ON CHERN'S KINEMATIC FORMULA IN INTEGRAL GEOMETRY

ALBERT NIJENHUIS

Dedicated to S. S. Chern on his 60th birthday

1. Introduction

In 1939 Hermann Weyl [1] derived a formula for the volume of the tube of radius ρ about a compact manifold (without boundary) imbedded in a Euclidean space. The expression for this volume, for a manifold X of dimension k imbedded in a Euclidean n-space E^{n} is a polynomial $V\left(T_{\rho}^{(n)}(X)\right)$ in ρ, valid for small ρ, when no self-intersections in the normal bundle occur. The coefficients of this polynomial are integrals over X of invariant polynomial functions of the Riemann-Chistoffel curvature tensor. The polynomial expression for the volume is of the form

$$
\begin{equation*}
V\left(T_{\rho}^{(n)}(X)\right)=\sum \gamma_{n, k, e} \mu_{e}(X) \rho^{n-k-e} \tag{1.1}
\end{equation*}
$$

where the summation extends over all even values of e such that $0 \leq e \leq k$. The $\mu_{e}(X)$ are the integral invariants referred to, while the $\gamma_{n, k, e}$ depend only on their subscripts and not on more subtle geometric properties of X. Thus γ and μ are uniquely determined up to a factor which depends on k and e. In what follows we add a superscript (1) to μ when quoting others.

In 1966 S. S. Chern [2] studied the same μ 's from the point of view of the kinematic formula. Let M^{p} and M^{q} be compact manifolds of dimensions p and q imbedded in E^{n}, and let g be an element of the group of isometries in E^{n}. Then, for almost all $g, M^{p} \cap g M^{q}$ is again a manifold, and the $\mu_{e}^{(1)}\left(M^{p} \cap g M^{q}\right)$ are meaningful quantities. The kinematic formula of Chern deals with the integral $\int \mu_{e}^{(1)}\left(M^{p} \cap g M^{q}\right) d^{(1)} g$, where the integration extends over the group of isometries, and $d^{(1)} g$ is the Haar measure on this group, i.e., the product of the measure on E^{n} and that on the orthogonal group in n dimensions, the latter being a product of measures on spheres. This integral, according to Chern's theorem, is expressible as follows:

[^0]\[

$$
\begin{equation*}
\int \mu_{e}^{(1)}\left(M^{p} \cap g M^{q}\right) d^{(1)} g=\sum_{\substack{i+j=e \\ i, j \text { even }}} c_{i, j, n, p, q} \mu_{i}^{(1)}\left(M^{p}\right) \mu_{j}^{(1)}\left(M^{q}\right) \tag{1.2}
\end{equation*}
$$

\]

Again, the c 's depend only on their subscripts and some normalization. Some of the hardest work in Chern's paper is devoted to a detailed calculation from which the c 's can be determined.

The author's interest in Chern's work was stimulated by the fact that the right side of (1.2) depends bilinearly on the $\mu_{i}^{(1)}\left(M^{p}\right)$ and $\mu_{j}^{(1)}\left(M^{q}\right)$, and (at least to him) the suggestion of an underlying algebra with the c 's as structure constants was inevitable. Simple formal properties of the integral in (1.2) support this initial impression: the interchange of p and q in (1.2) does not change the value (a simple change of variable in the integral shows this), so the "algebra" is commutative. Similarly, a formal manipulation of (1.2) shows that the "algebra" is associative.

A first step toward finding this "algebra" was a retracing of the c 's; a second step a re-normalization of the μ 's which would give the c 's in (1.2) a simple form: we find the value 1 works.

The main result of this paper may be stated as follows:
Theorem I. There exist a normalization of the μ 's and a normalization of the Haar measure of the isometry group of E^{n}, as given by (3.5), (3.6), (3.7), such that the $c_{i, j, n, p, q}$ in (1.2) are equal to 1.

