
1SCIENTIFIC REPORTS |          (2019) 9:9429  | https://doi.org/10.1038/s41598-019-45754-3

www.nature.com/scientificreports

On-chip photonic decision maker 
using spontaneous mode switching 
in a ring laser
Ryutaro Homma1, Satoshi Kochi1, Tomoaki Niiyama1,2, Takatomo Mihana3, Yusuke Mitsui3, 

Kazutaka Kanno3, Atsushi Uchida  3, Makoto Naruse4 & Satoshi Sunada1,2

Efficient and accurate decision making is gaining increased importance with the rapid expansion 
of information communication technologies including artificial intelligence. Here, we propose and 
experimentally demonstrate an on-chip, integrated photonic decision maker based on a ring laser. 
The ring laser exhibits spontaneous switching between clockwise and counter-clockwise oscillatory 
dynamics; we utilize such nature to solve a multi-armed bandit problem. The spontaneous switching 
dynamics provides efficient exploration to find the accurate decision. On-line decision making is 
experimentally demonstrated including autonomous adaptation to an uncertain environment. This 
study paves the way for directly utilizing the fluctuating physics inherent in ring lasers, or integrated 
photonics technologies in general, for achieving or accelerating intelligent functionality.

In the age of artificial intelligence, the requirements for efficient and intelligent processing of massive amount of 
data are continuously increasing. Present technologies to accommodate these demands rely on digital electron-
ics; however, hardware scaling in electronics, as foreseen by Moore’s law, is predicted to be unsustainable1,2. As a 
consequence, studies on novel computing principles and architectures beyond the present Turing–von-Neumann 
computing paradigm2,3 are gaining importance. These include neuromorphic computing4–6, photonic deep learn-
ing7,8, reservoir computing9,10, molecular computing11, and quantum and coherent ising machines12,13, where the 
underlying complexity and fluctuations in natural systems have been used for cognitive processing, prediction, 
and solving large-scale combinatorial optimization problems.

From the view of information processing, most of the above-mentioned studies have focused on supervised 
learning or optimization processing. Reinforcement learning is another emergent and important branch of 
machine learning14, where utilization of physical processes can enhance or accelerate their performance15–18.

As a foundation of reinforcement learning, decision making plays a key role in engineering applications 
such as cognitive wireless communication19,20, online advertisements21, and Monte-Carlo searches22. Herein, the 
decision-making problems under study are called multi-armed bandit (MAB) problems23; the goal is to maximize 
the total reward from multiple slot machines whose reward probabilities are unknown. A key point of the MAB 
problems is to resolve the exploration-exploitation dilemma inherent in decision making under uncertainty: suf-
ficient exploratory actions may inform the best slot machine, but it may be accompanied by a significant amount 
of losses. In contrast, insufficient exploration may result in missing the best machine.

Recently, we have experimentally revealed that optical fluctuation dynamics can be used for exploring and 
making an optimal decision in the MAB problems24–27. Particularly, it has been found that complex temporal 
waveforms generated from a chaotic laser are useful for making decisions at a fast rate in the gigahertz regimes26. 
Previous studies suggest the potential of using complex laser dynamics with ultra-wide bandwidth for fast 
decision making. However, important issues remain open ranging from novel fundamental principles, system 
architectures, to device implementations for photonic decision making. For instance, the former studies using 
laser chaos26,27 only exploit chaotic waveforms as correlated random numbers for a decision making software 
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algorithm; the physical dynamic itself was not directly engineered, even though a variety of dynamical features 
are inherent in laser systems28. Furthermore, the previous studies have used a long fiber optic delay line to gen-
erate chaotic waveforms26,27; such use could lead to impractically large systems, inhibit stable operation, and may 
prevent practical deployments.

