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In mean and covariance structure analysis, the chi-square difference test is often applied
to evaluate the number of factors, cross-group constraints, and other nested model com-
parisons. Let model Ma be the base model within which model Mb is nested. In practice,
this test is commonly used to justify Mb even when Ma is misspecified. The authors study
the behavior of the chi-square difference test in such a circumstance. Monte Carlo results
indicate that a nonsignificant chi-square difference cannot be used to justify the con-
straints in Mb. They also show that when the base model is misspecified, the z test for the
statistical significance of a parameter estimate can also be misleading. For specific mod-
els, the analysis further shows that the intercept and slope parameters in growth curve
models can be estimated consistently even when the covariance structure is misspecified,
but only in linear growth models. Similarly, with misspecified covariance structures, the
mean parameters in multiple group models can be estimated consistently under null
conditions.
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Measurements in the social and behavioral sciences are typically subject
to errors. By separating measurement errors from latent constructs, structural
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equation modeling (SEM) provides means of modeling the latent variables
directly (e.g., Bollen, 2002; MacCallum & Austin, 2000). Compared to mod-
els that do not take measurement errors into account, SEM can provide more
accurate conclusions regarding the relationship between interesting attrib-
utes. To achieve such an objective, the methodology of SEM has to be appro-
priately used. In practice, researchers often elaborate on the substantive side
of a structural model even when it barely fits the data. We will show that such
a practice most likely leads to biased or misleading conclusions. Specifically,
we will discuss the misuse of the chi-square difference test and the z test. For
the discussion of the misuse of the chi-square difference test, we will focus on
using this test in deciding the number of factors and for adding cross-group
constraints. For the discussion of the misuse of the z test, we will focus on its
use in evaluating the statistical significance of mean parameter estimates in
the growth curve models and latent mean comparisons.

There are many indices for evaluating the adequacy of a model. Among
these, only a chi-square statistic judges the model using probability as char-
acterized by Type I and Type II errors. Although the chi-square test is limited
due to its reliance on sample sizes, it is still commonly reported in applica-
tions. In practice, many reported chi-square statistics are significant even
when sample sizes are not large, and in the context of nested models, the chi-
square difference test is often not significant; this is used to justify model
modifications or constraints across groups (e.g., Larose, Guay, & Boivin,
2002). The practice for relying on difference tests has a long history in
psychometrics. For example, in the context of exploratory studies, Jöreskog
(1978) stated,

If the drop in χ 2 is large compared to the difference in degrees of freedom, this
is an indication that the change made in the model is a real improvement. If, on
the other hand, the drop in χ 2 is close to the difference in number of degrees of
freedom, this is an indication that the improvement in fit is obtained by “capi-
talization on chance” and the added parameters may not have any real signifi-
cance or meaning. (p. 448)

This statement may give encouragement for using the chi-square difference
test to guide model modifications or adding constraints even when the less
constrained model is highly significant. We will show that the difference test
cannot be used reliably in this manner.

We will mainly study the misuse of statistical significance tests. In the
context of multiple groups, even when a model may barely fit an individual
sample, further constraints may be added across the groups. Let Ta be the sta-
tistic corresponding to the models without the constraints and Tb be the statis-
tic corresponding to the models with constraints. Even when both Ta and Tb

are statistically significant, implying rejection of both models, the difference
∆T = Tb – Ta can still be nonsignificant. This is often used to justify the cross-
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group constraints in practice. See Drasgow and Kanfer (1985), Brouwers and
Tomic (2001), and Vispoel, Boo, and Bleiler (2001) for such applications.
Similarly, a model with two factors may correspond to a significant statistic
Ta whereas the substantive theory may support only a one-factor model. The
one-factor model may have a significant statistic Tb. In such a context, many
researchers regard the one-factor model as “attainable” if ∆T = Tb – Ta is not
statistically significant at the .05 level. In the context of latent growth curves
and latent mean comparisons, there are mean structures in addition to
covariance structures. These models are nested within the covariance struc-
ture models with saturated means. The statistic Ta corresponding to only the
covariance structure may be already highly statistically significant. Adding a
mean structure generally makes the overall model even more statistically sig-
nificant, that is, less fitting. Nonetheless, researchers still elaborate on the
significance of the intercept or slope estimates or significant mean
differences as evaluated by z tests.

Let the model Ma be the base model within which model Mb is nested.
When Ma is an adequate model as reflected by a nonsignificant Ta and sup-
ported by other model fit indices, one may want to test the further restricted
model Mb. If ∆T = Tb – Ta is not statistically significant, Mb is generally pre-
ferred because it is more parsimonious. When Ma is not adequate as indicated
by a significant Ta, can we still justify Mb by a nonsignificant ∆T? Although
there exist statistical theories (Steiger, Shapiro, & Browne, 1985) in this con-
text, and wide applications (e.g., Brouwers & Tomic, 2001; Drasgow &
Kanfer, 1985; Vispoel et al., 2001) justify Mb using nonsignificant ∆Ts, in our
view, the effect of such a practice on the substantive aspect of SEM is not
clear. A related question is when the overall model is misspecified, can a test
be used to indicate the statistical significance of a parameter estimate? Exam-
ples in this direction include whether the intercept and slope parameters in a
latent growth curve model are zeros, whether the means are different in latent
mean comparisons, and whether a parameter should be freed or fixed as in
model modifications. The interest here is to study the effect of misspecified
models on ∆T and the z tests. By simulation, the second section studies the
behavior of ∆T when Ma is misspecified. The third section explores the rea-
son why ∆T does not perform properly when Ma is misspecified. Detailed
results show that a misspecified model leads to biased parameters, which
explains why model inferences based on ∆T and parameter inference based
on the z test actually can be quite misleading.

