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Abstract—This paper presents experimental results from a
system that comprises a fully autonomous energy harvester
with a solar cell of 1 mm2 as energy transducer and a Power
Management Unit (PMU) on the same silicon substrate, and an
output voltage regulator. Both chips are implemented in standard
0.18 µm CMOS technology with total layout areas of 1.575 mm2

and 0.0126 mm2, respectively. The system also contains an off-
the-shelf 3.2 mm × 2.5 mm × 0.9 mm supercapacitor working as
an off-chip battery or energy reservoir between the PMU and the
voltage regulator. Experimental results show that the fast energy
recovery of the on-chip solar cell and PMU permits the system
to replenish the supercapacitor with enough charge as to sustain
Bluetooth Low Energy (BLE) communications even with input
light powers of 510 nW. The whole system is able to self-start-up
without external mechanisms at 340 nW. This work is the first
step towards a self-supplied sensor node with processing and
communication capabilities. The small form factor and ultra-low
power consumption of the system components is in compliance
with biomedical applications requirements.

Index Terms—Implantable devices, LDO, MPPT, on-chip en-
ergy harvesting, PMU, voltage reference generator

I. INTRODUCTION

Micro-energy harvesting has become an extended solution

for low maintenance, small size and battery-less systems,

such as implantable devices [1]–[3], wearable computing

[4] or smart dust wireless sensors [5]. Recent research has

demonstrated the solar micro-energy harvesting to be a viable

solution in the field [1], [2]. The classical approach of light

energy harvesting consists of an off-chip solar cell stuck over

a CMOS chip with a Power Management Unit (PMU) [1].

Nevertheless, by integrating the solar cell and the CMOS

circuitry on the same silicon substrate, a very small form factor

and reduced cost can be met [6]. This approach, however, leads

to several design challenges of the PMU. First, the scavenged

power can be as low as a few nW. This makes it difficult to

work without external control signals or start-up mechanisms
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Automática, Escuela de Ingenierı́as Industriales, Universidad de Extremadura,
Badajoz, Spain.

[6]. Second, it is hard to handle a wide input power range with

a significant energy efficiency [7]. As an example, the input

power for an on-chip solar cell of 1 mm2 varies from a few

nW to several µW for an illumination range from 100 lx to

100 klx [8]. This calls for an efficient PMU with Maximum

Power Point Tracking (MPPT) consuming nW and an ultra-low

power voltage regulation module in order to keep the overall

power budget of the system as low as possible.

A solution of a stand-alone sensing node comprises the

sensor, the harvester with an energy reservoir, a processing

unit and a wireless communication module. An intermediate

approach would contain the harvester with the energy reservoir

and the wireless unit to broadcast raw sensed data. A state-

of-the-art full-custom solution is the System-in-Package (SiP)

reported in [9], featuring standard Bluetooth Low Energy

(BLE) communication with an average transmit power of

724 µW and an ultra-low power system-on-chip (SoC) for

processing and harvesting consuming around 500 nW. The

harvester BLE chip reported in [10] works from 0.2 V in

transmitting mode. There are also off-the-shelf components

as the chip DA14580 from Dialog Semiconductor [11] with

current consumption of just 13.4 mA and 12.4 mA in receiver

and transmitter modes, respectively, from supply voltages of

0.9 V. All these data might make feasible that the energy

harvested by an on-chip energy transducer stored in an energy

reservoir suffice for an energy autonomous sensing node. This

is of utter importance in the context of biomedical applications,

where low footprint and maintenance are a must. In addition,

an energy transducer in standard CMOS technologies would

reduce the cost of an implantable device.

Our work aims at a harvester with an on-chip solar cell

and PMU on the same substrate in standard 0.18 µm CMOS

technology. This paper presents a PMU powered by a 1 mm2

on-chip solar cell fabricated on the same silicon substrate

capable of rising up the harvested voltage above 1.3 V while

driving an off-chip supercapacitor acting as an energy reservoir

as well as a voltage regulation module. The small form factor

and the absence of an external control of the proposed micro-

energy harvesting system are very suitable for implantable

devices. In particular, as a proof-of-concept application we

target implantable intraocular devices for which the eye cavity

dimensions limit the total size to roughly 5 mm × 5 mm ×

1.5 mm.

This paper is the follow-up of a previous work, namely,

the on-chip solar cell and PMU with unregulated output

voltage addressed in [12], [13]. The present work includes
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Fig. 1. Overview of the system containing a battery-less energy harvesting system consisting of an on-chip solar cell and a Power Management Unit (PMU)
connected to an off-chip battery acting as energy reservoir and a voltage regulator. The integration of the harverster and the MPPT blocks (in red) on the
same silicon substrate is the main novelty of the system. The boxes and components in green mark out the contribution with respect to previous work.

a voltage regulation module on a second chip featuring the

ultra-low power voltage reference introduced in [14]. As an

intermediate step towards a single chip with a PMU and an

output voltage regulator or a SiP solution, this paper conveys

an extensive set of experiments of both chips combined with

the add-on of an off-chip supercapacitor on the way to energy

autonomous ultra-low power sensing nodes with processing

and communication functionalities.

