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Dedicated to S. S. Chern on his 60th birthday

1. Introduction

In 1939 Hermann Weyl [1] derived a formula for the volume of the tube
of radius p about a compact manifold (without boundary) imbedded in a
Euclidean space. The expression for this volume, for a manifold X of dimen-
sion k imbedded in a Euclidean π-space En is a polynomial V(Tf\X)) in p,
valid for small p, when no self-intersections in the normal bundle occur. The
coefficients of this polynomial are integrals over X of invariant polynomial
functions of the Riemann-Chistoίϊel curvature tensor. The polynomial expres-
sion for the volume is of the form

•••U V\lp \A)J — LΛ ϊn,k,eμe\Λ)P 9

where the summation extends over all even values of e such that 0 < e < k.
The μe(X) are the integral invariants referred to, while the γn,k,e depend only
on their subscripts and not on more subtle geometric properties of X. Thus γ
and μ are uniquely determined up to a factor which depends on k and e. In
what follows we add a superscript (1) to μ when quoting others.

In 1966 S. S. Chern [2] studied the same μ's from the point of view of the
kinematic formula. Let Mp and Mq be compact manifolds of dimensions p and
q imbedded in En, and let g be an element of the group of isometries in En.
Then, for almost all g, Mp Π gMq is again a manifold, and the μ^(Aίp Π gMq)
are meaningful quantities. The kinematic formula of Chern deals with the integral

μ(p{Mp Π gMq)da)g, where the integration extends over the group of iso-

metries, and da)g is the Haar measure on this group, i.e., the product of the

measure on En and that on the orthogonal group in n dimensions, the latter

being a product of measures on spheres. This integral, according to Chern's

theorem, is expressible as follows:
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(1.2) [ μ?W Π gM')d™g = Σ Ci§i§n.PΛμF>{M>)μy>{M<)
+ j=e

i,j even

Again, the c's depend only on their subscripts and some normalization. Some
of the hardest work in Chern's paper is devoted to a detailed calculation from
which the c's can be determined.

The author's interest in Chern's work was stimulated by the fact that the
right side of (1.2) depends bilinearly on the μ^iM?) and μf(Mq), and (at least
to him) the suggestion of an underlying algebra with the c's as structure con-
stants was inevitable. Simple formal properties of the integral in (1.2) support
this initial impression: the interchange of p and q in (1.2) does not change the
value (a simple change of variable in the integral shows this), so the "algebra"
is commutative. Similarly, a formal manipulation of (1.2) shows that the
"algebra" is associative.

A first step toward finding this "algebra" was a retracing of the c's; a
second step a re-normalization of the μ's which would give the c's in (1.2) a
simple form: we find the value 1 works.

The main result of this paper may be stated as follows:
Theorem I. There exist a normalization of the μs and a normalization of

the Haar measure of the isometry group of En, as given by (3.5), (3.6), (3.7),
such that the citjt7ltPtq in (1.2) are equal to 1.

Rephrased in terms of the "algebra" (which did not quite work out) the
theorem says:

Theorem Γ. There exist a normalization of the μ's and a Haar measure
dg on the isometry group of En, given by (3.5), (3.6), (3.7), so that the Chern
curvature polynomials defined by

(1.3) μ(X, X) = Σ μe(X)λe (e even, 0 < e < dim X)
e

satisfy

(1.4) ί μ(M* Π gM\ λ)dg = μ(Af*9 λ)μ{M\ λ) (mod J*+e-»+1) .

This version of the kinematic formula shows that the left-hand integral is to
some extent independent of n, a fact which was not previously apparent.

Returning to the Weyl expression, we introduce a somewhat different nor-
malization (cf. (2.5))

(1.5)

and corresponding Weyl curvature polynomials
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(1.6) p(X9 X) = Σ Pe(X)*e (e even, 0 < e < dimX) .
e

Then we have
Theorem II. The Weyl curvature polynomials (1.6) satisfy

(1.8) V{T^{X)) = Σ Bn_k+e(p)μe(X) ,
0<e<fc
e even

w/zere Bm(R) is the volume of the R-ball in Em, and k = dim X.
Note. The numerical coefficients here do not agree with those in (10) of

Chern [2] an error must have slipped in somewhere. See § 4 for details.