Chi-Square Difference Test
When the Base Model Is Misspecified

Jöreskog (1971) and Lee and Leung (1982) recommended using the chi-
square difference test for cross-group constraints in analyzing multiple sam-

YUAN AND BENTLER 739



ples. Under some standard regularity conditions, Steiger et al. (1985) proved
that the chi-square difference statistic asymptotically follows a noncentral
chi-square distribution (see also Satorra & Saris, 1985). Chou and Bentler
(1990) studied the chi-square difference test when Ma is correctly specified
and found that it performs the best compared to the Lagrange multiplier test
and the Wald test in identifying omitted parameters. The chi-square differ-
ence test has been widely used in SEM, essentially in every application of
SEM with multiple groups. However, how to appropriately apply the chi-
square difference test in practice is not clear at all. Paradoxes readily occur,
for example, a nonsignificant Ta and a nonsignificant ∆T = Tb – Ta cannot
guarantee a statistically nonsignificant Tb. Although Ta = 3.84 ~ χ1

2 is statisti-
cally nonsignificant at the .05 level and ∆Tb = 3.84 ~ χ1

2 is statistically
nonsignificant at the .05 level, Tb = 7.68 ~ χ 2

2 is statistically significant at .05
level. Another paradox occurs when sequential application of nonsignificant
∆T may lead to a highly significant final model. The general point is that
when ∆T is not statistically significant, one may derive the conclusion that Mb

is less misspecified than Ma. However, we will show that this is not necessar-
ily the case. In this section, we will show the effect of a misspecified base
model Ma on the significance of ∆T through three simulation studies.
Because the normal theory-based likelihood ratio statistic TML is commonly
used in practice, we study only the performance of ∆T based on this statistic
for simulated normal data. When data are not normal or when another statis-
tic is used in practice, one cannot expect ∆T to perform better.

Type II Error of ∆T in Deciding the Number of Factors

We first study using ∆T to judge the number of factors in a confirmatory
factor model. Using ∆T to decide the number of factors in the exploratory fac-
tor model was recommended by Lawley and Maxwell (1971). It is also com-
monly applied when confirmatory factor analysis is used for scale
development.

Let us consider a confirmatory factor model with five manifest variables
and two latent factors. The population is generated by

x = �0 + f + e

with

E(x) = �0, Cov(x)= �0 = �0�0 ′�0 + �o, (1)

where
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ψ150 = ψ510 = 0.285, and the diagonal elements of 0 are adjusted so that 0 is
a correlation matrix. Note that the subscript 0 is used to denote the population
value of a parameter. The corresponding model parameter without the sub-
script 0 is subject to estimation before its value can be obtained. Except for
ψ150, the population parameter values for the model defined in Equation 1 are
obtained from fitting the two-factor model to the open-closed book data set in
Table 1.2.1 of Mardia, Kent, and Bibby (1979). The purposes of choosing
this set of population values are (a) they are represented by real data and thus
realistic, (b) φ120 = 0.818 is large enough so that ∆T will not be able to judge
the correct number of factors when Ma is misspecified.

Let the covariance structure model be

M(�) = ���′ + � ,

where

� �= 




′

= 





λ λ
λ λ λ φ

φ11 21

32 42 52 21

12
0 0

0 0 0 1 0
1 0

, .
.

and � is a diagonal matrix. Because we ignore the covariance ψ15, the above
two-factor model is no longer correct for the population covariance matrix in
Equation 1. Of course, the one-factor model excluding ψ15 is not correct
either. In such a circumstance, however, a researcher may be tempted in prac-
tice to justify the one-factor model by a nonsignificant ∆T. We next evaluate
the effect of ignoring ψ15 on ∆T for such a purpose.

Without a mean structure, there is only one degree of freedom difference
between Ma (the one-factor model) and Mb (the two-factor model). We refer
∆T to the 95th percentile of χ1

2 for statistical significance. With 500 replica-
tions, Table 1 contains the number of replications with nonsignificant ∆T. For
comparison purposes, we also include the performance of ∆T when ψ15 is
explicitly included in both Ma and Mb. When ψ15 is excluded, although the
one-factor model is inadequate due to a misspecification, ∆T cannot reject
the one-factor model more than 50% at sample size n = 100. With correct
model specification in Ma, ∆T has a much greater power to reject the wrong
model Mb.

Type II Error of ∆T in Testing
Invariance in Factor Pattern Coefficients

With a misspecified base model Ma, the statistic ∆T not only loses its
power with smaller sample sizes but also may have a weak power even with
very large sample sizes. We will illustrate this through a two-group
comparison.
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Consider two groups, each with four manifest variables that are generated
by a one-factor model. The population covariance matrix �10 of the first
group is generated by

x1 = �10��10 f1 + e1,

where

�10 = (1, 0.80, 0.50, 0.40)′, Var(f1) = φ0
(1) = 1.0, Cov(e1) = �10 = (ψ ij0

1( )),

with ψ ψ ψ ψ ψ110
1

220
1

330
1

440
1

14010 124 109( ) ( ) ( ) ( ). , . , . ,= = = = ( ) .1 32= , and ψ 240
1 25( ) .= .