The paper is organized as follows. Section II gives an overall

description of the system with the two chips. Section III

addresses the PMU with the energy transducer. Section IV

explains the output voltage regulation. An extensive set of ex-

perimental results are collected in Section V. Finally, outlook

and conclusions are conveyed in Section VI.

II. OVERALL SYSTEM DESCRIPTION

Fig. 1 shows the proposed architecture, consisting of a

battery-less SoC composed of an on-chip solar cell and PMU

fabricated on the same silicon substrate presented in [12], [13],

connected to a voltage regulation module implemented on a

second chip. The main novelty of this work, highlighted in

red in Fig. 1, is on the integrated energy harvesting transducer

and MPPT approach. This is based on a look-up table that

takes into account the joint effect of the harvester’s photodiode

model at device level and the MPPT charge pump topology,

where the gain, the flying capacitors and the frequency of

oscillation are modified according to the incoming light. Also,

the outer green box means the combination of the harvester

chip and the voltage regulator, marking out the contribution

provided by previously unpublished experimental results, as

it is the case of the on-chip voltage regulator. The load and

the off-chip battery are external components needed to assess

the capacity of our system to self-supply energy for sensing

and communication. The voltage regulator is supplied by the

first chip and features an internal charge pump, a voltage

reference generator, [14], and a capacitor-less low drop-out

regulator (LDO). An off-chip supercapacitor that acts as an

energy reservoir or off-chip battery has also been included in

order to be able to handle load currents in the order of mAs.

The energy harvesting module consists of an on-chip solar

cell as the only power source of the whole system directly
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Fig. 2. Equivalent model of a photodiode as a solar cell.

connected to the PMU, with a total layout area of 1.575 mm2,

of which 1 mm2 corresponds to the photodiode used as solar

cell.

Differently from other energy harvesters based on power

transfer through RF or ultrasound sources [15]–[17], usually

a light energy harvester works in uncontrolled environments,

where the energy amount provided from the outside varies

widely. In implantable devices located in body areas exposed

to light, such as inside the eye or under the skin, despite the

high energy density provided by light in comparison with other

energy sources [18], this wide variation in the input power

is an issue which necessarily leads to design and technology

challenges in order to provide a low footprint system with a

long battery life. Some of the design challenges as ultra-low

power techniques and an energy efficient MPPT are tackled

in this paper. Nevertheless, we have not addressed technology

challenges like the inclusion of high density storage elements

such as buried capacitors in silicon. Also, from the system

and application perspectives, extensive experiments in indoor

and outdoor scenarios should be done to assess the lifespan

of the battery when charged by environmental light. Still,

harvested environmental light gives our system the possibility

of collecting energy without an external element, which will

be added only for RF communication purposes to transmit

data collected along a given time interval. Controlled light en-

vironments also exist, as it is the case of clinics for intraocular

pressure monitoring through tonometers in glaucoma patients,

which employ slit lamps with light intensities that can reach

200 klx.

The PMU features two operation modes, start-up and normal
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Fig. 3. State diagram of the power gating of the auxiliary and main oscillators and charge pumps across the different working regions (WRs) defined by our
MPPT approach.

operation. The PMU includes an auxiliary oscillator (Aux.

Osc.) driving an auxiliary charge pump (Aux. CP) that gener-

ates the voltage levels of both the control circuit and the main

charge pump switches. The main oscillator and charge pump

are OFF during the start-up process by means of power gating

to cut energy consumption. The auxiliary DC-DC converter

starts working when the voltage generated by the photodiode,

VPD, is high enough to switch on the auxiliary oscillator and

to trigger the self-start-up process, VPD = VSTUP = 0.17 V.

The output voltage of the PMU, Vout,PMU, is an unregulated

voltage provided by the main DC-DC converter.

The working principle of the PMU is based on a Maxi-

mum Power Point Tracking (MPPT) block which is always

connected to the solar cell and works in an open-loop and

continuous mode.

The voltage regulator has been designed to achieve very

low power consumption with a reduced size. It features an

on-chip low power voltage reference generator, [14], a charge

pump and a capacitor-less LDO, being the total layout area

of just 0.0126 mm2. The voltage reference circuit is directly

powered by Vout,PMU, while the LDO supply voltage is taken

as the output of the on-chip Dickson charge pump increasing

the unregulated PMU output voltage to a value of 3.3 V.