Rephrased in terms of the "algebra" (which did not quite work out) the theorem says:

Theorem I'. There exist a normalization of the μ 's and a Haar measure $d g$ on the isometry group of E^{n}, given by (3.5), (3.6), (3.7), so that the Chern curvature polynomials defined by

$$
\begin{equation*}
\mu(X, \lambda)=\sum_{e} \mu_{e}(X) \lambda^{e} \quad(e \text { even }, 0 \leq e \leq \operatorname{dim} X) \tag{1.3}
\end{equation*}
$$

satisfy

$$
\begin{equation*}
\int \mu\left(M^{p} \cap g M^{q}, \lambda\right) d g \equiv \mu\left(M^{p}, \lambda\right) \mu\left(M^{q}, \lambda\right) \quad\left(\bmod \lambda^{p+q-n+1}\right) . \tag{1.4}
\end{equation*}
$$

This version of the kinematic formula shows that the left-hand integral is to some extent independent of n, a fact which was not previously apparent.

Returning to the Weyl expression, we introduce a somewhat different normalization (cf. (2.5))

$$
\begin{equation*}
\bar{\mu}_{e}(X)=\mathcal{O}_{k-e+1} \mu_{e}(X) \tag{1.5}
\end{equation*}
$$

and corresponding Weyl curvature polynomials

$$
\begin{equation*}
\bar{\mu}(X, \lambda)=\sum_{e} \bar{\mu}_{e}(X) \lambda^{e} \quad(e \text { even, } 0 \leq e \leq \operatorname{dim} X) \tag{1.6}
\end{equation*}
$$

Then we have
Theorem II. The Weyl curvature polynomials (1.6) satisfy

$$
\begin{gather*}
\bar{\mu}(X \times Y, \lambda)=\bar{\mu}(X, \lambda) \bar{\mu}(Y, \lambda), \tag{1.7}\\
V\left(T_{\rho}^{(n)}(X)\right)=\sum_{\substack{0 \leq e \leq k \\
e \text { even }}} B_{n-k+e}(\rho) \bar{\mu}_{e}(X), \tag{1.8}
\end{gather*}
$$

where $B_{m}(R)$ is the volume of the R-ball in E^{m}, and $k=\operatorname{dim} X$.
Note. The numerical coefficients here do not agree with those in (10) of Chern [2]; an error must have slipped in somewhere. See § 4 for details.

2. Some of Chern's formulas

Let X be a k-dimensional Riemann manifold. Then following Chern [2] denote by $\varphi_{\alpha \beta}$ the Levi-Civita connection forms ($1 \leq \alpha, \beta \leq k$), alternating in α and β, and by $\varphi_{\alpha}(1 \leq \alpha \leq k)$ an orthonormal coframe field. Thus

$$
\begin{gather*}
d \varphi_{\alpha}=\sum_{\beta} \varphi_{\beta} \wedge \varphi_{\beta \alpha}, \tag{2.1}\\
d \varphi_{\alpha \beta}=\sum_{\delta} \varphi_{\alpha \dot{\partial}} \wedge \varphi_{\delta \beta}+\Phi_{\alpha \beta}, \tag{2.2}
\end{gather*}
$$

where

$$
\begin{equation*}
\Phi_{\alpha \beta}=\frac{1}{2} \sum_{r, \dot{\delta}} S_{\alpha \beta \gamma \gamma} \varphi_{\gamma} \wedge \varphi_{\dot{\delta}} \tag{2.3}
\end{equation*}
$$

The $S_{\alpha \beta \gamma^{\circ}}$ are components of the curvature tensor, and have the usual properties with respect to the pairs of alternating subscripts (α, β) and (γ, δ). Define for even $e, 0 \leq e \leq k$, the pointwise function on X :

$$
\begin{equation*}
I_{e}^{(1)}=\frac{(-1)^{e / 2}(k-e)!}{2^{e / 2} k!} \sum \delta\binom{\alpha_{1} \cdots \alpha_{e}}{\beta_{1} \cdots \beta_{e}} S_{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}} \cdots S_{\alpha_{e-1} \alpha_{e} \beta_{e-1} \beta_{e}} \tag{2.4}
\end{equation*}
$$

where $\delta()$ is a generalized Kronecker delta equal to ± 1 as the β 's are an even or odd permutation of the α 's, and zero otherwise; summation is over all α 's and β 's independently. The numerical factor which precedes \sum in (2.4) was chosen so that $I_{e}^{(1)}=1$ when X is the unit sphere S^{k} in E^{k+1}. (To effect this normalization of Chern's it is necessary to replace the factor $2^{k / 2}$ in his (7) by $2^{e / 2}$ as in our formula.) Following Chern we define the μ 's (we add superscript (1)) as volume integrals:

$$
\mu_{e}^{(1)}(X)=\int_{X} I_{e}^{(1)} d v
$$

With this normalization of the μ 's, the c 's are obtained from Chern's calculation, as follows (he wrote c_{i} for our $c_{i, j, n, p, q}$). Denote by \mathcal{O}_{m} the ($m-1$)dimensional volume of the unit ($m-1$)-sphere in E^{m} 's, so

$$
\begin{equation*}
\mathcal{O}_{m}=2 \pi^{m / 2} / \Gamma(m / 2) \tag{2.5}
\end{equation*}
$$

and then

$$
\begin{equation*}
c_{e-i}=\frac{\mathcal{O}_{n+1} \cdots \mathcal{O}_{2} \mathcal{O}_{p+q-n+3} \mathcal{O}_{q+2-i} \mathcal{O}_{q+2-e+i}}{\mathcal{O}_{p+2} \mathcal{O}_{p+1} \mathcal{O}_{q+2} \mathcal{O}_{q+1} \mathcal{O}_{p+q-n+3-i} \mathcal{O}_{p+2-n+3-e+i}} b_{e, p+q-n+1-i} \tag{2.6}
\end{equation*}
$$

where the b 's are given through an expression denoted by B_{e} which leads to the formula (Chern's (73) and an integral 13 lines below)

$$
\begin{gather*}
\frac{\mathcal{O}_{m-1} \mathcal{O}_{m}}{2^{m-e}} \int_{-2 R}^{2 R}\left(t+1+R^{2}\right)^{e / 2}\left(4 R^{2}-t^{2}\right)^{(m-e-2) / 2} d t \\
=b_{e, m-e-1} R^{m-e-1}+\cdots+b_{e, m-1} R^{m-1} \tag{2.7}
\end{gather*}
$$

$$
\text { where } m=p+q-n+2
$$

At the end of the paper appears a formula (81)

$$
\begin{align*}
& \int \mu_{e}^{(1)}\left(M^{p} \cap E^{q}\right) d^{(1)} E^{q} \\
& \quad=\frac{\mathcal{O}_{n+1} \cdots \mathcal{O}_{n-q+1}}{\mathcal{O}_{q+1} \cdots \mathcal{O}_{1}} \frac{\mathcal{O}_{p+q-n+2} \mathcal{O}_{p+q-n+1}}{\mathcal{O}_{p+q-n+2-e}} \frac{\mathcal{O}_{p+2-e}}{\mathcal{O}_{p+1} \mathcal{O}_{p+2}} \mu_{e}^{(1)}\left(M_{p}\right), \tag{2.8}
\end{align*}
$$

which refers to the case when $g M^{q}$ is replaced by the planes E^{q} of dimension q. Since E^{q} is not compact, the integation is extended over the space of all q-planes; $d^{(1)} E^{q}$ is an invariant measure on this space.

3. Calculation of the c's

In his $\S 7$ Chern gave a formula for the b 's, hence by implication, for the c 's; but the expression is in the form of a sum, which is hard to manipulate. Instead, we aim for a product expression.

Lemma 1. Let $e \geq 0$ be even and $r>e-2$. Denote by α_{i} the coefficient of x^{i} in

$$
\begin{equation*}
\int_{-1}^{1}\left(x^{2}+2 u x+1\right)^{e / 2}\left(1-u^{2}\right)^{(r-e) / 2} d u ; \tag{3.1}
\end{equation*}
$$

then

$$
\begin{equation*}
c_{i, j, n, p, q}=\frac{\mathcal{O}_{n+1} \cdots \mathcal{O}_{2} \mathcal{O}_{r+1} \mathcal{O}_{r+2} \mathcal{O}_{r+3} \mathbb{C}_{q+2-e+i} \mathcal{O}_{p+2-i}}{\mathcal{O}_{p+1} \mathcal{O}_{p+2} \mathcal{O}_{q+1} \mathcal{O}_{q+2} \mathcal{O}_{r+3-e+i} \mathcal{O}_{r+3-i}}, \tag{3.2}
\end{equation*}
$$

where $r=p+q-n$.
Proof. Immediate from (2.6), (2.7), and the change of variable $t=2 u R$ in (2.7).