The population covariance matrix �20 of the second group is generated by

x2 = �20 + �20 f2 + e2,

where

�20 = (1, .80, .70, .80)′, Var(f2) = φ0
(2) = 1.0, Cov(e2) = �20 = (ψ ij0

2( )),

with ψ ψ ψ ψ110
2

220
2

330
2

440
2 10( ) ( ) ( ) ( ) . ,= = = = and ψ 340

2 559( ) .= − . It is obvious that
the two groups do not have invariant factor pattern coefficients. In model Ma,
the one-factor model M(�) = �φ�′ + �, where � is a diagonal matrix, is fit-
ted to a normal sample from each of the populations corresponding to �10 and
�20 and the statistic Ta is the sum of the two ΤMLs. The first factor pattern coef-
ficient was set at 1.0 for identification purposes. In model Mb, the three-factor
pattern coefficients as well as the factor variances were set equal across the
two groups, which results in the statistic Tb. Referring ∆T = Tb – Ta to the 95th
percentile of χ1

2 , the number of nonsignificant replications are given in the
middle column of Table 2. For the purpose of comparison, a parallel study in
which the three error covariances are included in � in both Ma and Mb was
also performed, and the corresponding results are in the last column of Table 2.
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Table 1
Number of Nonsignificant ∆T = Tb – Ta (Type II Error) Out of 500 Replications: One-Factor
Model (Ma) Versus Two-Factor Model (Mb)

Sample Size Misspecified Ma and Mb Correct Ma and Misspecified Mb

50 363 176
100 276 48
200 148 1
300 60 0
400 34 0
500 8 0



When ignoring the error covariances, only 494 replications out of the 500
converged when n1 = n2 = 100, and 497 replications converged when n1 = n2 =
200. When error covariances were accounted for, 496 replications converged
when n1 = n2 = 100. The number of nonsignificant replications is based on the
converged replications only. When the base model is misspecified, although
the power for ∆T to reject the incorrect constraints increases as sample sizes
increase, the speed is extremely slow. Even when n1 = n2 = 1,000, more than
60% of the replications could not reject the incorrect constraints. When Ma is
correctly specified, the statistic ∆T has a power greater than 0.95 in rejecting
the incorrect constraints at sample size n1 = n2 = 500.

Type I Error of ∆T in Testing Invariance in Factor Pattern Coefficients

A misspecified Ma not only leads to attenuated power for the chi-square
difference test, it can also lead to inflated Type I errors, as illustrated in the
following two-group comparison.

Again, consider two groups, each with four manifest variables that are
generated by a one-factor model. The first group, �10 = Cov(x1), is gener-
ated by

x1 = �10 + �10 f1 + e1,

where

�10 = (1, .80, .70, .50)′, Var(f1) = φ0
(1) = 1.0, Cov(e1) = �10 = (ψ ij0

1( ))

with ψ ψ ψ ψ ψ110
1

220
1

330
1

440
1

140
110 70( ) ( ) ( ) ( ) ( ). , .= = = = = and ψ 240

1 30( ) .= . The second
group, �20 = Cov(x2), is generated by
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Table 2
Number of Nonsignificant ∆T = Tb – Ta (Type II Error) Out of 500 Replications:
Incorrect Equality Constraints Across Two-Group Factor Pattern Coefficients

Sample Size (n1 = n2) Misspecified Ma and Mb Correct Ma and Misspecified Mb

100 447/494a 342/496
200 444/497 239
300 417 131
400 402 66
500 387 23

1,000 329 1
3,000 66 0

a. Converged solutions out of 500 replications.



x2 = �20 + �20 f2 + e2,

where

�20 = (1, .80, .70, .50)′, Var(f2) = φ0
2( ) = 1.0, Cov(e2) = �20 = (ψ ij0

2( )),

with ψ ψ ψ ψ110
2

220
2

330
2

440
2 10( ) ( ) ( ) ( ) . ,= = = = and ψ 340

2 25( ) .= − . Now, the two groups
have invariant factor pattern coefficients and factor variances. We want to
know whether ∆T can endorse the invariance when Ma is misspecified. Let
the three error covariances be ignored in Ma when fitting the one-factor
model to both samples and Mb be the model in which the factor pattern coeffi-
cients and factor variances are constrained equal. Instead of reporting the
nonsignificant replications of ∆T, we report the significant ones in Table 3.
When Ma is misspecified, ∆T is not able to justify the cross-group constraints.
As indicated in Table 3, even when n1 = n2 = 100, more than 70% of the equal
factor pattern coefficients and factor variances are rejected. When the error
covariances were accounted for in Ma and Mb, Type I errors are around the
nominal level of 5% for all the sample sizes in Table 3.

In summary, when the base model Ma is misspecified, the chi-square dif-
ference test cannot control either the Type I errors or the Type II errors for
realistic sample sizes. Conclusions based on ∆T are misleading. For the simu-
lation results in Tables 1 to 3, we did not distinguish the significant Tas from
those that are not significant. Some of the nonsignificant ∆Ts in Tables 1 and
2 have nonsignificant Tas, and some of the significant ∆Ts in Table 3 also cor-
respond to nonsignificant Tas. As was discussed at the beginning of this sec-
tion, even when both Ta and ∆T are not significant at the .05 level, we are
unable to control the errors of inference regarding model Mb. When con-
straints across groups hold partially, Kaplan (1989) studied the performance
of TML, which is essentially the Tb here. The results in Tables 1 to 3 are not in
conflict with Kaplan’s results, which indicate that Tb has a nice power in
detecting misspecifications. Actually, both Ta and Tb can also be regarded as
chi-square difference tests due to Ma and Mb being nested within the saturated
model Ms. Because Ms is always correctly specified, Ta and Tb do not possess
the problems discussed above.