With the goal of achieving a fully autonomous and self-

powered system, an off-the-shelf off-chip supercapacitor was

connected to the output of the PMU in order to act as an

energy reservoir. We used the CPX3225A752D module from

Seiko Instruments with dimensions of 3.2 mm × 2.5 mm × 0.9

mm. The module implements an electric double layer capacitor

(EDLC) providing a low internal impedance of only 25 Ω and

low leakage current. This permits our solution to manage peak

load currents of the order of mAs without draining the system.

III. ENERGY HARVESTER AND POWER MANAGEMENT

UNIT

The system features a DC energy source, in particular, a 1

mm2 on-chip solar cell for energy harvesting purposes directly

connected to the PMU in order to save area. A photodiode

as solar cell is typically modeled by the circuit shown in

Fig. 2, [19]. This model features a current source Iph, and

a diode modeled as Id = Is(e
Vd/nVT

− 1), where Is is the

reverse saturation current, n is the diode ideality factor and

VT is the thermal voltage. Cph is the junction capacitance of

the photodiode. Rsh is a shunt resistance that accounts for

the manufacturing defects, and Rs is the series resistance that

models device contacts and connections. As reported in [8],

mixed circuit-device simulations for a P+ over P-well in N-

well over P-substrate during the design phase have allowed

us to estimate current levels in the order of tens of µA for

illumination levels in the order of tens of klx. Also, as shown

with experimental results, different photodiode configurations

with fingers of different pitch, and thus with different lateral

photocollection capacities, have been measured to choose the

best photodiode layout.

Concerning the PMU, its wide energy range from nW to

µW without external control signals or start-up mechanisms

is met with the combination of ultra-low power techniques

and a novel MPPT approach. Our MPPT is inspired by the

Fractional Open Circuit Voltage (FOCV) method, since the

maximum power point is tracked through the photodiode

voltage, VPD, [20]. However, in our approach we do not

measure the photodiode open circuit voltage but, instead, we

use a lookup table defined during the design phase to adjust the

gain and stage capacitance of the main charge pump, as well

as the frequency of the clock signals of both the auxiliary and

main charge pumps across five working regions (WR). This

lookup table was defined using a joint analytical model of both

the photodiode and the charge pump presented in a previous

work [8]. As a result, four level detectors have been used

to distinguish among five different working regions (WR1-

WR5) for the MPPT to cover the whole voltage range of the

photodiode. Their nominal trigger voltages were set to V0V25

= 0.25 V, V0V31 = 0.31 V, V0V37 = 0.37 V and V0V42 = 0.42 V

during the design phase.

One of the low power design solutions for the PMU is to run

power gating on both the auxiliary and the main oscillators and

charge pumps, as well as to keep the output of the auxiliary

charge pump VCP AUX limited across the WRs defined by
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Fig. 4. Open-loop and continuous MPPT working principle: 5 WR are defined
according to the illumination level (VPD). For each WR the gain and stage
capacitance of the main charge pump as well as the frequency of oscillation
of both the main and auxiliary charge pumps is modified accordingly.

the MPPT approach. This is done with the control block

implemented as a finite state machine event driven by the

photodiode voltage VPD, as illustrated in Fig. 3. As seen, VPD

triggers transitions between states, including the start-up of the

system when VCP AUX crosses the start-up threshold voltage

VSTUP, and where Aux CP and Main CP mean auxiliary

and main charge pumps, respectively. Different voltage level

detectors in the control block (see Fig. 1) have been designed

to match the incoming power light. As a consequence, slow

and low power detectors are used in low illumination, while the

opposite in high illumination. Also, voltage levels VL and VH

are set to separate start-up from normal operation and to run

power gating in the control circuit and the auxiliary and main

oscillators and charge pumps across WRs. Finally, it should

also be noted that level shifters are needed to provide voltage

levels compatible with the high voltages, e.g., VH = 2 V, used

in the control block.

The MPPT also modifies parameters in the auxiliary and

main oscillators and charge pumps. Nevertheless, as the aux-

iliary oscillator and charge pump are critical to start up from

a very low input power, their overhead power for programma-

bility is kept to a minimum. Thus, the power efficiency of the

PMU is mainly optimized in the main oscillator and charge

pump throughout the input light power span. Fig. 4 shows

the trend in different parameters of the main charge pump

across WRs. Fig. 5 shows the connection between the MPPT

block and the auxiliary and the main oscillators and charge

pumps. It includes a self-tuning current circuit implemented

with transistors in diode connection as reported in [13] and

biased by VPD, which is the power supply of the auxiliary

and main oscillator, and as such changes the frequency of the

auxiliary oscillator and performs a fine tuning of the frequency

of the main oscillator across WRs independently of the charge

pump topology by modifying their bias voltage.