2. Some of Chern's formulas

Let X be a /^-dimensional Riemann manifold. Then following Chern [2]
denote by φaβ the Levi-Civita connection forms (1 < a, β < k), alternating in
a and β, and by φa (1 < a < k) an orthonormal coframe field. Thus

(2.1)

(2.2)

where

(2.3)

The Saβΐδ are components of the curvature tensor, and have the usual proper-
ties with respect to the pairs of alternating subscripts (a, β) and (γ, δ). Define
for even e, 0 < e < k, the pointwise function on X:

n Aλ /a) - {-De/\k-e)\ v (a, tfΛ^ «

dψat

Φc

dψa = ]

3 = Σ ?

. =i-Ί

β

>.* Λ

Λ

ψδβ

rsΨr

ψβo

+

A

where δ( ) is a generalized Kronecker delta equal to ± 1 as the ^'s are an
even or odd permutation of the αr's, and zero otherwise; summation is over
all α:'s and β's independently. The numerical factor which precedes Σ ^n (2-4)
was chosen so that I™ = 1 when X is the unit sphere Sk in Ek+1. (To effect
this normalization of Chern's it is necessary to replace the factor 2m in his
(7) by 2e/2 as in our formula.) Following Chern we define the μ's (we add
superscript (1)) as volume integrals:

μ?(X) = f
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With this normalization of the μ's, the c's are obtained from Chern's calcula-
tion, as follows (he wrote ct for our cί)j>n>P)q). Denote by Θm the (m — 1)-
dimensional volume of the unit (m — l)-sphere in E m ' s , so

(2.5) Θm = 2πm/2/Γ(m/2) ,

and then

where the ft's are given through an expression denoted by Be which leads to
the formula (Chern's (73) and an integral 13 lines below)

(2

(2

.7)

At

.8)

/Jm-e

=• b

the end of

Γ2R

it +
J -2R

the paper

τp n £ Q ) ^ (

appears

* * "Ί~ ̂ ^

a formula

f2\(m-e-2)/2^

where m = ^

(81)

q-n + \ L /p + 2-e

— n + 2.

which refers to the case when gMq is replaced by the planes Eq of dimension
q. Since Eq is not compact, the integiation is extended over the space of all
g-planes dωEq is an invariant measure on this space.

3. Calculation of the c's

In his § 7 Chern gave a formula for the fc's, hence by implication, for the
c's but the expression is in the form of a sum, which is hard to manipulate.
Instead, we aim for a product expression.

Lemma 1. Let e > 0 be even and r > e — 2. Denote by at the coefficient
of xι in

(3.1) Γ (x2 + 2ux + l) e / 2(l - u2yr~e)/2du;

then

C\ <~)\ „ ^τι + 1 * * * ^Λ^r + l^r + 2^> + 3̂  q + 2-e + ί^p + 2-i _,
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where r = p + q — n.

Proof. Immediate from (2.6), (2.7), and the change of variable t = 2uR
in (2.7).

Lemma 2. Let at be defined as in Lemma 1. Then a.i = 0 for i odd, and
for i even

(3.3)
a t =

y
i/2/ &r+3Θr_e+2

Proof. One can show that

(3.4)

then (3.3) follows by application of (2.5). Formula (3.4) is most easily derived
from properties of hypergeometric functions, as was shown by J. van Lint and
by J. Boersma. A less elegant method is obtained from

Γ (x2 + lux + l ) w ( l - u2)du
- 1

= (x2 + 1) Γ (x2 + lux + l ) * - ^ - u2)sdu

X
- Γ (JC2 + lux + l)n-ιd(l - u2)s+1

1 J -1s +

by completing the started integration by parts and deducing a recurrence rela-
tion for oti = ai>7ltS. Details on the three methods are found in [3].

Remark. The crucial part of (3.3) is the exact dependence of at on r,
without which certain vital cancellations could not have taken place. This is
reflected in the wording of the problem in [3].