Because ∆T, the Lagrange multiplier, and the Wald tests are asymptoti-
cally equivalent (Buse, 1982; Lee, 1985; Satorra, 1989), the results in Tables
1 to 3 may also imply that the two other tests cannot perform well in similar
circumstances. All of these tests are used in model modification, and our
results may explain some of the poor performance of empirically based
model modification methods (e.g., MacCallum, 1986).

Steiger et al. (1985) showed that chi-square differences in sequential tests
are asymptotically independent, and each difference follows a noncentral
chi-square even when Ma is misspecified. The results in this section imply
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that (a) when the base model Ma is wrong and the constraints that differentiate
Ma and Mb are substantially incorrect, the noncentrality parameter of the chi-
square difference can be tiny so that ∆T loses its power and (b) when the
base model Ma is wrong and the constraints that differentiate Ma and Mb are
correct, the noncentrality parameter of the chi-square difference can be
substantial so that ∆T always rejects the correct hypothesis. The next sec-
tion explains why the noncentrality parameter is tiny or substantial due to
misspecifications.

The Effect of a Misspecified Model on Parameters

In this section, we explain why the chi-square difference test is misleading
when the base model is misspecified. Specifically, when a model is
misspecified, parameter estimates converge to different values from those of
a correctly specified model. Thus, equal parameters in a correctly specified
model become unequal in a misspecified model. Consequently, ∆T for test-
ing constraints will be misleading. In the context of mean structures, rather
than using a chi-square statistic to evaluate the overall model, researchers
often use z tests to evaluate the statistical significance of mean parameter esti-
mates (see Hong, Malik, & Lee, 2003; Whiteside-Mansell & Corwyn, 2003).
We will also show the effect of a misspecified model in evaluating the mean
parameters. We use results in Yuan and Bentler (2004) for this purpose.

Let x and S be the sample mean vector and sample covariance matrix from
a p-variate normal distribution Np(�0, �0). Let 	*(
) and M*(
) be the
correct mean and covariance structure; thus, there exists a vector 
0 such
that �0 = 	*(
0) and �0 = M*(
0). Let the misspecified model be 	(�) and
M(�). We assume that the misspecification is due to model 	(�) and M(�)
missing parameters � of 
 = (�′, �′)′. In the context of mean and covariance
structure analysis, one obtains the normal theory-based maximum likelihood
estimate (MLE) ��of�0 by minimizing (see, e.g., Browne & Arminger, 1995)

FML(�, x, S) = [x – 	(�)]′M–1(�)[x – 	(�)] + tr[SM–1(�)] – log|SM–1(�)| – p.
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Table 3
Number of Significant ∆T = Tb – Ta (Type I Error) Out of 500 Replications: Correct Equality
Constraints Across Two-Group Factor Pattern Coefficients

Sample Size (n1 = n2) Misspecified Ma and Mb Correct Ma and Mb

100 362/497a 25
200 481 28
300 498 23
400 500 25

a. Converged solutions out of 500 replications.



Under some standard regularity conditions (e.g., Kano, 1986; Shapiro,
1984), �� converges to �*, which minimizes FML(�, �0, �0). Note that in gen-
eral,�* does not equal its counterpart�0 in 
 � �0 0 0= ′ ′ ′( , ) , which is the popu-
lation value of the correctly specified model. We will call ∆� =�* –�0 the bias
in�*, which is also the asymptotic bias in ��. It is obvious that if the sample is
generated by �0 = 	(�0) and �0 = M(� 0 ), then �* will have no bias. We may
regard the true population (�0, �0) as a perturbation to (�0, �0). Because of
the perturbation, �* ≠ �0, although some parameters in �* can still equal the
corresponding ones in �0 (see Yuan, Marshall, & Bentler, 2003). Yuan et al.
(2003) studied the effect of the misspecified model on parameter estimates in
covariance structure analysis. Extending their result to mean and covariance
structure models, Yuan and Bentler (2004) characterized� as a function of �
and � in a neighborhood of (�0, �0). Denote this function as � = g(�, �),
where � is the vector containing the nonduplicated elements of �. Then there
approximately exists

∆ ∆ ∆� � � � � � �≈ � ( , ) � ( , )g g1
0 0

2
0 0+ , (2)

where �g1 is the partial derivative of g with respect to � and �g 2 is the partial de-
rivative of g with respect to �; ∆�0 = �0 – �0 and ∆� = �0 – �0. Explicit ex-
pressions of �g1 and �g 2 are given in Yuan and Bentler (2004). Equation 2 im-
plies that the bias in�* caused by ∆� and ∆� are approximately additive. Let
q be the number of free parameters in �, and then �g1 (�0, �0) is a q × p matrix
and �g 2 (�0, �0) is a q × p* matrix, where p* = p(p + 1)/2. For the lth parameter
θl, we can rewrite Equation 2 as

∆ ∆ ∆θ µ σl ≈ +
= ==
∑ ∑∑c cli
i

p

i lij
j

p

i

p

ij
1 11

. (3)

When the parameter is clear, we will omit the subscript in reporting the coef-
ficients in examples.