The main DC-DC converter is based on a Dickson charge

pump with transmission gates as switches and with variable

gain and capacitance per stage, [12], [13]. As illustrated by

Fig. 4, capacitances and gain of the main DC-DC converter

are programmed for every WR according to the VPD voltage,

searching for the maximum load current ILMAX at a given

PMU output voltage, which in the case of the PMU as a

stand-alone chip had been designed as 1.1 V. This search is

Fig. 5. MPPT architecture.

carried out during the design phase with a joint analytical

model of photodiode and charge pump reported in [8]. Still,

the equivalent circuit model and the dynamic equation of the

charge consumed by the main charge pump implemented as

a Dickson topology [21] allows to understand the trend in its

gain, frequency and capacitance values displayed on Fig. 4 to

achieve the maximum charge or power efficiency according to

the incident light power.

On the one hand, a Dickson charge pump can be modeled

by an equivalent RC circuit model with parameters Req.Ceq

regardless of the driven load. The equivalent resistance Req is

given by [21]:

Req =
N

C.f
(1)

where C is the pumping or flying capacitance of every stage,

assuming all of them with the same value, N is the number of

stages, and f is the frequency of the two non-overlapping clock

signals of the charge pump. The equivalent Ceq is CT /3, with

CT being the sum of all flying capacitances. In our case, the

input to the main charge pump is the photodiode voltage, i.e.

VPD. Higher input power levels, and thus higher VPD voltages

mean a larger input current available. Equation (1) shows that

in order to provide the highest possible current to the load, a

charge pump with few stages N , as well as larger pumping

capacitances C and a higher clock frequency f is needed. This

matches impedances, leading to more power transfer from the

photodiode to the load.

On the other hand, the charge consumed by a Dickson

charge pump during the rise time of its output voltage Vout

from t = 0 until ttarget is formulated as [21]:

Q =
(

N + 1
)(CT

3
+ CL

)[

Vout

(

ttarget
)

− Vout

(

0
)]

+αCTVPD
ttarget
T

(2)

where CL is the load capacitance, and Vout(ttarget) and

Vout(0) are the settled and initial output voltages, α is a

technology dependent constant which accounts for the charge

drawn by the parasitic capacitances of the flying capacitors

of the charge pump, and T is the period of the two non-

overlapping clock signals.

The terms proportional to CL and CT of (2) mean the

charge transferred to the load capacitance CL and the charge

drawn by the charge pump, respectively, while the term

proportional to VPD is the charge consumed in the parasitic
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capacitances, which is wasted power, and as such it decreases

power efficiency. Low light power makes the charge wasted

in the parasitic capacitances larger in comparison with the

useful charge transferred to CL, thus, larger gains through

more stages N combined with a smaller CT and longer clock

periods T , and thus lower frequencies, lead to higher power

efficiencies. High light power allows for smaller gains, a larger

CT and higher frequencies. Also, larger gains for a higher

input light power, and thus, a higher VPD, would lead to

prohibitively high output voltages in the main charge pump,

decreasing power efficiency too. CAD simulations and an

upper limit for reconfigurability of the main charge pump

to keep PMU area low have led us to the next gains and

capacitances across WRs, namely, ×7 with 100 pF per stage

of the charge pump for WR1, ×6 with 200 pF for WR2, ×5

with 400 pF for WR3, ×4 with 600 pF for WR4 and ×4 with

750 pF for WR5. Finally, in terms of technology, capacitors

used for high illumination are made with PMOS transistors

(PCAPs) to shrink area, while the stages that are active for

low illumination are PCAPs and MIM devices connected in

parallel to reduce leakage currents.

Although (1) and (2) are fundamental design equations of

the main charge pump, the design procedure also accounts

for other circuits in the PMU. As an example, the search

for the optimum frequency of the two non-overlapping clock

signals of the main charge pump should include the power

of the oscillator that provides such signals. A first qualitative

argument to explain the frequency trend of Fig. 4 with the

charge pump and the oscillator is that higher frequencies

lead to higher dynamic power drawn by the oscillator and

at the gate of the charge pump switches. Low illumination

calls for low frequencies to support the power demanded by

the different PMU circuits. The design methodology followed

in this work was to make use of the joint analytical model

introduced in [8] combined with CAD simulations of all

circuits in the PMU.

An additional low power mechanism in the main charge

pump is the inclusion of high gate voltages in its switches

to decrease resistive losses. In so doing, we implement level

shifters driven by the level detectors of the MPPT block.

Details of such level circuits are found in [13].