Lemma 2. Let α_{i} be defined as in Lemma 1. Then $\alpha_{i}=0$ for i odd, and for i even

$$
\begin{equation*}
\alpha_{i}=\binom{e / 2}{i / 2} \frac{\mathcal{O}_{r-i+3} \mathcal{O}_{r-e+i+3}}{\mathcal{O}_{r+3} \mathcal{O}_{r-e+2}} \tag{3.3}
\end{equation*}
$$

Proof. One can show that

$$
\begin{equation*}
\alpha_{i}=\pi^{\frac{1}{2}}\binom{\frac{e}{2}}{\frac{i}{2}} \frac{\Gamma\left(\frac{r+3}{2}\right) \Gamma\left(\frac{r-e+2}{2}\right)}{\Gamma\left(\frac{r-i+3}{2}\right) \Gamma\left(\frac{r-e+i+3}{2}\right)} \tag{3.4}
\end{equation*}
$$

then (3.3) follows by application of (2.5). Formula (3.4) is most easily derived from properties of hypergeometric functions, as was shown by J. van Lint and by J. Boersma. A less elegant method is obtained from

$$
\begin{aligned}
& \int_{-1}^{1}\left(x^{2}+2 u x+1\right)^{n}\left(1-u^{2}\right) d u \\
&=\left(x^{2}+1\right) \int_{-1}^{1}\left(x^{2}+2 u x+1\right)^{n-1}\left(1-u^{2}\right)^{s} d u \\
&-\frac{x}{s+1} \int_{-1}^{1}\left(x^{2}+2 u x+1\right)^{n-1} d\left(1-u^{2}\right)^{s+1}
\end{aligned}
$$

by completing the started integration by parts and deducing a recurrence relation for $\alpha_{i}=\alpha_{i, n, s}$. Details on the three methods are found in [3].

Remark. The crucial part of (3.3) is the exact dependence of α_{i} on r, without which certain vital cancellations could not have taken place. This is reflected in the wording of the problem in [3].
Proof. of Theorem I. The value of $c_{i, j, n, p, q}$ is found from (3.2) and (3.3), and can be written as

$$
c_{i, j, n, p, q}=\frac{\mathcal{O}_{n+1} \cdots \mathcal{O}_{2}\left(\frac{\mathcal{O}_{r+1} \mathcal{O}_{r+2}(e / 2)!}{\mathcal{O}_{r-e+2}}\right)}{\left(\frac{\mathcal{O}_{p+1} \mathcal{O}_{p+2}(i / 2)!}{\mathcal{O}_{p-i+2}}\right)\left(\frac{\mathcal{O}_{q+1} \mathcal{O}_{q+2}(j / 2)!}{\mathcal{O}_{q-j+2}}\right)},
$$

where $i+j=e, r=p+q-n$. Note that $r=\operatorname{dim}\left(M^{p} \cap g M^{q}\right)$. Hence the c 's become all equal to 1 if we change $d^{(1)} g$ by a factor $\left(\mathcal{O}_{m} \cdots \mathcal{O}_{2}\right)^{-1}$ and choose $\mu_{e}(X)$ equal to $\mathcal{O}_{k-e+2} /\left[\mathcal{O}_{k+1} \mathcal{O}_{k+2}(e / 2)!\right]$ times $\mu_{e}^{(1)}(X)$; in addition we
may introduce a factor $a^{e / 2}$, where a is any universal constant. In view of $(e / 2)!=2 \pi^{1+e / 2} / \mathcal{O}_{e+2}$ we choose $a=\pi$, hence we define

$$
\begin{align*}
& \mu_{e}(X)=\frac{\mathcal{O}_{k-e+2} \mathcal{O}_{e+2}}{2 \pi \mathcal{O}_{k+1} \mathcal{O}_{k+2}} \mu_{e}^{(1)}(X)=\int_{X} I_{e} d v \tag{3.5}\\
& k=\operatorname{dim} X, \quad 0 \leq e \leq k, \quad e \text { even }
\end{align*}
$$

where

$$
\begin{equation*}
I_{e}=\frac{\mathcal{O}_{e+2}}{\mathcal{O}_{k-e+1}}(-1)^{e / 2} 2^{e / 2-1} \pi^{-e / 2} \sum \delta\binom{\alpha_{i} \cdots \alpha_{e}}{\beta_{i} \cdots \beta_{e}} S_{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}} \cdots S_{\alpha_{e-1} \alpha_{e} \beta_{e-1} \beta_{e}} \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
d g=\left(\mathcal{O}_{n+1} \cdots \mathcal{O}_{2}\right)^{-1} d^{(1)} g \tag{3.7}
\end{equation*}
$$

