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Abstract

The sum of independent, but not necessary identically distributed,
exponential random variables follows a hypoexponential distribu-
tion. We focus on a particular case when all but one rate
parameters of the exponential variables are identical. This is
known as exponentially modified Erlang distribution in molecu-
lar biology. We prove a characterization of the exponential dis-
tribution, which complements previous characterizations via hypo-
exponential distribution with all rates different from each other.
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1 Introduction and main results

Sums of exponentially distributed random variables play a central role in many
stochastic models of real-world phenomena. The hypoexponential distribution
arises as a convolution of n independent exponential distributions each with
their own rate λi, the rate of the ith exponential distribution. It belongs to the
class of phase-type distributions. Many processes can be divided into sequential
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phases. If the time periods spent in different phases of the process are inde-
pendent but not necessary identically distributed exponential variables, then
the overall time is hypoexponential. For example, the absorption time for a
finite-state Markov chain follows this distribution.

Fig. 1 Absorption time for a Markov chain with five states.

We will write Xi ∼ Exp(λi), λi > 0, if Xi for i = 1, 2, . . . has density

fi(x) = λie
−λix, x ≥ 0 (exponential distribution). (1)

The distribution of the sum

Yn = X1 +X2 + . . .+Xn ∼ HypoE(λ1, λ2, . . . , λn),

where λi for i = 1, . . . , n are not all identical, is called (general) hypoexpo-
nential distribution (e.g., [1] and [2]). Assume that all λi’s are distinct, i.e.,
λi 6= λj when i 6= j. It is well-known that under this condition, the density of
Yn is given by (see [3], p.309 and [4], p.40, Problem 12) for x > 0

fYn
(x) =

n∑
j=1

`jfj(x), λi 6= λj , i 6= j.

Here the weight `j is defined as `j =
∏n
i=1,i6=j λi(λi−λj)−1. Thus, the density

of the sum of independent exponential random variables with distinct parame-
ters is linear combination of the individual densities. For example, the density
of Y2 is

fY2
(x) =

λ2

λ2 − λ1
f1(x) +

λ1

λ1 − λ2
f2(x), λ1 6= λ2.

Let X1 and X2 be two independent copies of a non-negative random variable
X and E[X] < ∞. If X ∼ Exp(λ), then X1 + X2/2 ∼ HypoE (λ, 2λ). It was
proved in [5] that this property of the exponential distribution is not shared
by any other continuous distribution, i.e., for λ > 0

X ∼ Exp(λ) iff X1 +
1

2
X2 ∼ HypoE (λ, 2λ) . (2)
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The key argument in the proof is that the Laplace transform (LT) of the
exponential distribution with λ > 0

Φ(t) =
λ

λ+ t
, t ≥ 0 (3)

is the unique LT solution of the equation

Φ(t)Φ

(
t

2

)
= 2Φ(t)− Φ

(
t

2

)
, t ≥ 0.

Motivated by (2), in [6] we extended it in two directions: (i) for any number n ≥
2 of independent copiesX1, X2, . . . , Xn ofX, and (ii) for the linear combination

µ1X1 + µ2X2 + . . .+ µnXn µi 6= µj , i 6= j, µi > 0,

i.e., with arbitrary positive and distinct coefficients µ1, µ2, . . . , µn. Namely, it
was proved in [6], under some additional assumptions, that for λ > 0

X ∼ Exp(λ) iff

n∑
k=1

µkXk ∼ HypoE

(
λ

µ1
,
λ

µ2
, . . . ,

λ

µn

)
. (4)

This characterization was obtained by showing that (3) is the unique LT
solution of the equation

Φ(µ1t)Φ(µ2t) · · ·Φ(µnt) =

n∑
j=1

¯̀
jΦ(µjt), t ≥ 0,

where ¯̀
j =

∏n
i=1,i6=j µj(µj − µi)−1. Thus, the case of the rate parameters λi’s

in (1) being all different from each other was settled down. Note that character-
ization results in the case of distinct but not necessary positive µ1, µ2, . . . , µn
were recently obtained, in [7], under an additional assumption.

The other extreme case of all λi’s equal leads to Erlang distribution of the
sum. Assume Xi ∼ Exp(λ), i.e., λ1 = λ2 = · · · = λn = λ and let

Yn = X1 +X2 + . . .+Xn.

If Φ is the common LT of Xi, then for t > 0

ΦYn(t) = Φn(t) =

(
λ

λ+ t

)n
. (5)

If we go in the opposite direction, assuming Yn ∼ Erl(n, λ), then (5) yields
Φi(t) = λ(λ+t)−1 for each i = 1, 2, . . . , n, which in turn implies Xi ∼ Exp(λ).
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By words, if Xi are independent and identically distributed r.v.’s and Yn is
Erlang, then the common distribution is exponential.

