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INTRODUCTION

Let I = [a,b] be an interval, f: I x R = R a fixed two-place function, and F(I)
the linear space of all functions u: I — R. The function F: F(I) = F(I) given by
the formula

(Fu)(t) == f(t,u®) tel, vweF(),

is called a composition operator. In [4] it is proved that a composition operator F
maps the space Lip([/) of all Lipschitzian function into itself and is globally Lipschitz-
ian if and only if f(t,z) = g(t)x + h(t), where g, h € Lip(J).

This result has been further extended to some other function Banach spaces (see
[1-7]). Recently N. Merentes (see [7]) proved an analogous theorem in the space
RVy[a,b] of functions of bounded p-variation in the sense of Riesz (1 < p < o0).
In the present paper we generalize these results in the case that the composition
operator F is globally Lipschitzian between spaces RV,[a,b] and RV[a,b] where
1 € ¢ £ p. On the other hand, if 1 < p < ¢, the composition operator F is constant.

1. PRELIMINARY RESULTS

Given 1 € p < oo and u: [a,b] = R, we write

. Jue(t;) — wu(
(u;m .—-supz TR 1|p 1

for the p-variation of the function u in the sense of Riesz, where the supremum
is taken over all partitions 7:a = to < ... < t,, = b of the interval [a,b]. By
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RV, = RVj|a, b] we denote the Banach space of all functions u on [a, b] for which the
norm 1

lullp = lu(@)] + (Vy(u; [a, 0]))
is finite. Usually, one takes BV [a,b] as the space Lip[a, b] of all Lipschitzian func-
tions on [a, b] with the norm

fu(z) — u(y)|
llullLipta e == lu(a)] + sup ————==.
pla.t] z#y Il‘ - yl
Moreover, the space RVi[a,b] is simply denoted by BV[a,b] and it is the classical
space of functions of bounded variation on [a, b}.
It is easy to see that if p > 1, then every function u € RV,[a,b] is continuous.
More precisely, the inclusions

Lip[a,b] C RV,[a,b] C AC[a,b] C BV]a,b] (p>1)
hold, where AC[a, D] is the space of all absolutely continuous functions.

Lemma 1 ([8], Riesz). Let 1 < p < oo be a fixed number. A function v fulfills
u € RV,[a,b] if and only if u € AC{a,b] and v’ € L,[a.b]. In that case we also have
the equality

b
V(s [a, b)) = / ! ()P dt.

F. Szigeti (see [9], p. 13) proved that the space RV,[a,b] (1 < p < o) is also a
Banach algebra.

In [7] it is proved that the composition operator F' generated by f: [a,b] x R = R
maps the space RV,[a,b] (1 < p < o0) into itself and is globally Lipschitzian if
and only if f(t,z) = g(t)x + h{t) (¢t € [a,0]; 2 € R) for some g, h € RV,[a,b].
In the case p = 1, J. Matkowski and J. Mi$ (see [6]) proved that the composition
operator F, generated by f, maps the space BV][a,b] into itself and satisfies the
global Lipschitzian condition if and only if

flz,y) = gla)y + h(x)

for two functions g, h € NBV[a,b], where

flo,y) = lim f(z = d.y) (v €R)

is the left-continuous regularization of f and NBV][a,b] is the subspace of all func-
tions u € BV[a, b] such that w is continuous on [a, 0] from the left.
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MAIN RESULTS

In this section we will present a characterization of functions f: [a,b] x R — R for
which the composition operator F' generated by f maps the space RV,[a,b] into the
space RV,{a,b] (1 € ¢ < p) and is globally Lipschitzian. In the case 1 < p < g, the
composition operator is constant.

Theorem 1. Let p, ¢ be real numbers such that 1 < ¢ < p. The composition
operator F generated by f: [a,b] x R = R maps the space RV,[a,b] into the space
RVp[a,b] and is globally Lipschitzian if and only if the function f satisfies the fol-
lowing conditions:

a) For all t € [a,b] there exists M(t) > 0 such that

(1) 1f(t,2) = ftu)l S Mtz -yl (,y €R),
b)
(2) ft,2) = g(t)z + h(t) (t € [a,b], 2 € R),

where g, h € RV,[a,b).

Proof. Suppose that there exist g, h € RV,[a,b] such that f(t,z) = g(t)x+h(t)
(t € [a,b], € R). Then the composition F' generated by f is given by

(Fu)(t) = g(t)u(t) + h(t) (t € [a,b], u € RV,[a,b]).