We here propose a compact (<5 mm2 area), on-chip photonic decision maker based on a ring laser struc-
ture. Unlike previous studies26,27, the laser structure can generate fast, complex, but controllable dynamics at a 
chip scale, without a long delay line. The origin of the dynamics is a spontaneous switching phenomenon, i.e., 
noise-induced mode-hopping29,30; the phenomenon is used for exploring an optimal solution under uncertainty. 
We demonstrate that optimal decision-making is efficiently achieved by opto-electronically controlling the 
spontaneous-switching dynamics.

Principle of Ring-Laser-Based Decision-Making
Ring laser dynamics and device structure. The device structure used for decision-maker is shown in 
Fig. 1a. A ring laser is coupled to adjacent waveguides that are integrated on the same chip as a GaAs/AlGaAs 
single quantum well structure. The resonator of the ring laser supports clockwise (CW) and counter-clockwise 
(CCW) propagating waves, and can exhibit various operating regimes, such as bidirectional operation and 
bistability, depending on the pump current31,32. Spontaneous switching between the CW and CCW modes is 
an interesting dynamic that appears in the transition from the stable bidirectional regime to the bistable regime. 
Spontaneous switching has been regarded as an obstacle for deterministic optical switching applications33–35. 
Conversely, in this work, it is preferably utilized for decision making with feedback control of the CW and CCW 
modes, as discussed later.

The two waveguides with contact electrodes (denoted by PDi and BCi, =i 1, 2, as shown in Fig. 1a, are used 
for independent input/output control of the two modes in the ring laser: PD1 and PD2 are used as the photodetec-
tors to monitor the intensities of the CW and CCW modes, whereas BC1 and BC2 with current injections are used 
for introducing an asymmetry and changing the dynamics of the CW and CCW modes, respectively30. (See 
Methods section for details.) We note that a similar optoelectronic control method has been used for deterministic 
optical switching31 and random number generation36. However, unlike the previous studies, we use this method 
for changing statistical characteristics of spontaneous switching dynamics, as demonstrated later in detail.

Principle of decision-making. Here, we consider a two-armed bandit (TAB) problem, i.e., the issue is to 
select the machine with the higher reward probability among two machines, denoted by SM1 and SM2 (Fig. 1b). 
We examine a TAB problem, the simplest MAB problem, so that we can validate the principle of the first 
ring-laser-based decision making. Meanwhile, the scalability of photonic decision making has been studied in 
the literature25,27, which would be applied to ring-laser-based device architectures. Our decision-making method 
is based on the tug-of-war (TOW) model, exhibiting highly efficient decision making compared to conventional 
algorithms15,16. Based on the model principle, we solve the TAB problem by repeating the following four steps:

 (i) Signal detection: The intensity level of CW and CCW outputs, denoted respectively by ICW and ICCW, are 
detected by photodetector PD1 and PD2, respectively.

 (ii) Decision of the machine selection: If ICW is larger than ICCW, the decision is to select SM1. Otherwise, the 
decision is to choose SM2.

 (iii) Playing the selected machine.
 (iv) Learning and feedback: If a reward is provided by playing SM1 or if a reward is not provided by playing 

SM2, the current (or voltage) applied to BC1 is increased to facilitate the lasing in the CW mode. Con-
sequently, the probability of selecting SM1 slightly increases in the next decision making. On the other 

Figure 1. Ring-laser-based decision-making. (a) Schematic of the ring laser device coupled to waveguides with 
contact electrodes BCi and PDi ( =i 1, 2). The ring radius is 1 mm, and the waveguide width is approximately 
2 µm. PD1(2) was used as the photodetectors to monitor the CW(CCW) mode intensity in the ring laser, whereas 
BC1(2) was used for introducing an asymmetry and changing the mode-dynamics. (b) Setup for the proof-of-
concept experiment on ring-laser-based decision-making. The two PD signals are sent to a digital oscilloscope, 
and the current is applied to either of BC1 or BC2 according to the results of the slot machine playing. In the 
experiment, the slot machines are numerically simulated in the embedded signal processing unit in the 
oscilloscope.
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hand, if a reward is provided by playing SM2 or if a reward is not provided by playing SM1, the current (or 
voltage) applied to BC2 is increased so that the CCW lasing is facilitated, leading to a slight increase of the 
probability of choosing SM2 in the next step.