The question arises whether a similar characterization holds when the rate
parameters λi’s of HypoE(λ1, λ2, . . . , λn) are neither all different nor all equal?
It is our goal in this paper to show that, at least in one particular case, the
answer to this question is affirmative.

Without the condition that all parameters λi’s are different or equal, the
hypoexponential density has a quite complex form ([8]). This makes the anal-
ysis of the general case difficult. In this paper, we consider the particular case
of ”all-but-one-equal” rate parameters. More precisely, let X1, X2, . . . , Xn+1

be independent copies of X ∼ Exp(λ). Consider the sum

X1 +X2 + . . .+Xn + wXn+1, w > 0, w 6= 1. (6)

This sum has a convoluted Erlang distribution, which is also known as
exponentially modified Erlang (EME) distribution ([9], [10]).

Recall the well-known (e.g., [11], p.240) Cramér’s condition. We say that X
satisfies Cramér’s condition if there is a number t0 > 0 such that E[etX ] <∞
for all t ∈ (−t0, t0). The next theorem establishes, under Cramér’s condition,
a necessary and sufficient condition for X ∼ Exp(λ).

Theorem Suppose that X1, X2, . . . , Xn+1, n ≥ 1, are independent copies
of a non-negative and absolutely continuous random variable X. Assume fur-
ther that X satisfies Cramér’s condition. Then for some λ > 0, fixed positive
integer n and fixed positive real w 6= 1

X ∼ Exp(λ) iff

n∑
k=1

Xk + wXn+1 ∼ HypoE

(
λ, λ, . . . , λ,

λ

w

)
. (7)

The hypoexponential family of distributions has found use in diverse
applied fields, including queuing theory ([12]), population genetics ([13]), reli-
ability analysis ([14]), medicine ([15]), and cell biology ([10], [16]). We focus on
a particular member of this family, namely the exponentially modified Erlang
distribution. The (proper) Erlang distribution is applied in modeling the cell
cycle phase progression as a series of sub-phase transitions with the same rate
λ. The relevant biological interpretation of the Erlang model is that each cell
cycle phase can be viewed as a multi-step biochemical process that needs to
be completed sequentially in order to advance to the next cell cycle phase.

Although the identical-stage model, is convenient from a mathematical
perspective, it has been shown to be outperformed by a number of other dis-
tributions. Particularly, it was shown in [9] that one of the most appropriate
distributions for representing cell cycle times is the EME distribution, which
models a series of exponentially distributed random variables when one of them
has a different rate. Under this assumption the multi-stage cell cycle model is
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described as follows

X1
λ1−→ X2

λ1−→ · · ·Xk
λ1−→ Xk+1

λ2−→ 2X1. (8)

Note that, in the system (8), the rate of progression is identical through each
of the initial k stages of cell cycle and that we have added an additional expo-
nentially distributed stage at the end whose rate, λ2 is distinct from the rate,
λ1, of the previous k stages. Assume that the characteristic time (CT) of one
of the transitions is significantly bigger than the CTs of all other transitions.
Assume also that the CTs are independent. Then the overall cell cycle time
distribution may be approximated by the EME distribution capturing both the
relatively rapid transitions and the slow transition (see [9]). Using the density
convolution formula, for the density of (6), it is not difficult to obtain

fEME(x) =
λ

w
e−λx/w

(
w

w − 1

)n [
1− Γ(n, (w − 1)λx/w

(n− 1)!

]
,

where Γ(n, t) =
∫∞
t
un−1e−u du is the complementary incomplete gamma

function.
In Section 2 we present some auxiliary results. We prove the Theorem in

Section 3. The last section includes some concluding remarks.

2 Auxiliary results

Due to the independence assumption, the LT of (6) equals Φ(wt)Φn(t). If Φ
is given by (3), then Φ(wt)Φn(t) is a product of linear fractions and we can
decompose it into sum of the Laplace transforms of wX and X. Denote

Φ1(t) := (w − 1)Φ(wt) and Φ2(t) :=
w − 1

w
Φ(t). (9)

Lemma 1 The following identity holds

Φ1(t)Φn2 (t) = Φ1(t)−
n∑
k=1

Φk2(t). (10)

Proof. Without loss of generality assume that X ∼ Exp(1). Note that the
following linear fraction decomposition holds

w − 1

(1 + wt)(1 + t)
=

w

1 + wt
− 1

1 + t
. (11)