Now we can use the result in Equation 2 or Equation 3 to explain the mis-
leading behavior of ∆T when Ma is misspecified. Because of the
misspecification,�* may not equal�. Most nested models can be formulated
by imposing constraints h(�) = 0. When h(�0) = 0, h(�*) may not equal zero.
With a misspecified Ma, it is the constraints h(�*) = 0 that are being tested by
∆T. Because h(�*) ≠ 0, Tb will be significantly greater than Ta, and thus ∆T
tends to be statistically significant as reflected in Table 3. Similarly, when
h(�0) does not equal zero, h(�*) may approximately equal zero. Conse-
quently, the power for ∆T to reject h(�*) = 0 is low, as reflected in Tables 1
and 2. However, researchers in practice treat h(�0) = 0 as plausible.
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In general, it is difficult to control the two types of errors by ∆T when Ma is
misspecified. If treating ∆T as if Ma were correctly specified when it is actu-
ally not, the conclusion regarding h(�0) = 0 will be misleading. For example,
the ∆T that produced the results in Table 1 tests whether φ120 = 1. When
ignoring ψ15 in M(�), using Equation 3 and the population parameter values
in Table 1, we have ∆φ12 ≈ 0.166 ∆σ15 = 0.166 × 0.285 = 0.047. This leads to
φ12

* ≈ 0.865, which is closer to 1.0 than φ120 = 0.818. Actually, any positive
perturbation on σij, i = 1,2; j = 3,4,5 will cause a positive bias in φ12

* , as illus-
trated in the following example.

Example 1

Let �0 be the population parameter values of the model in Equation 1
excluding ψ150; evaluating Equation 3 at �0, we obtain the coefficients cij for
the approximate bias cij∆σij of φ12

* in Table 4. For purposes of comparison, the
exact biases when ∆σij = 0.05, 0.10, and 0.20 were also computed by mini-
mizing FML(�, �0, �0) directly. The approximate biases cij∆σij are very close
to the exact ones when ∆σij = 0.05. The accuracy of the approximation
decreases as the amount of perturbation ∆σij increases. This is because Equa-
tion 2 is based on a local linearization. The smallest cij is with σ45, implying
that the function φ12 = φ12(�) is quite flat in the direction of σ45. The direction
obtained at this point is usually not stable. Actually, the c45∆σ45 predicts a
small positive bias in φ12

* when ∆σ45 = 0.10 or 0.20, but the actual biases are
negative. Except for this element, the predicted biases and the actual biases
agree reasonably well for perturbations on all the other covariances σij.
Notice that positive perturbations on the covariances between indicators for
different factors (σij, i = 1,2; j = 3,4,5) lead to an inflated φ12

* . Perturbations in
the opposite direction will lead to an attenuated φ12

* . So the estimate �φ12 and
any testing for φ120 = 0 or 1 based on �φ12 are not trustworthy when model Ma is
misspecified, especially when φ120 is near 0 or 1.0.

Similarly, due to the changes in parameters, the chi-square difference test
for the equivalent constraints across groups is misleading when either of the
models does not fit the data within a group. Instead of providing more exam-
ples about the bias on factor pattern coefficients when σij are perturbed, we
illustrate the effect of a misspecified model on the mean parameters in simul-
taneously modeling mean and covariance structures.

Let y = (y1, y2, …, yp)′ be repeated measures at p time points. Then a latent
growth curve model can be expressed as (Curran, 2000; Duncan, Duncan,
Strycker, Li, & Alpert, 1999; McArdle & Epstein, 1987; Meredith & Tisak,
1990)

y = �f + e, (4)
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where

� = 




′

−
1 0
0

1 0
1 0

1 0 1 0
1 2

. .
.

. . ,λ λ
…
… p

f = (f1, f2)′, with f1 being the latent intercept and f2 being the latent slope, �f =
E(f) = (α, β)′,

� = = 



Cov( )f

φ
φ

φ
φ

11

21

12

22

and Cov(e) = � = diag(ψ11, ψ22, …, ψpp). This setup leads to the following
mean and covariance structures:

	(�) = ��f, M(�) = ���′ + �.

In fitting such a model in practice, researchers often need to elaborate on the
significance of the parameter estimates �α and �β, although the overall model
fit is typically significant as judged by a chi-square statistic. If the
misspecification affects the mean structure to such a degree that the
significances of �α and �β are due to only a systematic bias, then caution is
needed to specify the model before meaningful �α and �β can be obtained. We
will consider the models for both linear growth and nonlinear growth.
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Table 4
The Effect of a Perturbation ∆σij on Factor Correlation φ12

*

∆σij = 0.05 ∆σij = 0.10 ∆σij = 0.20

σij cij cij × ∆σij ∆φ12 cij × ∆σij ∆φ12 cij × ∆σij ∆φ12

σ12 –0.740 –0.037 –0.035 –0.074 –0.065 –0.148 –0.117
σ13 0.464 0.023 0.023 0.046 0.044 0.093 0.068
σ14 0.212 0.011 0.011 0.021 0.024 0.042 0.056
σ15 0.166 0.008 0.009 0.017 0.018 0.033 0.041
σ23 0.363 0.018 0.017 0.036 0.031 0.073 0.032
σ24 0.221 0.011 0.012 0.022 0.025 0.044 0.058
σ25 0.173 0.009 0.009 0.017 0.019 0.035 0.044
σ34 –0.362 –0.018 –0.020 –0.036 –0.042 –0.072 –0.090
σ35 –0.305 –0.015 –0.018 –0.030 –0.040 –0.061 –0.092
σ45 0.097 0.005 0.002 0.010 –0.002 0.019 –0.046



Example 2

When letting λ1 = 2, λ2 = 3, . . . , λp – 2 = p – 1, Equation 4 describes the linear
growth model. The unknown parameters in this model are

� = (α, β, φ11, φ21, φ22, ψ11, . . . , ψpp)′.

