ON CHARACTERIZING THE BIVARIATE EXPONENTIAL AND GEOMETRIC DISTRIBUTIONS

K. R. Muraleedharan Nair and N. Unnikrishnan Nair
Department of Mathematics and Statistics, Cochin University of Science and Technology, Cochin-682022, India

(Received September 16, 1986; revised January 19, 1987)

Abstract

In this note, a characterization of the Gumbel's bivariate exponential distribution based on the properties of the conditional moments is discussed. The result forms a sort of bivariate analogue of the characterization of the univariate exponential distribution given by Sahobov and Geshev (1974) (cited in Lau and Rao ((1982), Sankhyā Ser. A, 44, 87)). A discrete version of the property provides a similar conclusion relating to a bivariate geometric distribution.

Key words and phrases: Characterization, bivariate exponential and geometric distributions, conditional moments.

Although different forms of bivariate exponential distributions such as those of Gumbel (1960), Freund (1961), Marshall and Olkin (1967) and Block and Basu (1974) exist in literature, how far these distributions can be characterized by properties analogous to the results in the univariate case have not been fully explored. Among the characterizations of the univariate exponential distribution, Marshall and Olkin (1967) considered the extension of the lack of memory property to the bivariate case, defining the same as

$$
\bar{F}\left(s_{1}+t, s_{2}+t\right)=\bar{F}\left(s_{1}, s_{2}\right) \bar{F}(t, t), \quad s_{1}, s_{2}, t \geq 0
$$

where

$$
\begin{equation*}
\bar{F}(s, t)=P\left(X_{1}>s, X_{2}>t\right) \tag{1}
\end{equation*}
$$

and used it to characterize the distribution specified by

$$
\begin{aligned}
\bar{F}\left(x_{1}, x_{2}\right)=\exp \left[-\lambda_{1} x_{1}-\lambda_{2} x_{2}-\lambda_{12} \max \left(x_{1}, x_{2}\right)\right] \\
x_{1}, x_{2}>0 ; \quad \lambda_{1}, \lambda_{2}, \lambda_{12} \geq 0 .
\end{aligned}
$$

Instead of utilizing the conditional probabilities, Shanbag (1970) employed
the conditional expectations to prove that a random variable Y has univariate exponential distribution if and only if

$$
\begin{equation*}
E(Y-y \mid Y>y)=E(Y) \tag{2}
\end{equation*}
$$

for all $y>0$. Nair and Nair (1986), in an attempt to generalize this result to the bivariate case, found that a straightforward extension of (2) by taking the vectors $\boldsymbol{X}=\left(x_{1}, x_{2}\right)$ and $\boldsymbol{t}=\left(t_{1}, t_{2}\right)$ this, would lead only to the trival result that the variables X_{1} and X_{2} are independent and exponentially distributed. Accordingly they took up the condition.

$$
\begin{equation*}
E\left(X_{i}-t_{i} \mid X>t\right)=E\left(X_{i} \mid X_{3-i}>t_{3-i}\right), \quad i=1,2, \tag{3}
\end{equation*}
$$

and established that the Gumbel's bivariate exponential distribution.

$$
\begin{align*}
& \bar{F}\left(x_{1}, x_{2}\right)=\exp \left[-\alpha_{1} x_{1}-\alpha_{2} x_{2}-\theta x_{1} x_{2}\right] \tag{4}\\
& x_{1}, x_{2}>0 ; \quad \alpha_{1}, \alpha_{2}>0 ; \quad \theta \geq 0
\end{align*}
$$

can be characterized by it and proposed (3) as alternative definition of bivariate lack of memory.

The present note extends the characterizing property in terms of the conditional means in (3) to the conditional moments, thereby providing a bivariate analogue of the Sahobov and Geshev's (1974) result in the univariate case which states that for any non-negative random variable Y,

$$
E\left[(Y-y)^{k} \mid Y \geq y\right]=E\left(Y^{k}\right)
$$

for every $y>0$ implies that Y follows the exponential distribution.
THEOREM 1. Let $X=\left(X_{1}, X_{2}\right)$ be a vector of non-negative random variables admitting probability density function with respect to Lebesgue measure, given by $f\left(x_{1}, x_{2}\right)$. Then \boldsymbol{X} follows Gumbel's bivariate exponential distribution specified by (4) or equivalently by

$$
\begin{array}{r}
f\left(x_{1}, x_{2}\right)=\left[\left(\alpha_{2}+\theta x_{1}\right)\left(\alpha_{1}+\theta x_{2}\right)-\theta\right] \exp \left[-\alpha_{1} x_{1}-\alpha_{2} x_{2}-\theta x_{1} x_{2}\right] \tag{5}\\
x_{1}, x_{2}>0 ; \quad \alpha_{1}, \alpha_{2}>0 ; \quad \theta \geq 0
\end{array}
$$

if and only if for all positive integers k,

$$
\begin{equation*}
E\left[\left(X_{i}-t_{i}\right)^{k} \mid X>t\right]=a_{k}^{(i)}\left(t_{3-i}\right), \quad i=1,2 \tag{6}
\end{equation*}
$$

where $X>t$ stands for $X_{1}>t_{1}$ and $X_{2}>t_{2}$,

$$
\begin{equation*}
a_{k}^{(i)}\left(t_{3-i}\right)=E\left(X_{i}^{k} \mid X_{3-i}>t_{3-i}\right) \tag{7}
\end{equation*}
$$

are non-increasing, $a_{k}^{(1)}$ is independent of $t_{1}, a_{k}^{(2)}$ is independent of t_{2} for all $t_{1}, t_{2}>0$ with

$$
\begin{equation*}
a_{1}^{(i)}(0)=\alpha_{i}^{-1} \tag{8}
\end{equation*}
$$

Proof. When the conditions of the theorem are true

$$
\begin{align*}
a_{k}^{(i)}\left(t_{3-i}\right) F\left(t_{1}, t_{2}\right) & =\iint_{X>t}\left(X_{i}-t_{i}\right)^{k} d F \tag{9}\\
& =\int_{t_{1}}^{\infty}\left(X_{1}-t_{1}\right) \frac{\partial}{\partial x_{1}}\left[F_{1}\left(x_{1}\right)-F\left(x_{1}, t_{2}\right)\right] .
\end{align*}
$$

