and results in a +) - +H = ()

nonnegative function where The Function@ in Case 1.1 for'[1, 2, 4] = 0.

o =min{J, &, 11, Jli, 4, 1, JE, j, K]}. Let

The validity of these propositions is obvious. a=min{G'[2, 4], G'[1, 2, 3], G'[1, 3, 4]}

equaliies wih equaliies as long a6 at atoms of weight up J© MeGUaliies above imply that subiractiagi., from G
q d i 9 ght up & legal and results in a seminonnegative functigh If G”

three the values of the function are not reduced below zero .
. . ) . _IS'zero at eithe{1, 2, 3} or {1, 3, 4}, thenG"[1, 2, 3, 4] >
subtracting a nonnegative multiple of one of these funct|0ras . . : i .
; : ) . - 0. The function obtained is already nonnegative. Otherwise,
is always legal and results in a seminonnegative funcnog,,, L
. . : [2, 4] = 0. This implies

Suppose we keep performing these legal operations until no
more legal operations resulting in a seminonnegative function G"[2, 3,4+ G"[1, 2, 3, 4] > 0.
using these three functions are possible. We distinguish the -
following cases according to the functig# that is resulted Let b = —G”[1, 2, 3, 4], if b > 0 then subtractingFy is a
in. legal operation and this results in a function that is nonnegative

Because no operation using functidf¥ is legal, for any at all atoms.
subset{i, j, k} of {1, 2, 3, 4}, G’ is zero at least one of the If G'[2, 3, 4] = 0, we have
following atoms:{s, j}, {4, k}, {k, 7} (cf., the atom chart for
F?). There are only two possible cases: G'[1,2,3]+G'1,2,3,4 >0

Case 1: There exists &-subset, say, j, k}, such thal?’  pecause boti¥'[2, 3] and G[2, 3, 4] are zero.
is zero at all three atomdi, j}, {¢, &}, {k, 7}

0
Case 2: There exist two disjoint weight-two atoms, say (|)
{4, j} and {k, I}, such that the values of the functi@® at 0 - (+) - (0)
these two atoms are both zero. | | |
In Case 1, without loss of generality, we assume that (T) - ()|() - (T) - (0
G, 2 =G, 3] =G2 3] =0. + - O -

The Function’ in Case 1.1 foi’[2, 3, 4] = 0.
Since FY does not give a legal operation resulting in a

seminonnegative function, the function takes value zero at or@!
of the following four atoms{1, 4}, {2, 4}, {3, 4}, {1, 2, 3}.

This gives two subcases, a =min{G'[3, 4], G'[1, 2, 3], G'[1, 2, 4]}

Case 1.1: The function is zero af1, 4} (or equivalently The inequalities above imply that subtractingy’ , from G’

one of two other weight-two atoms listed above). is legal and results in a seminonnegative functigh If G”

is zero at{1, 2, 3} then G"[1, 2, 3, 4] > 0. If G is zero

at {1, 2, 4} then this goes back to the previous case. In both
In Case 1.1, sinceF® does not give a legal operationcases, either the function obtained is already nonnegative, or it

resulting in a seminonnegative function, at least one of the fot@n be reduced to a nonnegative function by legal operations.

weight-three atoms, the function takes zero value. We consid@iherwise,G”[3, 4] = 0. For this function, we have

only the cases where at one of the three atdms2, 4}, . .

{1, 3, 4}, and {2, 3, 4}, the value of the function is zero. G'[1,2,3, 4|+ G"[1, 3, 4] 2 0.

The case where the function is zero at the atgm2, 3} is

equivalent to Case 1.2. Since the first two atoms are symmeg?lect

in this context, we consider only the case that the funofin o =min{G"[2, 4], G"[1, 2, 3], G"[1, 3, 4]}.

is zero at{1, 2, 4}. We can see that Condition 2 implies ' '

Case 1.2: The function is zero a{1, 2, 3}.

The inequalities above imply that subtractiag}' , from G
G'[1, 3,4+ G'[1,2,3,4 >0 is legal and results in a seminonnegative functifi. If G’ is
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zero at eithef1, 2, 3} or {1, 3, 4}, thenG"[1, 2, 3,4] > 0. Let
Otherwise,G"'[2, 4] = 0. For this function, we have

G'"[1,2,3,4+G"[1,2,4>0

G"[1,2,3, 4 +G"[1,2, 3] >0 SubtractingaF’; , is legal. LetG” be G’ —aFy . Then either

G"[1,2, 3, 4] + G"[L, 3, 4] > 0. G"[1,2,4] =0 or G"[1, 3, 41 =0.1In bth cases, we must
have G"[1, 2, 3, 4] > 0, that is, the function is nonnegative.