Repeating steps (i)–(iv), we can finally choose the best slot machine.
As described in step (iv) above, an important point for the decision making is how to change currents J1 and J2 

to activate controllers BC1 and BC2, respectively. In this study, we control J1 and J2 by the following rules in which 
a dimensionless, time-dependent control parameter C(t) is introduced:

= = ≥

= = − ≤

J KC t J C t

J J KC t C t
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0, ( ), if ( ) 0, (1)
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where K is a gain parameter. If ≥C 0 at the t-th play, the current =J KC1  (mA) is injected to controller BC1 
whereas = −J KC2  is injected to BC2 if <C 0. The amount of C(t) is updated in accordance with the results of slot 
machine playing as follows:

α+ = + ∆C t C t C( 1) ( ) , (2)

and

∆ =

+∆

−∆

−Ω∆

+Ω∆

C {

if SM wins

if SM wins

if SM fails

if SM fails, (3)

1

2

1

2

where α ∈ [0, 1] is the memory parameter (typically, ≈0.99–0.999)37, and ∆ is an incremental parameter (∆ = 1 
in this study). Ω in Eq. (3) is determined based on the estimated reward probability P̂i for SMi ( =i 1, 2) from the 
history of the betting results. P̂i is given by Li/Si, where Si is the total number of times of playing SMi and Li is the 
number of wins in selecting SMi. Ω is then given as,

Ω =
+

− +
.

ˆ ˆ
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The details of the derivation of Eq. (4) are shown in15.

Results
Optoelectronic control of spontaneous switching dynamics. In our ring laser, a spontaneous switch-
ing phenomenon used for the above decision-making method appears when the pump current Jp exceeded ~1.3 
times of the laser threshold current Jth. Figure 2a shows the examples of the switching dynamics, where the CW 
and CCW intensities stochastically change due to internal laser noise. For convenience, we hereafter refer to the 
state of >I ICW CCW CCW CW( ) ( ) as the CW (CCW) mode. A statistical analysis reveals that the mode switching is 
characterized by a characteristic time τc ≈ 43 ns; in a timescale longer than τc, the switching process is treated as a 
Poisson (random) process, and the duration time in the CW (CCW) mode obeys an exponential distribution (see 
Supplementary Fig. A1 for details). We refer to τc as the correlation time of the switching process. When current 
J1 to BC1 increases with J2 = 0, the duration time in the CW mode increases [Fig. 2a(i,ii)]. In particular, we found 
that for >J 20 mA1 , the duration time diverges, and a stable CW mode operation is achieved [Fig. 2a(iii)]. 
Otherwise, increasing J2 can lead to an increase of the duration time in the CCW mode [Fig. 2a(iv,v)], and a stable 
CCW mode operation is achieved for J2 > 25 mA [Fig. 2a(vi)].

On-chip decision making: proof-of-concept demonstration. We conducted decision-making exper-
iments based on the controllable dynamics in the ring laser by repeating the processes (i-iv) described in the 
previous section. In the experimental setup shown in Fig. 1b, the two machines SM1 and SM2 were emulated in a 
computer with the reward probabilities of (P1, P2) = (0.7, 0.3). The gain K, step ∆, and memory parameter α were 
set to be 1, 1, and 0.99, respectively. A machine is selected and played once, and the reward dispensed from SM1 
and SM2 is assumed to be both 1. The goal of the experiment is to confirm whether the ring-laser-based decision 
maker selects SM1 (rather than SM2) since SM1 has a higher reward probability (P1 > P2). We assume the situation 
of zero prior knowledge, where the sum of the two hit probabilities is unknown, unlike ref.26.