Since F(RVp[a,b]) C RVya,b] (1 < ¢ < p) and RV,[a,b] is a Banach algebra, then
Fu € RV[a,b] for all u € RV,[a,].
Moreover,

| Fur — Fuslly < llgllgllur —wzll,  (wa,u2 € RVa,b)).

Thus, the composition operator F' maps the space RV, [a, ] into the space RV,[a, ]
and is globally Lipschitzian.

Suppose now that F': RV,[a,b] = RV,[a,b] (1 < ¢ < p) is globally Lipschitzian,
then there exists a constant M > 0 such that

|Fus — Fuslly € Milug —wall, (u1,u2 € RV,[a,b]).
Let t € (a,b]. Using the definition of the operator F' and of the norm ||. ||, we have
(3) |f(t,u1(t)) — f(t,u2(t)) = fla,ui(a)) + f(a,,ug(a,))l < Mt — a]l_%Hul — uall,
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for all u1, uy € RVp[a,b].
Define a function «: [a,b] — R by

r-a <T<t
5 a T Ly
a(r)::{t—a ==

1, t<7<0b.

We have a € RV, [a, b] and

1
VP(OZ; [a,b]) = It_—Tle

Let us fix z, y € R and define functions u;: [a,0] = R (i = 1, 2) by
(4) u(r) =2, 7E€][a,b], uAr):=alr)y—z)+z, T7E€E][a,b].
The functions v; fulfill u; € RV,([a,b]) (i =1, 2) and

|z -yl

s = wally = (Yol fo,8) P =3l =

Hence, substituting into the inequality (3) the particular functions u; (i = 1, 2)
defined by (4), we obtain

() If(t«,x)—f(t,y)ISMt—

for all ¢t € (a,b], z, y € R.
Now, let t = a. Define a function 3: [a,b] = R by

Br) = ﬁ (1 € [a, b))

The function g fulfills 8 € RV,[a,b] and

Vi (Bila, b)) = E_—Z—WT'

Let us fix z, y € R and define functions u;: [¢,b] = R (i =1, 2) by
(6) w(r) =z, 7€([a,b], ux(r):=p00)x—-y)+y, 7E€][ad]

The functions u; fulfill u; € RV,[a,b] (i =1, 2) and

llur — ually = (1 + (Vo [ b)) 7)o — y| = (1+ e =yl

b—al'~ "
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Hence, substituting into the inequality (3) the particular functions u; (i = 1, 2)
defined by (6), we obtain

fa.2) = fla.y)l < Mb—af' = (14 ﬁ)l ~

for all z, y € R.
Define a function M : [a,b] = R by

R
t—al'"7
M@y =4 1t 1
Mb—al'" (1 + ——0F), = a.
( Ib—all_z_')

Hence we have for all ¢ € [a, b] that there exists M (¢) > 0 such that the inequality
(1) holds. Thus for all ¢ € {a, b] the function f(¢,.): R — R is continuous.

Next we shall prove that f satisfies the equality (2).

Let us fix ¢, to € [a,b] such that ¢, < ¢. Since the composition operator F
generated by f: [a,b]x R — R is globally Lipschitzian between RV} [a, b] and RV,[a, ]
(1 < q < p), there exists a constant M > 0 such that

1

(7) |t ur(®)) = F(t,u2(t)) = f (o, ua(to)) +f(t0,u2(t0)| < Mluy —ugllp|t — o'~

for all uy, us € RV,[a,b].
Define a function v: [a,b] — R by

T—a

) a <7<,
to—a
T) = T—1
AL R A
t—to
0, t<7<b

The function v fulfills v € RV, [a,b]. Let us fix z, y € R and define functions u;:
la,b] = R by

(8) up(r) == 2—(;—):5 + (1 + @)y ( € [a,b]),
ug(7) = 1+;(T):v + 1—;(T)y (1 € [a,0]).