Recalling that Φ(t) = (1 + t)−1, notation (9), and multiplying both sides of
(11) by (w − 1)/w, we obtain

Φ1(t)Φ2(t) = Φ1(t)− Φ2(t).
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This proves (10) for n = 1. Assuming that (10) holds for n, for the (n + 1)th

term we have that

Φ1(t)Φn2 (t)Φ2(t) =

[
Φ1(t)−

n∑
k=1

Φk2(t)

]
Φ2(t)

= Φ1(t)Φ2(t)−
n∑
k=1

Φk+1
2 (t)

= Φ1(t)− Φ2(t)−
n+1∑
k=2

Φk2(t)

= Φ1(t)−
n+1∑
k=1

Φk2(t),

which proves (10) for any n.
Lemma 2 Let n be any positive integer and v 6= 1 be a real number.
(i) For any integer j ≥ 1

v

n−1∑
k=0

(
k

j − 1

)
vk + (v − 1)

n−1∑
k=0

(
k

j

)
vk =

(
n

j

)
vn. (12)

(ii) For any integer j ≥ 2

(
v

v − 1

)j−1

v

n−1∑
k=0

vk + (v − 1)

n−1∑
k=0

kvk 6= nvn. (13)

Proof. (i) The left-hand side of (12) is equivalent to

n−1∑
k=0

(
k

j − 1

)
vk+1 + (v − 1)

n−1∑
k=0

(
k

j

)
vk

=

n−1∑
k=0

[(
k

j − 1

)
+

(
k

j

)]
vk+1 −

n−1∑
k=0

(
k

j

)
vk

=

n−1∑
k=0

(
k + 1

j

)
vk+1 −

n−1∑
k=0

(
k

j

)
vk

=

n∑
k=1

(
k

j

)
vk −

n−1∑
k=1

(
k

j

)
vk

=

(
n

j

)
vn.
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(ii) Using (12) with j = 1, for the left-hand side of (13), we obtain

(
v

v − 1

)j−1

v

n−1∑
k=0

vk − v
n−1∑
k=0

vk + v

n−1∑
k=0

vk + (v − 1)

n−1∑
k=0

kvk

=

[(
v

v − 1

)j−1

− 1

]
v

n−1∑
k=0

vk + nvn

=

[(
v

v − 1

)j
− v

v − 1

]
(vn − 1) + nvn 6= nvn.

Remark. It is not difficult to see that (12) can be generalized to

v

n−1∑
k=0

(
k +m

j − 1

)
vk + (v − 1)

n−1∑
k=0

(
k +m

j

)
vk =

(
n+m

j

)
vn, (14)

where m is any non-negative integer.

3 Proof of the theorem

It follows from Lemma 1 that if X ∼ Exp(λ), then (10) holds true. We will
proceed with the proof of the opposite direction in the claim. The case where
n = 1 is a particular case of (4) included in [6]. Let n ≥ 2. Consider the
function Ψ with the following series expansion

Ψ(t) :=
1

Φ(t)
=

∞∑
j=0

ajt
j , t > 0. (15)

Note that, as a consequence of Cramér’s condition, the above series is uniformly
convergent in a proper neighborhood of t = 0 (see [11], p.240). To prove the
theorem, it is sufficient to show that for some λ > 0

Ψ(t) = 1 + λ−1t,

i.e., the coefficients of the series in (15) are

a0 = 1, a1 = λ−1 > 0, aj = 0, j ≥ 2. (16)

Clearly,
a0 = Ψ(0) = 1. (17)

It follows from (9) and (10) that

(w − 1)n+1

wn
Φ(wt)Φn(t) = (w − 1)Φ(wt)−

n∑
k=1

(
w − 1

w

)k
Φk(t). (18)
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Dividing both sides of (18) by its left-hand side and changing the summation
index, we obtain

1 = vnΨn(t)− (v − 1)Ψ(wt)

n−1∑
k=0

vkΨk(t), (19)

where, for notational simplicity, we set v = w/(w − 1). To calculate the coef-
ficients aj for j ≥ 1, we differentiate both sides of (19) with respect to t at
t = 0. After differentiating once at t = 0 we have[

nvn − v
n−1∑
k=0

vk − (v − 1)

n−1∑
k=0

kvk

]
a1 = 0.

It follows from (12) with j = 1, that the coefficient in front of a1 equals zero
and thus there exists a λ > 0 such that

a1 = λ−1. (20)

Differentiating (19) twice with respect to t at t = 0, we have[(
n

2

)
vn − v

n−1∑
k=0

(
k

1

)
vk − (v − 1)

n−1∑
k=0

(
k

2

)
vk

]
a2

1

+

[
nvn −

(
v

v − 1

)
v

n−1∑
k=0

vk + (v − 1)

n−1∑
k=0

kvk

]
a2 = 0.