The experimental results on the decision-making process are displayed in Fig. 3. At first, ICW and ICCW are 
randomly switched when the number of plays t < 100 [Fig. 3a(i)], suggesting the exploration to choose the best 
machine. The accumulated knowledge is used for estimating the reward probabilities and setting the Ω-value, and 
then the C-value is appropriately updated [Fig. 3a(ii)]. The updated C-value affects the dynamics, and the dynam-
ical state change from the switching mode to the CW mode. Consequently, the best machine (SM1 in this case) is 
selected. We repeated the decision-making experiment =n 200T  times and evaluated the correct decision rate 
(CDR), which is defined as the ratio of the number of selecting the slot machine with higher reward probability at 
the t-th play in nT trials24. As shown in Fig. 3b, the CDR monotonically increases and approaches 1, suggesting the 
achievement of correct decision making.

We also conducted similar decision-making experiments with respects to different reward probabilities and 
parameters; we found that with appropriately tuned parameters (K and ∆), the decision-making performances 
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could be comparable to existing decision-making algorithms such as a modified softmax16 and upper confidence 
bound 1-tuned (UCB1-tuned)38,39. As shown in Fig. 4, the CDR of the ring laser-based method can exceed those 
of the other methods in some cases.

Discussion
Decision-making strategy and its control. In our decision-making method, the strategy for making 
good decisions is characterized by the probability function of inducing CW mode configured by the control 
parameter C(t), denoted by PCW(C). As observed in Fig. 2b, PCW(C) of the ring laser has a plateau region in the 
range of around −21 ≤ C ≤ 12, where PCW(C) moderately changes when C-value is changed. The plateau region 

Figure 2. Spontaneous switching dynamics. (a) Temporal waveforms of the CW intensity ICW and CCW 
intensity ICCW for various values of currents J1 and J2. (b) Probability PCW of >I ICW CCW  (purple color) as a 
function of currents J1 and J2 and the corresponding control parameter C with K = 1. For reference, the 
probability of >I ICCW CW, − P1 CW, is indicated by the green color.

Figure 3. Experimental demonstration of ring-laser-based decision-making. (a) Evolution of (i) ICW(CCW) and 
(ii) control parameter C for a single trial. In this experiment, the reward probabilities of SM1 and SM2 are set 
as (P1, P2) = (0.7, 0.3). K = 1, α = 0.99, and ∆ = 1. (b) Evolution of CDR. The CDR was evaluated with nT = 200 
trials.
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plays a role in explorations to estimate the reward probability (and hence an appropriate Ω-value), and can lead to 
a correct decision after many slot plays, as demonstrated in Fig. 4; however, it may also lead to a slow convergence 
of CDR. A better alternative strategy (i.e., the design of PCW(C)) satisfying both fast adaptation speed and decision 
accuracy can theoretically be estimated in the case when we can obtain prior knowledge on the sum of the reward 
probabilities, P1 + P2, such as when either of two events inevitably occurs with the probabilities P1 and 

= −P P12 1.
Let us here assume that the value of P1 + P2 is a priori known and Ω in Eq. (4) is a constant value. For simplic-

ity, we consider α = 1 and assume that the mode switching is random. Under these assumptions, we can treat the 
time evolution of C as a random walk. The random walk model gives an analytical expression of CDR and sug-
gests that fast and correct decision is made when the probability distribution PCW(C) is close to 1 for C > 0 and 0 
for C < 0, and steeply vary from 0 to 1 near C = 0. (See Sec. 2 of Supplementary Information).

In an actual experiment, such a PCW(C) is effectively realized by modifying the relationship between the con-
trol parameter C and J1(2) (Eq. 1) as follows:

= = =

= + = >

= = − + <

J J C t

J KC t K J C t

J J KC t K C t

0, 0, if ( ) 0,

( ) , 0, if ( ) 0,

0, ( ) , if ( ) 0, (5)

1 2

1 1 2

1 2 2

where K1 and K2 are chosen such that the plateau region of PCW(C) shown in Fig. 2b is reduced and the desirable 
PCW(C) results. Figure 5a shows PCW(C) with (K1, K2) = (0, 0), (5, 9) and (13, 17), depicted by Types I, II, and 
III, respectively. As predicted by the random walk model, CDR in Type III most quickly increases and the con-
vergence value is higher than the other types, regardless of the reward probabilities P1 and P2 (Fig. 5b,c). Thus, 
we conclude that the decision-making performance can be enhanced by changing the intrinsic characteristics 
(PCW(C)) of the physical devices with an appropriate mode-control.