This proves Theorem I. The re-normalization (3.5) also simplifies (2.8); particularly if the measure on the space of q-planes is also re-normalized as

$$
\begin{equation*}
d E^{q}=\frac{\mathcal{O}_{q+1} \cdots \mathcal{O}_{1}}{\mathcal{O}_{n+1} \cdots \mathcal{O}_{n-q+1}} d^{(1)} E^{q} \tag{3.8}
\end{equation*}
$$

then the formula becomes

$$
\begin{equation*}
\int \mu_{e}\left(M^{p} \cap E^{q}\right) d E^{q}=\mu_{e}\left(M^{p}\right), \quad e \leq p+q-n \tag{3.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\int \mu\left(M^{p} \cap E^{q}, \lambda\right) d E^{q} \equiv \mu\left(M^{p}, \lambda\right) \quad\left(\bmod \lambda^{p+q-n+1}\right) \tag{3.10}
\end{equation*}
$$

4. The Weyl formula

The volume of an R-ball in E^{m} is

$$
B_{m}(R)=\int_{0}^{R} \mathcal{O}_{m} r^{m-1} d r=\frac{\mathcal{O}_{m}}{m} R^{m}=\frac{\mathcal{O}_{m+2}}{2 \pi} R^{m}
$$

The starting point of this section is (1.1), in which we assume the μ 's are normalized as in (3.5), (3.6), i.e., by the property

$$
\begin{equation*}
\mu_{e}\left(S^{k}(R)\right)=\frac{\mathcal{O}_{k-e+2} \mathcal{O}_{e+2}}{2 \pi \mathcal{O}_{k+2}} R^{k-e}=\frac{\mathcal{O}_{e+2}}{\mathcal{O}_{k+2}} B_{k-e}(R) \tag{4.1}
\end{equation*}
$$

To find the numerical value of the γ 's we calculate the volume of the ρ-tube about $S^{k}(R)$ imbedded in E^{n}. First $n=k+1$:

$$
\begin{equation*}
B\left(T_{\rho}^{(k+1)}\left(S^{k}(R)\right)\right)=\frac{\mathcal{O}_{k+1}}{k+1}\left((R+\rho)^{k+1}-(R-\rho)^{k+1}\right) \tag{4.2}
\end{equation*}
$$

To calculate the volume for $k+1<n$ we use the following theorem which is an obvious consequence of the possibility to build up ρ-tubes in product situations from products of thin layers of the tubes around the factors.

Theorem III. Let $X \subset E$ and $Y \subset E^{m}$ be imbeddings, and $X \times Y \subset$ E^{n+m} the corresponding imbedding of the product. Then

$$
\begin{equation*}
V\left(T_{\rho}^{(n+m)}(X \times Y)\right)=\int_{\substack{\rho_{1}^{2}+\rho_{2} \leq \rho^{2} \\ \rho_{1}, \rho_{2} \geq 0}} d V\left(T_{\rho_{1}}^{(n)}(X)\right) \wedge d V\left(T_{\rho_{2}}^{(m)}(Y)\right) \tag{4.3}
\end{equation*}
$$

In particular, if X and Y are points, we have

$$
\begin{equation*}
B_{n+m}(R)=\int_{\substack{\rho_{1} 1_{1}+\rho_{2}^{2} \leq \rho^{2} \\ \rho_{2}, \rho_{2} \geq \geq}} d B_{n}\left(\rho_{1}\right) \wedge d B_{m}\left(\rho_{2}\right) \tag{4.4}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\int_{\substack{\rho_{1} 1_{1}+\rho_{2} 2 \leq \rho_{2} \\ \rho_{2}, \rho_{2} \geq 0}} \rho_{1}^{n-1} \rho_{2}^{m-1} d \rho_{1} d \rho_{2}=\frac{\mathcal{O}_{n+m+2}}{2 \pi \mathcal{O}_{n} \mathcal{O}_{m}} \rho^{n+m} \tag{4.5}
\end{equation*}
$$

Note. (4.5) is also easily derived analytically by changing variables: $\rho_{1}=$ $r \cos \theta, \rho_{2}=r \sin \theta$ in the integral and evaluating.