Detailed calculation (see Yuan & Bentter, 2004) shows that all the c1ijs and
c2ijs in Equation 3 are zero. So there is no effect of misspecification in M(�)
on α* and β*. This implies that we can still get consistent parameter esti-
mates �αand �β when 	(�) is correctly specified even if M(�) is misspecified.

However, the misspecification in 	(�) does have an effect on α* and β* as
presented in Table 5 using p = 4, where Equation 3 was evaluated at

α0 = 1, β0 = 1, φ110 = φ220 = 1.0, φ120 = 0.5, ψ110 = … = ψpp0 = 1.0,

and the perturbation was set at ∆µi = 0.2. The positive perturbations ∆µ1 and
∆µ2 cause positive biases on α* but negative biases on β*. The positive per-
turbation ∆µ4 = 0.2 causes a negative bias on α* but a positive bias on β*.
Because 	(�) is a linear model, the approximate biases given by Equation 2 or
Equation 3 are identical to the corresponding exact ones.

When the trend in �0 = E(y) cannot be described by a linear model, a
nonlinear model may be more appropriate. However, any misspecification
in M(�) will affect the α* and β* as illustrated in the following example.

Example 3

When λ1, λ2, . . . , λp – 2 are free parameters, Equation 4 subjects the shape of
growth to estimation. The unknown parameters in this model are

� = (α, β, λ1, . . . , λp – 2, φ11, φ21, φ22, ψ11, . . . , ψpp)′.

Because the λis are in both 	(�) and M(�), misspecification in M(�) will cause
biases in α* and β*. To illustrate this, let us consider a population that is gen-
erated by Equation 4 with

α0 = 1, β0 = 1, λj0 = j + 1, φ110 = φ220 = 1.0, φ120 = 0.5, ψ110 = . . . = ψpp0 = 1.0

and p = 4. Table 6 gives the approximate biases in α* and β* as described in
Equation 2 and Equation 3 when ∆µi = 0.2 or ∆σij = 0.2 whereas the remain-
ing elements of � and � are fixed at �0 as specified above. When µi is per-
turbed, the changes in α* and β* are no longer linear functions of ∆µi, and the
approximate biases given in Equations 2 or 3 are no longer identical to the
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exact biases ∆α or ∆β. This occurs even though the population mean vector
and covariance matrix are identical to those in Example 2. The ∆α or ∆β in
Table 6 do not equal the corresponding ones in Table 5 due to the nonlinear
nature of the model.

We need to notice that when �0 = E(y) = 0 in the population, there is no
effect of a misspecified M(�) on α* or β*. This can be see from the form of
FML(�, �0, �0). With any given M(�) and �0, when �0 = 0, the minimum of
FML(�, �0, �0) is at α* = β = 0.

We next consider comparing factor means across groups. For conve-
nience, we will give details for only two groups. Let y1 and y2 represent ran-
dom vectors from the two groups that are generated by
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Table 5
The Effect of a Perturbation ∆ i = 0.2 on the Intercept α* and Slope β* for the Linear
Growth Curve Model

α β

µi ci ci × ∆µi ∆α ci ci × ∆µi ∆β

µ1 0.700 0.140 0.140 –0.300 –0.060 –0.060
µ2 0.400 0.080 0.080 –0.100 –0.020 –0.020
µ3 0.100 0.020 0.020 0.100 0.020 0.020
µ4 –0.200 –0.040 –0.040 0.300 0.060 0.060

Table 6
The Effect of a Perturbation ∆ i = 0.2 or ∆ ij = 0.2 on the Intercept α* and  Slope β* for the
Nonlinear Growth Curve Model

α β

µi ci ci × ∆µi ∆α ci ci × ∆µi ∆β

µ1 0.869 0.174 0.171 –0.684 –0.137 –0.131
µ2 0.185 0.037 0.035 0.487 0.097 0.097
µ3 0.021 0.004 0.002 0.078 0.016 0.018
µ4 –0.076 –0.015 –0.015 0.119 0.024 0.023

σij cij cij ×∆σij ∆α cij cij ×∆σij ∆β

σ12 0.020 0.004 0.003 –0.032 –0.006 –0.007
σ13 0.013 0.003 0.002 –0.017 –0.003 –0.003
σ14 0.020 0.004 0.005 –0.064 –0.013 –0.013
σ23 –0.079 –0.016 –0.016 0.123 0.025 0.023
σ24 0.001 0.000 0.000 0.063 0.013 0.011
σ34 0.026 0.005 0.005 –0.073 –0.015 –0.015



y1 = 1 + �1f1 + e1 and y2 = 2 + �2f2 + e2, (5)

whose first two moment structures are

	1(�) = 1 + �1�1, M1(�) = �1�1�1′ + �1,

	2(�) = 2 + �2�2, M2(�) = �2�2�2′ + �2.