Decision-making rate. The rate of decision-making, i.e., the number of decision-making per unit time, in 
principle, depends on the sampling rate of the CW- and CCW-signal detections. Thus, fast decision making is 
possible by increasing the sampling rate; however, sampling too rapidly may degrade the accuracy of the decision 
making because nearly identical signal levels will be observed due to the limitation of the ring laser dynamics. 
It is important to know how rapidly decision making can be made without degrading the performance. In order 
to address this question and obtain an insight into the effect of the switching dynamics on the decision-making 
performance, we numerically examine decision-making processes by standard ring laser model equations32. See 
Methods section for details of the modeling.

Figure 6a shows the evolution of the CDR for various values of the sampling rate 1/τsam when (P1, P2) = (0.7, 
0.3), where is the sampling time interval of the signal detections. The CDRs at the 30th-play are shown as a func-
tion of τsam in Fig. 6b. These numerical results clearly show that the decision-making performance (accuracy and 
adaptation) degrades when τsam is much shorter than the correlation time τc of the ring laser. Actually, the auto-
correlation of the switching signals sampled at τ τsam c exhibits a positive value [See Supplementary Fig. A1(d)]. 
In the decision-making, the positive correlation may result in repetition of the same choice even when the choice 
is wrong. In contrast, when τ τsam c, the correlation becomes close to zero, which enables an exploration without 
repeating wrong choices. Accordingly, the sampling time interval (i.e., inverse of the decision-making rate) can be 
shorter up to the correlation time without degrading the performance. The correlation time can be shorter in 
principle, allowing faster decision making by increasing the noise strength and activating mode-hopping phe-
nomenon. In an actual experiment, this can be achieved by coupling the laser to an external amplified spontane-
ous emission noise source; the experimental verification will be an interesting future study.

Figure 4. Performance comparison. (a) Comparison of CDRs with the modified Softmax and UCB1-tuned. 
The reward probabilities are set as (P1, P2) = (0.6, 0.4). The CDR of the UCB1-tuned is better than the ring laser-
based method for the first few ten plays, but the CDR of the ring laser-based method more quickly approaches 
closely to 1 even before the 100th play. In this experiment, K = 4, α = 0.99, and ∆ = 1 were used. The parameters 
used in the modified softmax are similar to those in ref.16. The UCB1-tuned is a non-parameter algorithm38,39. 
(b) The CDRs at the 100th play. Here, P2 was set to be 1 − P1.
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Summary
In this study, we proposed and experimentally demonstrated on-chip photonic decision making by an integrated 
ring laser. Ring lasers generate statistical characteristics regarding the CW and CCW lasing, which are optoelec-
tronically controllable; we directly utilize such inherent spontaneous dynamics of ring lasers for decision-making 
functionalities. Correct decision making was successfully demonstrated with appropriate optoelectronic control 
of the dynamics, and it is found that the performance can be enhanced by changing the decision-making strategy 
with the statistical characteristics (PCW(C)). These results would open novel research perspectives of controlling 
complex dynamics based on environmental changes.

Figure 5. Decision-making strategy. (a) C-dependence of the occurrence probability of the state >I ICW CCW . 
Types I, II, and III represent PCW(C) obtained for (K1, K2) = (0, 0), (5, 9), and (13, 17), respectively. (b) Time 
evolution of CDR for each type. In this experiment, the reward probabilities were set as (P1, P2) = (0.6, 0.4), and 
prior knowledge of + =P P 11 2  was assumed. As predicted by the random walk model, the CDR for Type III is 
superior than the other types. K = 1, α = 0.99, and ∆ = 1. (c) The CDRs at the 100th play were compared as a 
function of the given reward probability, where Type III outperforms other cases.