The auxiliary charge pump is a Pelliconi circuit [22] of 8

stages with NMOS transistors in P-well as diodes to avoid the

substrate effect and increase the efficiency of the converter, and

thus, that of the start-up phase. The capacitors are implemented

with MIM structures to maintain low leakage currents. As

stated above, the converter has a fixed gain and capacitance

per stage in order to keep power consumption low and start up

from as low an illumination as possible, so as shown in Fig. 5,

the frequency of the clock signal is the only way to adjust the

output power of the converter according to the illumination.

In terms of circuit implementation, the main and auxiliary

oscillators are relaxation oscillators based on [23]. Both of

them are free running oscillators without any specific start-up

mechanism. Also, both of them share two solutions to change

their frequencies; through the change of their power supply,

i.e., VPD, and through a fine adjustment with a biasing voltage

that sets an internal current in both circuits. This biasing
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Fig. 6. Architecture of the voltage regulator module composed of a reference
voltage generator, a charge pump and an LDO.

voltage is the voltage generated by a cascode topology of

transistors in diode mode supplied by VPD too, providing a

current range from 50 pA for VPD = 0.2 V up to 4 nA for

VPD = 0.5 V. These two solutions make the frequency of

both oscillators change in an increasing monotone sequence

across WRs. Additionally, the frequency of the main oscillator

changes in discrete steps by selecting five different capaci-

tance values in a capacitor bank according to the WR. As

a consequence, the resultant frequency of the main oscillator

varies continuously from 100 Hz to 150 kHz. The frequency

of the auxiliary oscillator changes in the range of 1.5 kHz to

500 kHz. Finally, the trigger voltage of every level detector

of the MPPT block is set by a PMOS cascode structure [24].

These voltages (V0V25, V0V31, V0V37, or V0V42) are defined by

adjusting the dimensions of transistors with different threshold

voltages. Further details of all these circuits can be found in

[13].

IV. VOLTAGE REGULATION MODULE

The energy harvesting with PMU described in the previous

section provides an unregulated output voltage, Vout,PMU. In

this section we describe a voltage regulation module aiming

at providing a target regulated output voltage of Vout,reg =

1.3 V. The voltage regulation module considered in this case,

depicted in Fig. 6, includes a classical capacitor-less LDO

architecture consisting of a pass transistor, Mpass, an error

amplifier (EA) and a feedback network, transistors Mparti

(i = 1, 2, ..., 5). It also features a charge pump and a reference

voltage generator. For the LDO, an NMOS pass transistor has

been chosen as stability requirements are less stringent and it

shows better Power Supply Rejection (PSR) than their PMOS

counterpart, [25]. In order to accommodate large load currents

using an NMOS pass transistor, sufficiently large voltages

are needed at the gate of Mpass. For this reason, we have

incorporated a 3-stage Dickson charge pump, shown in Fig. 7,

to increase the supply voltage of the error amplifier to a value

of Vout,CP = 3.3 V, with the input voltage of the charge pump,
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Fig. 8. Circuit schematic of the LDO error amplifier.

being the output of the PMU, Vin,CP = Vout,PMU. The switches

have been implemented using transmission gates. The output

voltage neglecting the losses due to the switches capacitances

can be calculated as (3),

Vout,CP = 4Vout,PMU − (Vth1 + Vth2 + Vth3 + Vth4) (3)

where Vth1, Vth2, Vth3 and Vth4 are the threshold voltages of

transistors MCP1, MCP2, MCP3 and MCP4 in Fig. 7, respectively.

The error amplifier has been implemented using a folded-

cascode structure with a PMOS differential input pair, Fig. 8.

The amplifier dominant pole, wEA, is located at the output node

due to both its high impedance and the relatively large output

capacitance, which corresponds to the parasitic capacitance of

the pass transistor Mpass and to capacitor Cfpass, and coincides

with the LDO dominant pole, wLDO. The frequency of the

dominant pole can be calculated as,

wEA = wLDO =
1

Rout,EA Cpass

(4)

with Cpass being the capacitance between the gate of the pass

transistor and ground and Rout,EA the output impedance of the

error amplifier,

Rout,EA =

(

roMN2 roMP2

roMN2+roMP2
gmMN4 roMN4

)

(roMP6 gmMP4 roMP4)
(

roMN2 roMP2

roMN2+roMP2
gmMN4 roMN4

)

+ (roMP6 gmMP4 roMP4)

(5)

The non-dominant pole at the output of the LDO can be

calculated as

wout,LDO = −

gmpass + gopass + gL + gpart

CL + Cgspass + Csdpass

(6)

where gmpass and gopass are the transconductance and the

inverse of the drain source resistance of the pass transistor,

respectively, gL is the load conductance, gpart the conductance

Vout, PMU

M3

M4

Vbody

M1

M24

M23

M22

M21

Mf

Cf

CS

MS1

MS2

Vref Vout,ref

Vref Core Passive Filter Speed-up circuit

Fig. 9. Circuit schematic of the voltage reference generator.

of the voltage divider formed by transistors Mparti, CL the

load capacitance and Cgspass, Csdpass the gate source and source

drain capacitances of the pass transistor. As the value of both

gmpass and gL decreases for small load currents, which would

move the frequency of the output pole close to that of the

dominant pole and cause stability problems, the voltage divider

formed by transistors Mparti has been dimensioned as to ensure

a minimum current consumption of approximately 100 pA at

the target value of Vout,reg = 1.3 V to guarantee the stability of

the LDO. The biasing voltages of the error amplifier, Vbias1 and

Vbias2, are taken from the voltage reference generator shown

in Fig. 9.