Proof, of Theorem I. The value of ciJtntPtQ is found from (3.2) and (3.3),
and can be written as

Ci,j,n,p,q —
ί (0 (0 (i 12)1 \ί (9 G (7/2)1 \

V ^p-ί + 2 A ®q-j + 2 /

where ί + j = e, r = p + q — n. Note that r = dim (Mp (Ί gM"). Hence the
c's become all equal to 1 if we change dmg by a factor (Φm • • • Θ2Y

ι and
choose μe(X) equal to 0*_ e + 2 /[0* + A + 2 (e/2)!] times μ™(X) in addition we
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may introduce a factor ae/2, where a is any universal constant. In view of
(e/2)! = 2π1+e/2/(9e+2 we choose a = π, hence we define

( Z ) = = f
3χ

(3.5) 2π(Pk+ίΘk+2

k = dim X , 0 < e < k , e even,

where

(3 β\ J __ ^e + 2 ( JΛe^β^-l^-e^ y fil aί ' ' ' ^ \g 5

β ^ f c _ e + 1 \ ^ /3 e/
 α i α ^ 1 ' 5 2 «e-l*eβe-iβe '

(3.7) dg = (0 n + 1 ^ 2)-^ ( 1 )g .

This proves Theorem I. The re-normalization (3.5) also simplifies (2.8);
particularly if the measure on the space of g-planes is also re-normalized as

(3.8) dE« = Θq+1 '" Θλ d'ι)E« ,

then the formula becomes

(3.9) ί μe(Mp Π Eq)dEq = μe(Mp) , e < p + q — n ,

or

(3.10) { μ(MP Π E\λ)dE<ι = μ(Mp,X) (mod Xp+q~n+1) .

4. The Weyl formula

The volume of an #-ball in Em is

Bm - J Γ ' m 2ττ

The starting point of this section is (1.1), in which we assume the μ's are
normalized as in (3.5), (3.6), i.e., by the property

(4.1) μe(Sk(R)) = 0*-'+*°*+* R*-* = ^±Bk_e(R) .
2π(9k+2 Θk+2

To find the numerical value of the γ's we calculate the volume of the ^-tube
about Sk(R) imbedded in En. First n = k + 1:
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(4.2) Bmk+1KSk(R))) = Uk+1-((R + p)k+1 -(R- p)k+1) .
k+1

To calculate the volume for k + 1 < n we use the following theorem which
is an obvious consequence of the possibility to build up ^-tubes in product
situations from products of thin layers of the tubes around the factors.

Theorem III. Let X c E and Y C Em be imbeddings, and X X Y c
βn+m t n e corresponding imbedding of the product. Then

(4.3) V{Tf+m\X x Y)) = ί dV(T%\X)) A dV(T™(Y)) .

P1,P2>O~

In particular, if X and Y are points, we have

(4.4) Bn+m(R) = J 2 2< 2 dBn(Pι) A dBm(p2) ,
l»l,|O2>0

or equivalently,

(4.5) f p1

n-ip2

m-idp1dp2 = 5 1 : 7 " : 2 ^ + m

Note. (4.5) is also easily derived analytically by changing variables: pλ =
r cos θ, p2 = r sin ̂  in the integral and evaluating.

Proof of Theorem II. By applying Theorem III to X = SfcCR) c P + 1 and
Y a single point in En~k~ι, we find

= ί d-β*±±-(ίR + A ) * + 1 - (R - P ι ) k + 1 A dBn_k_λ{p2)
J | 0 i 2 + i 0 2 2 < P 2 K + I

1 Σ
e even
0<e<k

e + 1(Pl) A

e

In the last step we have used &! Θk+ιΘk+2 — 2~k+2πk+\ which is just the
doubling formula for the /"-function.
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Thus assuming WeyΓs basic form of (1.1) is correct we have verified (1.8),

and the general formula (1.7) follows easily from Theorem III. In fact, we

have

+ m ) ( Z X Y)) = Σ βe{X X

Now (4.3) relates the left sides, while (4.4) relates the right sides. It follows

that

ί + j=e
ί,j even

pe(X x Y) =

which implies (1.7).
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