Figure 6. Ultimate operation rate analysis of ring-laser-based decision making. (a) Time evolution of CDRs 
with respects to different sampling time interval τsam. Too small τsam or too fast operation degrades CDRs. The 
reward probabilities were set as = . .P P( , ) (0 7, 0 3)1 2 . The CDRs were evaluated from the results of nT = 100 
trials. (b) Comparison of CDR at the 30th play as a function of τsam. The reward probabilities were set as 

= . .P P( , ) (0 7, 0 3)1 2  and (0.6, 0.4). In this simulation, the correlation time τc was ≈13 ns, which is indicated by 
dotted line. We can clearly observe that the CDRs are degraded in the regime where τsam is smaller than τc.
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One interesting and important future study is to increase the decision-making rate by using faster and more 
complex switching dynamics. In addition to the above-mentioned method on increasing the noise strength, the 
use of the delayed feedback structure will be useful. Interestingly, semiconductor ring lasers can exhibit chaotic 
switching in the GHz regimes by delayed feedback even with a short time delay40,41. Combination of noise-induced 
switching with delayed feedback instability indicates a promising research direction.

As for the ring laser structure, we emphasize that in addition to miniaturization, it would be beneficial for all 
optical realization of decision-making devices because all photonic components required for decision making can 
be monolithically integrated on a chip. Instead of the optoelectronic control methods employed in the present 
study, it would be interesting to use an optical injection method because ring lasers subjected to optical injection 
enable low power and ultrafast switching at picosecond time scales33–35.

Another interesting and important future study is to tackle larger-scale MAB problems. MAB problems can be 
solved based on a hierarchical TOW principle25,27. The decision-making based on the hierarchical principle can 
be achieved by using a number of independent two-choice decision-makers (for two-armed bandit problems) or 
using a time-division multiplexing scheme27. Compact ring lasers could offer a good experimental platform for 
implementing the hierarchical principle and addressing the MAB problems.

We believe that the combination of photonic integration technologies and competitive fluctuating dynamics, 
as demonstrated by the proposed ring laser, will shed light on a way toward novel photonic intelligent computing 
paradigms.

Methods
Device structure and operating regime. The ring laser device used in this study was fabricated in a grad-
ed-index separate-confinement-heterostructure (GRIN-SCH) single-quantum well GaAs/AlxGa1−xAs structure, 
the emission wavelength of which is designed to be 850 nm. The fabricated laser device was thermally controlled 
by a heat-sink with an accuracy of 0.01 °C. The ring radius is 1 mm, and the waveguide width is 2 µm. In an actual 
device, multiple waveguides with independent electrical contacts are coupled to the ring with an angle to the 
cleaved facet. We used the waveguides with contacts, PDi and BCi ( =i 1, 2), as shown in Fig. 1a. The CW and 
CCW intensity signals are detected with PD1 and PD2 in the waveguide, respectively, and sent to a digital oscillo-
scope (Tektronix TDS7154B, bandwidth 1.5 GHz, 20 GSample/s) via the bonding wires attached to PD1 and PD2. 
Bias contacts BC1 and BC2 were used for the mode-control inside the ring laser. Sending current to BC1 and BC2 
reduces the absorption loss of the waveguide. Thus, the light coupled from the CCW(CW) mode in the ring to the 
waveguide is back-reflected at the BC1(2)-side end of the waveguide and re-coupled to the ring in the CW(CCW) 
direction. In addition, BC1(2) can enhance the spontaneous emission noise coupled to the CW(CCW) mode, and 
consequently, facilitates the laser operation in the CW(CCW) mode31,36.

When = =J J 0 mA1 2 , the threshold current Jth of the ring laser used in the experiment was approximately 
estimated to be 210 mA at 25 °C. The large threshold may partly be attributed to non-optimal etching depth of the 
ring waveguide32. For J/ < .J 1 3th , the ring laser operated on a bidirectional state of the CW and CCW modes. For 
larger J-value, a transition to spontaneous switching regime occurred.