The voltage reference circuit uses only regular transistors in

standard 0.18 µm CMOS technology and has been developed

for its application in body implantable devices [14]. The main

objectives are to achieve a very low power consumption,

low process sensitivity and good PSR, disregarding temper-

ature dependency because in this context the temperature

will remain approximately constant and equal to 36◦ C. It

is composed of a Vref core, a passive RC low-pass filter

and a speed-up circuit. The core of the reference voltage

generator does not have a feedback loop. Transistors M3 and

M4 at the left branch are series connected and generate a

control voltage Vbody. At the right branch, transistors M1 and

M2i are also series connected and generate an output voltage

Vref. The stacked diode connected transistors M21, M22, M23,

M24 are used to obtain a higher reference voltage without

increasing the current level through the right branch. Thus,

the left branch controls the right branch through voltage Vbody,

but there is no implicit feedback loop. The Mf transistor and

Cf capacitor form an RC low-pass filter to improve high

frequency PSR of the voltage reference as seen in [26]. In

addition, a speed-up mechanism has been added given that due

to the low current flowing through M1 to maintain low power

consumption and the high resistance of the filter transistor Mf ,

the time necessary to charge Cf capacitor can be excessively

large, resulting in a high settling time. To minimize this effect,

a simple speed-up circuit is proposed, which injects charge on

the output node when the supply voltage is connected and

switches off once the voltage Vout,ref settles. The speed-up

circuit consists of transistors MS1 and MS2 and capacitor CS .

When the supply voltage goes from 0 to Vdd, with Vdd =
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Vout,PMU, the gate voltage of MS2 reaches a value close to Vdd

causing a voltage increase in Vref due to the current through

MS2. Then, CS capacitor is charged across MS1 decreasing

MS2 gate voltage while MS1 gate voltage increases cutting off

MS2 and isolating the output node from Vdd. The aim of the

speed-up circuit is simply to enhance the switching-on time

of the output voltage and plays no role in setting the circuit

operating point.

V. EXPERIMENTAL RESULTS

The proof-of-concept system is composed of two chips,

shown in Fig. 10 and an off-chip supercapacitor for energy

storage. The first chip was fabricated in standard 0.18 µm

CMOS technology and includes the solar cell and the PMU

with a form factor of 1.575 mm2 plus additional structures for

testing purposes. Fig. 10(a) shows a microphotograph of the

5 × 5 mm2 chip marking the position of the device under

test considered in this work. The solar cell considered is

a 1 × 1 mm2 photodiode with fingers of 1 µm pitch. The

generated voltage of such on-chip photodiode is in the range

[0.27, 0.46] V for an illumination span of 100 lx to 100 Klx,

and a harvested power between 3.7 nW and 8.3 µW for the

same illumination range. The second chip, fabricated in the

same 0.18 µm CMOS technology is shown in Fig. 10(b).

It includes the voltage regulation module and is powered by

the unregulated output voltage of the first chip, Vout,PMU. The

experimental setup is shown in Fig. 11. A regulated lamp

is used to illuminate the system. The illumination level is

controlled by modifying the supply voltage of the lamp and

the distance to the chip. The TES 1332 digital lux meter was

used to measure the illumination level. For the visualization

of the signals, a Tektronix MDO4034C oscilloscope was used.

In addition, two Keithley SMUs from the 2400 series were

used for obtaining the experimental data. The measurement

process was automatized using a data acquisition board (DAQ)

controlled by NI LabVIEW software.

As shown in [27], the lateral collection of photons by a

photodiode might increase the photocurrent. Several photodi-

ode configurations with fingers of different pitch to split our

whole P+ over P-well in N-well over P-substrate photodiode

of 1 × 1 mm2 in several sections have been included on the

chip with the PMU to this end. Fig. 12 shows that a separation

between fingers of 1 µm leads to the best power efficiency.

Thus, this is the configuration used for all measurements

below. Fig. 13 conveys the power generated by the photodiode

vs its voltage for different light illuminations.