Let b = —G"[1, 2, 3, 4], if b > 0 then subtracting /Y is a Otherwise,G"[1, 3] = 0. This implies

legal operation and this results in a function that is nonnegative

a=min{G'[1, 3], G'[1, 2, 4], G'[2, 3, 4]}.

at all atoms. G"[1, 3,4+ G"[1,2,3,4] >0

In Case 1.2, we have G'[1,2,4+G"[1,2,3,4 >0
G'1, 3,4+ G'[1, 2, 3, 4] >0, and

G'1,2,4+G[1, 23,4 >0, G"[2, 3, 4]+ G"[1, 2, 3, 4] >0.

! !
> . . . .
G123, 4+ ¢, 2,3, 4] 20. Then, subtractingFy is legal and results in a nonnegative

function. In the third case;’[1, 2, 4] = 0, G'[1, 2, 3, 4] must

(0) be nonnegative. Hencé’ is a nonnegative function.
| Thus we have proved that we can always reduce a function
0 — (O - (0 in I'y by legal operations to a function that takes nonnegative

| | | values at all atoms. By Lemma 5, Theorem 6 follows.

| | V. CONCLUDING REMARKS

|

(+) (+) (+) The key result of this paper is Theorem 3. This discovery

The FunctionG’ in Case 1.2. shows that the set of so-called basic information inequalities
Leta = —G'[{1, 2,3, 4)]. If @ > 0, then subtracting:F?] cannot fully characterize S_hannon’s entropy _function in the
is a legal operation. This results in a nonnegative functioﬁ?nse of Thgorg:n 4. .That 1S, the.r(.agﬁm Is strictly greater
Otherwise, the function is already nonnegative. an th?. regiorl,. This is a surprising result becagse.based

on intuition, one tends to believe that the opposite is true.
We now consider Case 2. Without loss of generality, wactually, when we started to look into this problem, we tried

assume that?’[1, 2] = G'[3,4] = 0. Since F®> does not first to prove that
give a legal operation resulting in a seminonnegative function, _
the function G’ has value zero at least one of the four Iy=T4

weight-three atoms. Without loss of generality, we assuntw)e findi Il kinds of . for f d iabl
G'[1, 2] = G'[3, 4] = G'[1, 2, 3] = 0. Then we have y finding all kinds of constructions for four random variables

as in the proof of Theorem 6. Only after we failed to find

G'[1,2,4+G'1, 2,3, 4 > 0. a construction in one of many cases, we started to doubt the
(+) correctness of our conjecture. This led to the discovery of this
| new information inequality. _
0 - (0 - () _The full c_hgracterization of th(_e regioli, seems to be a
| | | highly nontrivial problgm. Even in the case af = 4, we
) - (X) — (1) — (B were unable to determlpe the region. We, instead, provided an
| | | inner bound of the region. This is Theorem 6 of the_ paper.
+) - (+) — (0 The inner bound and the outer bound we found in this paper
differ. It has been shown by an example that the inner bound
The FunctionG’ in Case 2. is not tight. Unfortunately, the construction method we used

in this example is not powerful enough to show that our outer
bound is tight.

The simplest case of the problem is the caseno& 4
because this number is the smallest integer for wHigh
and Iz differ. Although we mainly have concentrated on

Let a = min{G'[2, 3], G'[1, 3, 4], G'[1, 2, 4]}. Then sub-
tracting ! , is legal. The functionG” resulting from this
legal operation takes zero value at eithér 3, 4}, {1, 2, 4},
or {2, 3}. In the first caseG"[1, 3, 4] = 0, we have

G"[1, 3]+ G"[1,2,3,4 > 0. this simplest case, we have proved Theorem 5 which is
Apparently, subtractin@FQ‘*A is legal where 3argijggleer:1hzatlon of Theorem 3 to any number of random
b=min{G"[1, 3], G"[1, 2, 4], G"[2, 3, 4]}. We also determined the missing terms in the inequalities

. . . . in Theorem 3. They are expressed in terms of some auxiliary
This results in a nonnegative function. In the second case . : . .
' rahdom variables. We did so in hope that this may be helpful

G"[2, 3] = 0, we have : . . . "
in further searching for new information inequalities, as well

G'[2, 3,4 +G'[1, 2, 3,4] > 0. as in further searching for improved inner bounds.
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To get a better understanding of the behavior of the entromg] M. Matas$, “Abstract functional dependency structureBiieor. Comput.
function, it is important to fully characterize the function a{ ]
least in the simplest case ef= 4. That is, the simplest task
in this research direction is to determine the redignBased [15]
on our experience, we do not believe our outer bound to be
tight. That is, we believe that there may exist more linear
unconditional information inequalities involving four randoni16]

variables. [
The meaning of the new information inequalities provided

17]

by Theorems 3 and 5 are still not fully understood. AlthougH®8l
we have used the regidr, to study the so-called distributed ;9
source coding problem, it is still of great interest to find more
applications of the inequalities in other information-theoretic&f”!
problems, especially in multiuser channel coding or sourgg
coding problems.

The problems studied in this paper have close connecti&g
to some other areas such as probabilistic reasoning, relationa
database, and so on. To study the implication of our results[#s!

those areas is also of interest.
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