Proof of Theorem II. By applying Theorem III to $X=S^{k}(R) \subset E^{k+1}$ and Y a single point in E^{n-k-1}, we find

$$
\begin{aligned}
V\left(T_{\rho}^{(n)}\left(S^{n}(R)\right)\right) & =\int_{\substack{\rho_{1} 1^{+}+\rho_{2}{ }^{2} \leq \rho^{2} \\
\rho_{1}, \rho_{2} \geq 0}} d \frac{\mathcal{O}_{k+1}}{k+1}\left(\left(R+\rho_{1}\right)^{k+1}-\left(R-\rho_{1}\right)^{k+1} \wedge d B_{n-k-1}\left(\rho_{2}\right)\right. \\
& =\int 2 \mathcal{O}_{k+1} \sum_{\substack{e \text { even } \\
0 \leq e \leq k}}\binom{k}{e} R^{k-e} \rho_{1}^{e} d \rho_{1} \wedge d B_{n-k-1}\left(\rho_{2}\right) \\
& =2 \mathcal{O}_{k+1} \sum_{e}\binom{k}{e} R^{k-e} \frac{1}{\mathcal{O}_{e+1}} \int d B_{e+1}\left(\rho_{1}\right) \wedge d B_{n-k-1}\left(\rho_{2}\right) \\
& =\sum_{e}\binom{k}{e} \frac{2 \mathcal{O}_{k+1}}{\mathcal{O}_{e+1}} B_{n-k+e}(\rho) R^{k-e} \\
& =\sum_{e}\binom{k}{e} \frac{2 \mathcal{O}_{k+1}}{\mathcal{O}_{e+1}} \frac{2 \pi \mathcal{O}_{k+2}}{\mathcal{O}_{e+2} \mathcal{O}_{k-e+2}} \mu_{e}\left(S^{k}(R)\right) B_{n-k+e}(\rho) \\
& =\sum_{e} \mathcal{O}_{k-e+1} \mu_{e}\left(S^{k}(R)\right) B_{n-k+e}(\rho) .
\end{aligned}
$$

In the last step we have used $k!\mathcal{O}_{k+1} \mathcal{O}_{k+2}=2^{-k+2} \pi^{k+1}$, which is just the doubling formula for the Γ-function.

Thus assuming Weyl's basic form of (1.1) is correct we have verified (1.8), and the general formula (1.7) follows easily from Theorem III. In fact, we have

$$
\begin{aligned}
& V\left(T_{\rho}{ }^{(n+m)}(X \times Y)\right)=\sum_{e} \bar{\mu}_{e}(X \times Y) B_{n+m-p-q+e}(\rho), \\
& V\left(T_{\rho_{1}}^{(n)}(X)\right)=\sum_{i} \bar{\mu}_{i}(X) B_{n-p+i}\left(\rho_{1}\right), \\
& V\left(T_{\rho_{2}}^{(m)}(Y)\right)=\sum_{j} \bar{\mu}_{j}(Y) B_{m-q+j}\left(\rho_{2}\right) .
\end{aligned}
$$

Now (4.3) relates the left sides, while (4.4) relates the right sides. It follows that

$$
\bar{\mu}_{e}(X \times Y)=\sum_{\substack{i+j=e \\ i, j \\ j=e n}} \bar{\mu}_{i}(X) \bar{\mu}_{j}(Y),
$$

which implies (1.7).

References

[1] H. Weyl, On the volume of tubes, Amer. J. Math. 61 (1939) 461-472.
[2] S. S. Chern, On the kinematic formula in integral geometry, J. Math. Mech. 16 (1966) 101-118.
[3] A. Nijenhuis, Problem 204 (Solutions contributed by J. van Lint and J. Boersma), Nieuw Archief v. Wisk. III Ser. 17 (1969) 166-168.

[^0]: Communicated September 17, 1973. Research partially supported by an N.S.F. grant at the University of Pennsylvania.