To measure the power efficiency of the whole system,

the two chips were connected directly without the off-chip

capacitor. The experimental end-to-end efficiency is defined

as Pout

Pmpp
where Pout is the output power at the target value of

Vout,reg=1.3 V and Pmpp is the maximum power generated by

the photodiode at a given illumination. To measure Pmpp one

of the SMUs was connected at the output of an isolated on-

chip solar cell identical to the one connected to the PMU

and fabricated as a test structure on the same chip due to

the impossibility of simultaneously measuring and using the

collected energy. The other SMU was connected at the output
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Fig. 10. Microphotograph of the (a) energy harvesting with PMU SoC, and
(b) volage regulation module.
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Fig. 11. Experimental setup of the system under test.
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for 5 different samples of the voltage regulation chip for a fixed harvester/PMU
SoC.

of the second chip to measure Pout. Fig. 14 shows the experi-

mental efficiency of the whole system for 5 different samples

of the voltage regulation module for a fixed harvester/PMU

SoC. The dispersion among different chips is kept low. The

peak efficiency of the system reaches 56.03% at 2.41 µW

of output power. This value remains very close to that of the

PMU alone, which was measured as 57% at 2.07 µW of output

power. For low and medium illumination levels the efficiency

drops to around 20%-40%. The peaks seen on the efficiency

curve were also found on the experimental response of the

unregulated system and are attributed to the transition between

different working regions of the MPPT approach, [13].

A second set of measurements with the PMU directly con-

nected to the regulation module without an external capacitor

was performed in order to assess the range of load currents

that can be endured while maintaining the regulated output

voltage at Vout,reg = 1.3 V. In this case, a variable current

drain was connected at the output of the system in order

to account for the different load currents. The experimental

results are shown in Fig. 15 for different illumination levels

corresponding to different generated input powers at the on-

chip solar cell, Pmpp. As expected, the larger the illumination

input power, the wider the range of current loads that can
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Fig. 15. Measured regulated output voltage as a function of the load current
for different illuminations corresponding to different generated input powers
at the on-chip solar cell, Pmpp, without the off-chip storage capacitor.

0 0.5 1 1.5 2 2.5 3

Current[A] 10
-6

0

0.2

0.4

0.6

0.8

1

1.2

1.4
V

o
lt
a

g
e

[V
]

P
mpp

= 5.51 W

Chip LDO 1

Chip LDO 2

Chip LDO 3

Chip LDO 4

Chip LDO 5

Fig. 16. Measured regulated output voltage as a function of the load
current for 5 different samples of the voltage regulation module for a fixed
harvester/PMU SoC for an input power of 5.51 µW and without the off-chip
storage capacitor.

be served by the system. With respect to process variations,

Fig. 16 shows the experimental results for 5 different samples

of the voltage regulation module for a fixed harvester/PMU

SoC. The input power considered in this case was 5.51 µW

and, as can be seen, measured process variations are minor.

In order to assess the capacity of the system to act as the

power supply of a complete biomedical implantable device we

connected as an energy reservoir the CPX3225A752D super-

capacitor at the output of the unregulated energy harvesting

chip as shown in Fig. 17. This capacitor provides the system

with an energy reservoir of Cstorage = 7.5 mF featuring a low

internal impedance of 25 Ω and a leakage current about 10 nA.

A variable resistor is connected at the output of the system to

represent changing load currents of different magnitude and
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Fig. 17. Configuration of the experimental setup for the measurement of the
transient behavior of the complete system under changing load current pulses
of different magnitude and duration.

duration. This resistor is connected and disconnected from the

output to analyze the transient behaviour of the system under

different conditions using the commercial switch TS5A23166

(RON = 0.9 Ω). The control of this switch is implemented with

a data acquisition board and LabVIEW. The initial conditions

were set to Vout,PMU = 1.7 V, that is, the initial voltage at the

supercapacitor, Cstorage. A voltage pulse of a duration of 60 ms

was applied at time t = 20 ms to connect the voltage regulator

to different current loads ranging from 17 µA to 2.76 mA. To

generate these load currents, the value of the load resistor, RL

was varied from RL= 100 kΩ to RL = 470 Ω, considering an

initial value of Vout,reg = 1.3 V. Fig.18 shows the measured

time response of the whole system for an input power of

5.51 µW. As seen, the system is capable of maintaining the

target regulated voltage of 1.3 V at the output of the system

up to load current demands of 2.76 mA (RL = 470 Ω), as in

this case the output voltage drops to 1.29 V. Also, the storage

capacitor recovers to the initial voltage after a short transit

time. The same behavior can be observed for input powers as

low as 510 nW, as shown in Fig. 19. To contextualize these

numbers, the voltage drop at the storage capacitor, Vout,PMU

during the pulse duration of 60 ms in Fig. 18 represents a

drained charge of approximately 1.5 mC, roughly four orders

of magnitude higher than the charge consumed for an average

transmit power of 724 µW assuming a constant voltage of

approximately 1 V in [9], which makes it compatible with the

BLE standard.