Lemma 2 with j = 2 yields that the coefficient in front of a2
1 is zero and the

coefficient in front of a2 is not zero. Therefore,

a2 = 0. (21)

It remains to prove that aj = 0 for all j ≥ 3. We will need the general Leibniz
rule for differentiating a product of functions. Denote by y(j)(x) the jth deriva-
tive of y(x); y(0)(x) := y(x). Define a multi-index set ααα = (α1, α2, . . . , αn)
as a n-tuple of non-negative integers. Denote ‖ααα‖ = α1 + α2 + . . . + αn
and Λj := {ααα : ‖ααα‖ = j}. The jth derivative (when exists) of the product
y1(t)y2(t) · · · yn(t) is given by (e.g. [17])

dj

dtj

n∏
i=1

yi(t) =
∑
Λj

(
j!

α1!α2! · · ·αn!

n∏
i=1

y
(αi)
i (t)

)
. (22)

Let us write Λj as union of three disjoint subsets as follows:

Λj = Λ′j ∪ Λ′′j ∪ Λ′′′j ,
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where

Λ′j = {‖ααα‖ = j : only one of {α1, α2, . . . , αn} equals j (others are zeros)}
Λ′′j = {‖ααα‖ = j : exactly j of {α1, α2, . . . , αn} equal 1 (others are zeros)}
Λ′′′j = {‖ααα‖ = j : there is an index αi with 2 ≤ αi < j}.

Notice that by definition, Λ′′j is not empty only if j ≤ n.
We will proceed by induction with respect to the index j ≥ 2 of aj . For

j = 2 we have already proved that a2 = 0. Assuming ai = 0 for 2 ≤ i ≤ j − 1,
we will show that aj = 0. Since a0 = 1, applying (22), we obtain

1

j!

dj

dtj
Ψn(t)|t=0 =

∑
Λj

(
n∏
i=1

aαi

)
=
∑
Λ′

j

(·) +
∑
Λ′′

j

(·) +
∑
Λ′′′

j

(·)

=

(
n

1

)
aja

n−1
0 +

(
n

j

)
aj1a

n−j
0

= naj +

(
n

j

)
aj1.

Notice that
∑

Λ′′′
j

(·) = 0 by the induction assumption. Also,

1

j!

dj

dtj
Ψ(wt)Ψk(t)|t=0 =

∑
Λj

(
wαk+1aαk+1

k∏
i=1

aαi

)
=
∑
Λ′

(·) +
∑
Λ′′

(·) +
∑
Λ′′′

(·)

=

[
wjak0aj +

(
k

1

)
aja

k−1
0 a0

]
+

[(
k

j − 1

)
aj−1

1 ak−j+1
0 wa1 +

(
k

j

)
aj1a

k−j
0 a0

]
=

[(
k

j − 1

)
w +

(
k

j

)]
aj1 +

(
wj + k

)
aj .

Therefore, differentiating (19) j times at t = 0 and grouping the coefficients
in front of aj1 and aj , we write[(
n

j

)
vn − v

n−1∑
k=0

(
k

j − 1

)
vk + (v − 1)

n−1∑
k=0

(
k

j

)
vk

]
aj1

+

[
nvn −

(
v

v − 1

)j−1

v

n−1∑
k=0

vk − (v − 1)

n−1∑
k=0

kvk

]
aj = 0.

It then follows from Lemma 2 that the coefficient in front of aj1 is zero and the
coefficient in front of aj is not zero. Therefore, for all j ≥ 2

aj = 0. (23)

Now, (17), (20), (21), and (23) lead to (16), which completes the proof.
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4 Concluding remarks

In this paper we continue the study of the relation between the exponential
and hypoexponential distributions, initiated in [5] and extended in [6]. The
obtained characterization complements those in the above papers. Here we deal
with a situation where the rate parameters λi’s in a convolution of exponential
variables are not all different from each other. The obtained result is of interest
itself, however it can also serve as a basis for further investigations of more
complex compositions of the rate parameters.

The exponential distribution is well known as a lifetime model in reliability
theory. In particular, its use as a probability model for failure times of system’s
components is well justified. Thus, it is important to assess goodness-of-fit
of the exponential distribution for a data set prior to applying the exponen-
tial model. Characterization results often serve as a useful device in obtaining
goodness-of-fit tests. The presented here characterization can be used for
testing the validity of a model based on the exponential distribution.
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