It is typical to assume 1 = 2 =  and �1 = �2 = � in studying the mean differ-
ence �2 – �1 (Sörbom, 1974). But there can be exceptions (Byrne, Shavelson,
& Muthen, 1989). For the purpose of identification, one typically fixes �1 = 0,
and consequently the interesting null hypothesis is H0 : �20 = 0. The free pa-
rameters in Equation 5 are

�  � � � � � �= ′ ′ ′ ′ ′ ′ ′ ′( , , , , , ) ,2 1 1 2 2,

where �, �1, �1, �2, and �2 are vectors containing the free parameters in �,
�1, �1, �2, and �2. With the sample moments y1, S1, and y2, S2, the normal
theory-based MLE �� is obtained by minimizing

FML(�, y1, S1, y2, S2) = n–1n1FML(�, y1, S1) + n–1n2FML(�, y2, S2),

where n1 and n2 are the sample sizes for the two groups with n = n1 + n2. Under
standard regularity conditions, �� converges to �*, which minimizes FML(�,
�10, �10, �20, �20), where �10 = E(y1), �10 = Cov(y1), �20 = E(y2), and �20 =
Cov(y2).

Notice that when the population parameter values satisfy �10 = �20 = �0,
whether M1(�) and M2(�) are misspecified or not, the * has to take the value
�0 and � 2

* has to be zero in order for FML(�, �10, �10, �20, �20) to reach its min-
imum. So when �10 = �20 = �0, there will be no bias in � 2

* even when M1(�)
and M2(�) are misspecified. The converse is also partially true. That is, when
� �2 10

* ,≠ 0 will not equal 20 regardless of whether M1(�) or M2(�) are cor-
rectly specified. This partially explains the results of Kaplan and George
(1995) and Hancock, Lawrence, and Nevitt (2000) regarding the perfor-
mance of TML in testing factor mean differences when factor pattern coeffi-
cients are partially invariant. They found that TML performs well in control-
ling Type I and Type II errors when n1 = n2, and it is preferable to other types
of analysis.

However, any misspecification will cause an asymptotic bias in �� 2 when
H0 is not true or when �10 ≠ �20. We illustrate how misspecified (	1(�), M1(�))
and (	2(�),M2(�)) interfere with the estimate �� 2 and with testing the null hy-
pothesis �20 = 0. Let �0 be the population value of � corresponding to cor-
rectly specified models and 	 	 � 	 	 � �1

0
1 0 2

0
2 0 1

0= = =( ), ( ), M1 0( ),�
� �2

0
2 0= M ( ). Similar to the one-group situation,� is a function of ( 1, �1, 	2,
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�2) in a neighborhood of (	 � 	 �1
0

1
0

2
0

2
0, , , ). For the ∆� = (∆θ1, . . . , ∆θq)′ =�* –

�0, we have

∆ ∆ ∆θ µ σl
i

p

j

p

i

p

cli i
clij ij

≈ + +
= ==
∑ ∑∑( ) ( ) ( ) ( ) ( )1 1

1

1 1

11

2

cli i
clij iji

p

j

p

i

p
( ) ( ) ( )2

1

2 2

11
∆ ∆µ σ

= ==
∑ ∑∑+ . (6)

Explicit expressions for cli li lijc c
( ) ( ) ( )

, ,
1 2 1

, and clij

( )2

are provided in Yuan and
Bentler (2004). Equation (6) can be used to evaluate the effect of any
misspecifications of (	1(�), M1(�)) and/or (	2(�), M2(�)) on �*, as illustrated
in the following example.

Example 4

Let the population means and covariances be generated by Equation 5
with four variables measuring one factor. We will use �1 and �2 to denote the
vectors of factor pattern coefficients instead of their matrix versions �1 and
�2. Set the population values

10 = 20 = (1.0, 1.0, 1.0, 1.0)′, τ10 = 0, τ20= 0.5, �10 = �20 = (1.0, 1.0, 1.0, 1.0)′,

φ φ ψ ψ ψ0
1

0
2

110
1

440
1

110
21 0 1 0 1 0( ) ( ) ( ) ( ) (. , . , .= = = = =… and ) ( ) . .= = =… ψ 440

2 1 0

So the model in Equation 5 is correct for the population if there are no pertur-
bations. Fix the first factor pattern coefficient at 1.0 for the purpose of identi-
fication and let

�1 = �2 = (1, λ1, λ2, λ3)′

and τ1 = 0 in the model; the free parameters are

� = ′( , , , , , , , , ,( ) ( ) ( ) ( ) ( )τ λ λ λ φ ψ ψ ψ ψ2 1 2 3
1

11
1

22
1

33
1

44
1 , , , , , )( ) ( ) ( ) ( ) ( )φ ψ ψ ψ ψ2

11
2

22
2

33
2

44
2 ′.

Using Equation 6, with equal sample size in the two groups, we get the coeffi-
cients ci and cij in the first column of Table 7 for the biases in τ2

* . With
∆ ∆ ∆( ) ( ) ( )µ µ σi i ij

1 2 10 2 0 2 0 2= = =. , . , . and ∆ (2)σ ij = 0 2. , the approximate
biases using Equation 6 as well as the exact ones in τ2

* are given in the second
and third columns of Table 7, in which the approximate biases closely match
the corresponding exact ones.