The functions u; fulfill u; € RV,[a,b] (i =1, 2} and

lz -yl
-

llus = uall, =
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Hence, substituting into the inequality (7) the particular functions w; (i = 1, 2)
defined by (8), we obtain

@ ) - £(655Y) - £, TEY) + ftto 0] < Hit - ol Hje -

Since F' maps RV,[a,b] into RV,[a,b] (1 < ¢ < p), then for all z € R the function
f(.,x) is continuous on [a,b]. Consequently, letting to 1 ¢ in the inequality (9), we

get
1t -1 (6 552) - 1 (6 552) + £t =0

for all t € [a,b] and z, y € R.
Thus for all t € [a,b], z, y € R, we have

flt, )+ flt,y) _ T+y
2 _f(t’ 2 )

Consequently, for all ¢ € [a,b] the function f(¢,.): R — R satisfies the Jensen
equation and since the function f(#,.) is continuous on R, we have that there exist
two functions g, h: [a,b] = R such that

ft,x) = gt)x + h(t), (t€ab], z€R).
Since h(t) = f(t,0) = F(0), g(t) = f(t,1) — f(1,0) = F(1) — F(0) and F maps
RV,[a, b} into RV,[a,b], we conclude g, h € RV,[a,b]. O

Remark 1. It is easy to observe that the above theorem remains true if there
exist Banach spaces (X, [|.||x) and (Y, {|.|ly) such that RV,[a,b] C, X C, Y C,
RV,[a,b] (1 < ¢ < p) and the composition operator F' maps the space X into the
space Y and is globally Lipschitzian.

Theorem 2. Let p, ¢ be real numbers such that 1 < p < q. If the composition
operator F generated by f: [a,b] x R — R maps the space RV,[a,b] into the space
RV,[a,b] and is globally Lipschitzian, then the function f satisfies the condition

flt,z) = f(t,0) (t €la,b], z € R).

As an immediate consequence of Theorem 2 we obtain that the composition op-
erator F' is constant.
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Proof. Since the composition operator F generated by f: [a,b] x R - R, maps
the space RV, [a,b] into the space RV,[a,b] (1 < p < q) and is globally Lipschitzian,
there exists a constant M > 0 such that

|Fuis — Fuz|lq < Mlup —uallp, (u1,u2 € RV,[a,b]).

Let us fix t, ¢, € [a,b] such that ¢ < t. Using the definitions of the operator F'
and of the norm ||. {4, we have

(10) |£(t,u1(2)) = f(t,u2(t)) — f(to,ur(to)) + f(to, uz(to))]
< Mt —to]' “i{luy —uafl, (uy,us € RV[a,b]).

Define a function a: [a,b] = R by

13 agtgt()a
T—1

a(r) =< - , to <7<t
t—to

0, t<7<b

The function « fulfills & € RV,[a,b] and

1

‘Gmﬂ%ﬂ)=ﬁjja;3~

Let us fix € R and define functions u;: [a,b] & R (i =1, 2) by
(11) w(r):i=z 7€a,b], ux7):=a(r)z 7E€]la,b].
The functions u; fulfill u; € RV,[a,b] (i =1, 2) and

||

lur = wallp = ———-
Tt —to e

Hence, substituting into the inequality (10) the particular functions u; (i = 1, 2)
defined by (11), we obtain

1
[t —to]' "
-—lllwi-

(12) 1£(t,2) - F(2,0)) < ME—Tol 2
[t —to ¥
Since ¢ > p, letting to 1 ¢ in the inequality (12) we obtain

ft,z) = f(t,0) (t€(a,b], z€R).
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Next we shall consider the case when the composition operator F' generated by
f:la,b] x R = R maps the space RV,[a,b] into the space BV][a,b]. In this case a
similar result holds for the left regularization f*: [a,b] x R — R of the function f
defined by

lim f(s,z), t € (a,b], zeR,
frita) =40
liinlign flu,z), t=a,z€R

]

Theorem 3. Let p be a real number such that 1 < p < co. The composition
operator F' generated by f: [a,b] x R — R maps the space RV,[a,b] into the space
BV{a,b] and if it is globally Lipschitzian, then the function f satisfies the following
conditions:

a) For each t € [a, ] there exists M (t) > 0 such that

(13) [f @) = eyl <Ml -yl (2,9 €R),
b)
(14) it z) =gt)x+ h(t) (t€]ab], z€eR),

where g, h € NBV|[a,b].