Intensity adjustment. In the experiment, the PD couplings to the CW and CCW modes are not essentially 
equal to each other due to an imperfect device fabrication. In order to reduce the effect of the asymmetry of the 
PD-couplings and appropriately evaluate the decision-making performance, the CW and CCW intensities, ICW 
and ICCW, were adjusted by adding constant biases so that the occurrence probability is calibrated being around 
0.5 when = =J J 0 mA1 2 . This way would realize easy tuning of both intensities, while we should also note that 
there is another simpler way, which is to measure either of ICW or ICCW only and adjust the switching probability 
to 0.5 by bias currents J1 and J2 without the intensity biases.

Decision-making experiment. First, the BC1 and BC2 were connected to a standard current source. 
Discrete-valued electrical currents were applied to BC1 or BC2. Then, the CW and CCW optical intensity signals 
for different values of J1 and J2 were recorded by a digital oscilloscope. In the decision-making experiment, the 
slot machines were numerically simulated in the embedded signal processing unit in the oscilloscope using pseu-
dorandom numbers. The decision is immediately made based on the sampling. The controllers BC1 and BC2 were 
also connected to a two-channel function generator (Tektronix AFG3152C), which reconfigures the oscillation 
dynamics of the ring laser in an on-line or real-time manner.

Rate-equation model for semiconductor ring laser. The numerical simulation was conducted by using 
a set of dimensionless semiclassical equations for the two slowly varying complex amplitudes of CW and CCW 
waves, E1 and E2

32.

α ξ η= + − − +
dE

dt
i N E k E t(1 )[ 1] ( ),

(6)
1,2

1,2 1,2 1,2 2,1 1,2

ξ = − | | − | |s E c E1 , (7)1,2 1
2

2
2

where α accounts for phase-amplitude coupling, s and c are the self- and cross-saturation coefficients, and k1,2 
represents the complex backscattering coefficients. We model internal optical noises as complex Gaussian noise 
satisfying η〈 〉 = 0

i
 and η η δ δ〈 ′ 〉 = − ′⁎t t D t t( ) ( ) 2 ( )

i j ij  ( =i 1, 2). 〈 ⋅ 〉 represents the ensemble average, and D rep-

resents the noise strength. Carrier density N obeys the following equation:
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γ µ ξ ξ= − − | | − | |
dN

dt
N E E2 [ (1 )],

(8)1 1
2

2 2
2

where µ is the dimensionless pumping power (µ = 1 at the laser threshold). In the above equations, t is dimen-
sionless time rescaled by photon lifetime τp. γ is the ration of τp to carrier lifetime τs.

In Eq. (6), the asymmetric coupling caused by activating BC1 and BC2 is simply modeled as an asymmetric 
backreflection effect such that β=k kb1 1  and β=k kb2 2 , where kb denotes the backreflection coefficient when 
=C 0, and β1,2 denotes a dimensionless asymmetry parameter, depending on C as follows:

β β

β β

= + = ≥

= = − ≤

kC t C t

kC t C t

1 ( ), 1, if ( ) 0,

1, 1 ( ), if ( ) 0, (9)

1 2

1 2

where C(t) is updated by Eq. (2). This is the simplest model of the asymmetric backscattering, although a real 
asymmetry may be introduced in a more complex way in the actual experiment. We confirmed that regardless of 
the details of the asymmetry model, the control of spontaneous switching can be achieved. The detailed investi-
gation using more realistic model will be a future work.

In this study, we set some of the parameters as follows: α = . 3 5, = = .s c2 0 006, = . + .k i0 004 0 001b , 
= .k 0 025, = × −D 5 10 5, µ = .2 0, τ = 10 psp , γ = .0 01. With these parameter values, we obtained stochastic 

switching dynamics with the correlation time τ ≈ 13 nsc  when =C 0. In the decision-making simulation, we 
assume that the slot machines provide a reward without any time delay and use Eqs (2–4) and (6–9).
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