According to the coefficients in Table 7, any positive perturbation on µ i
( )1

will cause a negative bias on τ2
* , and the opposite is true when µ i

( )2 is posi-
tively perturbed. Similarly, τ2

* will change in the direction specified by cij

when σij is perturbed. The results in Table 7 imply that one has to be cautious
when using a z test for τ20 = 0. When 10 and 20 are not equal, or the factor pat-
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tern coefficients �10 and �20 are not invariant, or the structural models M1(�)
and M2(�) are misspecified, the estimate �τ2 cannot be regarded as the esti-
mate of the latent mean difference τ20. The bias ∆τ2 can be substantial. Just
like a nonzero parameter, the bias in �τ2 will be statistically significant when
sample sizes are relatively large.

For the four examples in this section, we studied only ∆θl for a few inter-
esting parameters when the mean µi or covariance1 σij are perturbed individu-
ally. Equations 3 or 6 can also be used to obtain an approximate bias on any
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Table 7
The Effect of a Perturbation ∆ i = 0.2 or ∆ ij = 0.2 on the Difference τ 2

* of Factor Means in
Latent Mean Comparison

µi ci ci × ∆µi ∆τ2

µ
1
1( ) -0.314 -0.063 -0.059

µ
2
1( ) –0.229 –0.046 –0.044

µ
3
1( ) –0.229 –0.046 –0.044

µ
4
1( ) –0.229 –0.046 –0.044

µ
1
2( ) 0.314 0.063 0.066

µ
2
2( ) 0.229 0.046 0.047

µ
3
2( ) 0.229 0.046 0.047

µ
4
2( ) 0.229 0.046 0.047

σij cij cij × ∆µi ∆τ2

σ
12
1( ) 0.057 0.011 0.012

σ
13
1( ) 0.057 0.011 0.012

σ
14
1( ) 0.057 0.011 0.012

σ
23
1( ) –0.057 –0.011 –0.015

σ
24
1( ) –0.057 –0.011 –0.015

σ
34
1( ) –0.057 –0.011 –0.015

σ
12
2( ) 0.057 0.011 0.012

σ
13
2( ) 0.057 0.011 0.012

σ
14
2( ) 0.057 0.011 0.012

σ
23
2( ) –0.057 –0.011 –0.015

σ
24
2( ) –0.057 –0.011 –0.015

σ
34
2( ) –0.057 –0.011 –0.015



parameter in a model with simultaneous perturbations on elements of means
and covariances. For example, when µ 1

1( ) and σ 34
2( ) are perturbed by

∆µ 1
1 0 2( ) .= and ∆µ 34

2 0 2( ) .= simultaneously, the approximate bias on τ2
* is

about ∆τ2 = –0.314 × 2 – 0.057 × 2 = –0.074.

Discussion and Conclusion

When variables contain measurement errors, correlation or regression
analysis might lead to biased parameter estimates. SEM supposedly removes
the biases in regression or correlation coefficients. However, if a model is
misspecified, the correlation or regression coefficients among latent vari-
ables are also biased. Because the measurement errors are partialled out,
SEM also has merits over the traditional MANOVA in comparing mean dif-
ferences, as discussed in Cole, Maxwell, Arvey, and Salas (1993) and Kano
(2001). However, this methodology can also be easily misused. In such a
case, the estimated latent mean differences may not truly reflect the mean
differences of the latent variables.

There are many model fit indices in the literature of SEM. For example,
SAS CALIS provides about 20 fit indices in its default output. Consequently,
there is no unique criterion for judging whether a model fits the data. Con-
ceivably, these different criteria might provide good resources because each
fit index may provide additional information for looking at the discrepancy
between data and model. Actually, Hu and Bentler (1999) recommended
using multiple indices in judging the fit of a model. However, people in prac-
tice often pick the most favorable index to sell a model. Particularly, with a
given fit index, the cutoff value between a good and a bad model is not clear;
the commonly used terms adequate, plausible, or tenable for models have
never been defined clearly. For example, for the comparative fit index (CFI),
the criterion CFI > 0.95 has been recommended for an acceptable model
(Bentler, 1990; Hu & Bentler, 1999), but CFI > 0.90 is also commonly used
for indicating adequate, plausible, or tenable models. It is interesting to
observe that fit indices are often used when judging a covariance structure
because of the need to accept the model, whereas chi-squares or z tests are
generally used when judging a mean difference because of the need to find
significance (see Hong et al., 2003; Whiteside-Mansell & Corwyn, 2003).
Such a practice most likely leads to misleading conclusions.

We agree that any model is an approximation to the real world and that
there is some need to quantify the degree of approximation. But there are
good approximations and bad ones. As we have shown, if a significance or a
substantive conclusion following an SEM model is due to systematic biases,
caution is needed in elaborating on the findings from the model. To minimize
the misuse of ∆T and z tests, one should use multiple criteria to make sure the
base model Ma is correctly specified. When Ma is not good enough, one may
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need to find a different model structure that better fits the data before adding
extra constraints or performing a z test. An alternative is to further explore the
structure of the data to better understand the substantive theory.

Our study leads to two humble but definite conclusions with regard to the
specific types of models. In the latent growth curve models as represented by
Equation 4, when �α or �β is statistically significant at the .05 level, then with
95% confidence one can claim that E(y) is different from zero. In comparing
factor means as represented in the model in Equation 5, if �� 2 is statistically
significant at the .05 level, then one can be 95% confident that E(y1) ≠ E(y2).
But the significance in �α or �β may not be due to nonzero E(f1) or E(f2), and the
significance of �� 2 may not be due to a nonzero E(f2 – f1).

Note

1. Tables 4, 6 and 7 do not contain σ
ii

because its perturbation does not cause any biases on
the reported paramenters.
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