Proof. Lett € [a,b) and define a function a: [a,b] = R by

1, a<T<KHU,
a(t) =< 1-0

—,  t<7<bh
t->

The function « fulfills a € RV,[a,b] and

V};(a, [a, b]) = F]él—p_—l'

Let us fix z, y € K and define funcitons u;: [a,b] = R (i =1, 2) by
(15) ui(r) =z 7€[a,b], wr):=a(r)ly—a)+z, 7E€labl.
The functions u; fulfil v; € RV,[a,b] (i =1, 2) and
1 1
— u. = (V,(a;]a "M —y|l = —_— -yl
lfur = w2l = (Ve 0. b)) " 2 = o] (1lb - tll_%)lw vl
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Since the composition operator F is globally Lipschitzian between RV,[a,b] and
BV {a,b], there exists a constant A > 0 such that

(16) |f(b»u1(b)) - f(bv “‘2(1))) - f(taul(t)) + f(t,U2(t))| < M“ul - u?”P

for all uy, us € RV,[a,b].
Hence, substituting into the inequality (16) the particular functions u; (i = 1, 2)
defined by (15) we obtain

1
[f(t,y) — f(t, 2)] <M{1+ m}

for all t € [a, b).
In the case t = b, by a similar argument as above, we obtain that there exists a
constant M (b) > 0 such that

|F(b,z) = F(b,y)] < M(b)|lz —y] (z,y € R).

Thus, defining a function M : [a,b] = R by

14—, t € [a,b),
M(t) = 1 [
M(b), t=b,

we obtain that for each t € [a,b) there exists M(t) > 0 such that

(17) If(t,2) = flt. 9l < MOz —yl (€ [ab), 2,y €R).

Hence, passing to the limit in the inequality (17), by the definition of f* we have
for all ¢ € [a,b] that there exists M (t) > 0 such that

Ifr(tx) = Al < Ml -yl (a,y €R).

Next we shall prove that f* satisfies the equality (14).
Let us fix t, to € [a,b], n € N such that ty < t. Define a partition 7, of the
interval [to,t] by mn:a <tp <t) < ... <tan-1 < ton = ¢, where

tl—ti~1: 3 i:1,2,...,211.

Since the composition operator F' is globally Lipschitzian between RV,[a,b] and
BVa,b], there exists a constant M > 0 such that

(18) Z |f (20, w1 (20)) — f(f2iua(ta:)) = f(taimt, ua(taic1)) + f(t2icruz(taict)) |

i=1

< Mluy —uallp  (w1,u2 € RVpa,b]).
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Define a function a: [a,b] = R in the following way:

0, a <7<,
T —ti— .
—_— tie1 7Lt 1=1,3,...,2n -1,
t; — i1
a(T) =
T—ti
T . t‘t—l <T<t‘i7 7/:2!4a ,2’”,
By =t
L0, t<7<b

The function a fulfils a € RV,[a,b] and

2PnP

a;[a, b)) = TR

Let us fix z, y € R and define functions u;: [a,b] = R by

(19) up (1) = Q(Q_Tlx +(1- a—(;—))y (1 € la,b]),
uz(T) :

1+ afr) 1 - al7)
5 "t

y (7 €[a,b]).

The functions u; fulfil u; € RV,[a,b] (i =1, 2) and

lx —yl

lur = wall, = 5

Hence, substituting into the inequality (18) the particular functions u; (i = 1, 2)
defined in (19), we obtain

T+ T+Yy T~y
(20) Zlf tai, y) — <t217 QJ)—f<t2i—1, 5 )+f(t2i—1,-’5) SM‘Ti

for all z, y € R.
Since the composition operator F' maps the space RV, [a, b] into the space BV |[a, b},
then f(.,z) € BV|a,b] for all € R, thus letting to T ¢ in the inequality (20) we get

eI - () ] < el

forallz,y € R, n € V.
Passing to the limit for n — oo in the inequality (21), we get

f(ty)+ fr(t,x) Wf, T+Y
- 2 =/ (t’ 2 )

Z
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for all t € [a,b], z, y € R.

Thus for all t € [a, b}, the function f*(¢,.): R — R satisfies the Jensen equation and
by property (a) of this theorem we get that there exist two functions g, h € NBV|[a, b]
such that

fr(t,z) =g(t)z + h(t) (te€[ab], z€R).
(]

Remark 2. It is easy to observe that the above theorem remains true if there
exists a Banach space (X, ||. ||x) such that RV, [a,b] ¢, X C, BV{a,b] (1 <p < )
and the composition operator F' maps the space X into the space BV([a,b] and is
globally Lipschitzian.
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