Where F_{i} and F are the distribution functions of X_{i} and X corresponding to f and \bar{F} is as defined in equation (1). Successive integration in (9) yields

$$
\begin{equation*}
a_{k}^{(i)}\left(t_{3-i}\right) \frac{\partial^{k}}{\partial t_{1}^{k}} \bar{F}\left(t_{1}, t_{2}\right)=(-1)^{k} k!F\left(t_{1}, t_{2}\right) \tag{10}
\end{equation*}
$$

To solve the above system of differential equations, we consider the case when $k=1$. On integration,

$$
\begin{equation*}
\bar{F}\left(t_{1}, t_{2}\right)=C\left(t_{3-i}\right) \exp \left[\frac{-t_{i}}{a_{k}^{(i)}\left(t_{3-i}\right)}\right] \tag{11}
\end{equation*}
$$

where

$$
C\left(t_{3-i}\right)=1-F_{3-i}\left(t_{3-i}\right), \quad i=1,2
$$

When t_{3-i} tends to zero, by virtue of (8)

$$
\begin{equation*}
1-F_{i}(t)=\exp \left[-\alpha_{i} t_{i}\right] \tag{12}
\end{equation*}
$$

Eliminating \bar{F} between the two relations arising out of (11) when $i=1,2$ leaves the functional equation,

$$
t_{1} a_{1}^{(2)}\left(t_{1}\right)-t_{2} a_{1}^{(1)}\left(t_{2}\right)=\left(\alpha_{1} t_{1}-\alpha_{2} t_{2}\right) a_{1}^{(2)}\left(t_{1}\right) a_{1}^{(1)}\left(t_{2}\right)
$$

Under the conditions assumed in the theorem, the above equation can be solved using techniques discussed in Hille (1972) in connection with the dissolvent equations. The solution is

$$
\begin{equation*}
a_{1}^{(i)}\left(t_{3-i}\right)=\left(\alpha_{i}+\theta t_{3-i}\right)^{-1}, \quad i=1,2 ; \quad \theta \geq 0 \tag{13}
\end{equation*}
$$

A detailed discussion of the intermediate steps in arriving at (13) is available in

Nair and Nair (1986). Further, from (7) we reach the conclusion,

$$
\bar{F}\left(t_{1}, t_{2}\right)=\exp \left[-\alpha_{1} t_{1}-\alpha_{2} t_{2}-\theta t_{1} t_{2}\right]
$$

Since this expression for \bar{F} is an exponential function, with the exponent a linear function of one of the variables, when the other is kept constant, the solution of the partial differential equation (10) will be the same except for the change in the multiplicative constant. Hence from (10)

$$
\begin{equation*}
a_{k}^{(i)}\left(t_{3-i}\right)=k!\left(\alpha_{i}+\theta t_{3-i}\right)^{-1} \tag{14}
\end{equation*}
$$

That the density function of X is as in (5) is evident from (10) and (13). The converse is easily verified from direct calculations.

The corresponding result for the bivariate geometric distribution is as follows.

THEOREM 2. A discrete non-negative random vector $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ with support $I_{2}^{+}=\left\{\left(x_{1}, x_{2}\right) / x_{1}, x_{2}=0,1,2, \ldots\right\}$ has bivariate geometric distribution.

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)=p_{1}^{x_{1}} p_{2}^{x_{2}} \theta^{x_{1} x_{2}-1}\left[\left(1-p_{1} \theta^{x_{2}+1}\right)\right. & \left.\left(1-p_{2} \theta^{x_{2}+1}\right)+\theta-1\right], \\
& 0<p_{1}, \quad p_{2}<1, \quad 0 \leq \theta \leq 1,
\end{aligned}
$$

if and only if for all positive integers k, the condition (6) with the statements that follow it in Theorem 1 holds for the discrete vector \boldsymbol{X}, where

$$
a_{1}^{(i)}(0)=p_{i}\left(1-p_{i}\right)^{-1}, \quad i=1,2 .
$$

Acknowledgements

The authors are grateful to the referees for their valuable comments on an earlier draft of this article.

REFERENCES

Block, H. W. and Basu, A. P. (1974). A continuous bivariate exponential extension, J. Amer. Statist. Assoc., 69, 1031-1037.
Freund, R. J. (1961). A bivariate extension of the exponential distribution, J. Amer. Statist. Assoc., 56, 971-977.
Gumbel, E. J. (1960). Bivariate exponential distributions, J. Amer. Statist. Assoc., 55, 698-707. Hille, E. (1972). Methods in Classical and Functional Analysis, Addison-Wesley, Reading, Massachusetts.
Marshall, A. W. and Olkin, I. (1967). A generalised bivariate exponential distribution, J. Appl. Probab., 4, 291-302.

Nair, N. U. and Nair, V. K. R. (1986). A characterization of the bivariate exponential distribution, Biometrical J. (to appear).
Sahobov, O. M. and Geshev, A. A. (1974). Characteristic property of the exponential distribution, in Lau and Rao (1982), Sankhyā Ser. A, 44, 87.
Shanbag, D. N. (1970). The characterizations for exponential and geometric distributions, J. Amer. Statist. Assoc., 65, 1256-1259.