In [13], the minimum input power needed for the PMU

alone to be able to start up was experimentally determined to

be 2.38 nW. To do so, an SMU was connected to an isolated

solar cell identical to the one connected to the PMU and

fabricated on the same chip in order to obtain the PV curve.

A second SMU was connected to the output of the PMU.

It was experimentally determined that the PMU working in

WR1 was able to start up from an input power of 2.38 nW

charging an external capacitor at a voltage higher than 1.1 V.

Following the same procedure, we determined the minimum

self-startup input power of the whole system composed of the

harvester and the regulator modules. In order to make a fair

estimation of this startup power, a minimum load current of 50
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Fig. 18. Experimental dynamic behavior of the whole system when different
load currents are applied at time t= 20 ms for a duration of 60 ms considering
an input power of Pmpp=5.51 µW.
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Fig. 19. Experimental dynamic behavior of the whole system when different
load currents are applied at time t= 20 ms for a duration of 60 ms considering
an input power of Pmpp=0.51 µW.

nA was considered as representation of the quiescent current

corresponding to an implantable device potentially connected

to the output of the system. In addition, the off-chip battery

of 7.5 mF was replaced by a smaller capacitor of 100 nF

in order to speed up the charging process as for these very

low illumination levels charging the 7.5 mF would take hours.

The results are summarized in Table I, showing the maximum

voltage reached by the storage capacitor for different input

powers, and their associated rising times. As it can be seen,

the minimum input power required is 340 nW.

Table II conveys the performance metrics of our system and

a comparison with the state-of-the-art of integrated energy-

harvesting systems. As in our case, the work in [6] is the only

one that integrates both energy transducer and PMU on the
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TABLE I
EXPERIMENTAL DETERMINATION OF THE MINIMUM INPUT POWER FOR

SELF-STARTUP OF THE WHOLE SYSTEM WITH LOAD CAPACITOR OF 100 NF

Pmpp (nW) Vout,PMU (V) Rising Time (s)

100 0.534 5.617

200 0.98 6.729

300 1.137 2.605

340 1.349 6.72

400 1.392 3.006

500 1.467 2.811

600 1.507 1.805

700 1.541 1.733

same silicon substrate. Nevertheless, this work lacks MPPT

and output regulation. The work addressed in [3] aims at

implantable devices. It is focussed on the range of nW of

input power, and it does not feature MPPT and output voltage

regulation. The work in [28] integrates a charge pump and

MPPT featuring a very high end-to-end peak energy efficiency

at 72%. Their cold start-up, however, needs an input voltage

and power consumption around 1 V and 5.9 µW, respectively.

Both, the PMU alone and our system with the PMU and

the regulator feature cold start-up from 2.38 and 340 nW,

respectively. The work in [7] manages an input power range of

20 pW to 1.5 µW without output voltage regulation and cold

start-up, and with a peak efficiency of 50% at 8 nW. Finally,

the work in [29] is our main contender. This harvester includes

the width modulation of the switches in the charge pumps as

an extra dimension to change through MPTT. The input power

range of [29] is estimated from the data on output power and

the end-to-end efficiency provided in the paper. This results in

a wide input power range from 160 nW up to above 300,000

nW, with a peak efficiency of 88% for a load of 200,000 nA.

The idea of channel width modulation could be incorporated

into our design by laying out several switches in parallel in

the auxiliary and main charge pumps with their accompanying

programming signals, improving our end-to-end efficiency.

Also, the minimum cold start-up energy would decrease with

PMU and voltage regulator on the same silicon substrate.

Finally, more recent approaches for DC energy inputs like

the one reported in [30] designed for thermoelectrics include

self-start-up from several µA of input current, reaching a high

peak efficiency of 84% through external inductors.

VI. CONCLUSIONS

This work presents experimental results of a low-power

energy harvesting system composed of a micro solar cell of

1 mm2 and PMU on the same chip connected to a voltage

regulation module to provide a regulated output voltage of 1.3

V. Both chips are implemented in standard 0.18 µm CMOS

technology. The system also contains a supercapacitor of 7.5

mF between the PMU and the regulator. Experimental results

show that the fast energy recovery of the PMU allows to

replenish the supercapacitor with enough charge as to sustain

Bluetooth Low Energy (BLE) communications even with input

light powers as low as 510 nW. The whole system is able to

self-start-up without external mechanisms at 340 nW. Future

work will be focused on laying out PMU and output voltage

regulator on the same substrate, as well as on incorporating

channel width modulation towards ex-vivo experiments.
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