
On-chip Stimuli Generation  

for ADC Dynamic Test by ΣΔ Technique 

Shakeel Ahmad and Jerzy Dąbrowski 

Department of Electrical Engineering  

Linköping University 

581 83 Linköping, Sweden 

e-mail: {shakeel, jdab}@isy.liu.se 

 

 

Abstract—This paper presents application of the ΣΔ modulation 

technique to the on-chip dynamic test for A/D converters. The 

wanted stimulus such as a single- or two-tone signal is encoded 

into one-bit ΣΔ sequence, which after simple low-pass filtering is 

applied to the circuit under test with low noise and without 

distortion. In this way a large dynamic range is achieved making 

the performance harmonic- and intermodulation dynamic test 

viable. By a systematic approach we select the order and type of a 

ΣΔ modulator, and develop the frequency plan suitable for 

spectral measurements on a chip. The technique is illustrated by 

simulation of a practical ADC under test.  

Keywords—Stimuli generation; on-chip test; ΣΔ modulation  

I.  INTRODUCTION  

With increased complexity of the contemporary ICs the 

mixed-signal test is becoming more cumbersome and costly. 

Production test techniques using test access points are often 

limited by chip performance, area overhead, and cost of the 

test instrumentation. For this reason design-for-testability 

(DfT) and built-in-self-test (BiST) techniques for mixed-signal 

ICs have been around for the last decade [1]. With the advent 

of embedded processors the mixed-signal/RF BiST on a chip 

has become viable. However, the practical implementations 

are still a challenge [2]. 

In this paper we address the on-chip stimuli generation, 

essential for BiST. The spectral purity and high SNR of the 

generated signals are the main objectives. Spectrally pure 

stimuli can be derived from 1-bit sequences using modulation 

techniques like PWM [3] or ΣΔ [4] implemented in software. 

In this case the D/A conversion can be achieved by simple 

low-pass filtering thus avoiding nonlinear distortions. In PWM 

approach the inherent high frequency components related to 

the PWM carrier frequency fc , can be suppressed effectively 

with a passive analog filter. However, the associated 

quantization noise undergoes folding and the resulting FFT 

noise floor is proportional to fc/(Nfclk), where N is the FFT 

length and fclk stands for the clock (sampling) frequency of the 

system. A satisfactory noise floor level can be achieved at the 

expense of a large value of the product Nfclk since the carrier fc 

must be (at least) by one order of magnitude larger than the 

frequency of the encoded signal, f0. Pushing fclk to practical 

limits, say in a GHz range, might not be sufficient resulting in 

long FFT sequences that claim more test time. 
To alleviate the problem the noise shaping technique based 

on ΣΔ modulation can be used as proposed in [4]. The 
quantization noise floor is largely reduced in this way 
providing a large dynamic range for spectral measurements. 

Here, we investigate different variants of the ΣΔ modulation in 
terms of the dynamic test especially for high performance A/D 
converters. For this purpose we specify the frequency 
measurement bands, and by a systematic approach choose the 

stimuli frequencies and select the order and type of a ΣΔ 
modulator suitable for spectral measurements. The harmonic- 
and intermodulation distortion measurements (HD# and IM#) 
are the primary concern in this case. By careful frequency 
planning a possible masking of spurious tones in the test 
response is avoided. We show that with a reasonable overhead, 
i.e. using moderate values of N and fclk, high dynamic range 
measurements are viable. The method is validated by 
simulation of a practical ADC under test where the limitations 
due the ADC quantization effects are revealed. Especially the 

frequency selective measurements using band-pass ΣΔ-encoded 
stimuli are limited in this way. 

II. STIMULI ENCODING AND DYNAMIC RANGE 

Consider a 1-bit signal from a low-pass ΣΔ modulator. If it 

is software generated its whole noise is the quantization noise. 

For the generic model of L-th order modulator the discrete 

noise transfer function is given by [5]: 

( )LzzNTF 11)( −−=  (1) 

Consequently, the power spectral density of the quantization 

noise can be estimated from: 

( ) )()(
2

/2
fSeNTFfS n

ffj
q

Sπ=  (2) 

where )12/()( 2
Sn ffS Δ=  is assumed constant over the 

Nyquist band, Δ is the quantizer resolution and fS is the 

sampling (or clock) frequency. When using FFT with spectral 

resolution Δf the resulting noise floor can be expressed as: 
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Fig. 1. ΣΔ encoded tone spectrum (L=2) 
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For large oversampling ratios the noise floor (3) can be 

calculated as: 
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where N is the FFT length and Δf = fS /N is the spectral 

resolution. As seen, the noise floor is mostly affected by the 

oversampling ratio and the modulator order.  

For the purpose of spectral measurements we can define the 

dynamic range DR(f) using –3 dB FS ΣΔ-encoded tone with 

amplitude Δ/(2√2) (to avoid overloading): 
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which in a more practical dB scale is: 

dB2.1log1016log20)( −+−≅ NL
f

f
LfDR S  (5b) 

For comparison a spectrum of ΣΔ-encoded tone (–3 dB FS) is 

shown in Fig. 1 (L = 2 and N = 8192). To avoid spectral 

leakage the signal frequency is chosen to fit one FFT bin. The 

discrepancy between the spectrum expected from (4–5) and 

the simulated spectrum can be attributed to the linear scaling 

effect of the quantizer gain and the randomness of the 

quantization noise [5, Ch. 4.2]. To reduce the noise leakage 

effect and achieve a better match between the simulated- and 

the theoretical spectrum, windowing can be used. In Fig. 2 the 

FFT spectrum of the same signal with Hann window is shown. 

In this case the spectral resolution is Δf = 3fS /(2N) so the 

estimate (5) is corrected accordingly (by subtracting 1.76 dB).  

The above results show that stimuli encoded by 1-bit low-

pass ΣΔ are well suited for spectral test at lower frequencies, 

where a high dynamic range is achieved. When the modulator 

order is increased by 1 the DR(f) is expected to improve by 

20log(fS/f)–16 dB, but in practice it is much less because of the 

quantization noise leakage in FFT.  

10
-3

10
-2

-160

-140

-120

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 (

d
B

fs
)

Normalized Frequency
 

Fig. 2. ΣΔ encoded tone windowed spectrum (L=2) 

 

 Before a 1-bit stimulus is applied to the circuit the high 

frequency spectral components must be effectively suppressed 

with a low pass linear filter (reconstruction filter) with cut-off 

frequency above the encoded signal. In practice, it can be a 

simple passive RC filter integrated on a chip. When harmonic 

distortions are to be measured using this stimulus, they will 

experience increasingly higher noise floor. Specifically, by 

using L-th order encoded signal and a 2nd order low-pass filter 

the noise floor would rise by 20(L–2) dB/dec of frequency. So 

the 2nd harmonic would suffer from 6(L–2) dB higher noise 

floor than the fundamental, and the 3rd harmonic 9.5(L–2) dB, 

respectively. Since for performance measurements L = 3,… 5 

would be preferred while the filter order might be still 2, this 

increase of the noise floor can largely reduce the dynamic 

range and even obscure the harmonic distortion measurement. 

Obviously the frequency range below the fundamental appears 

more attractive. To make use of it the harmonic test can be 

replaced by the 2-tone intermodulation test. 

A two-tone stimulus encoded by 2nd order modulator is 

considered as an example. To avoid overloading of the 

modulator the tones are set Pin = –12 dB FS each and the 

stimulus after going through a low-pass filter (2nd order) is 

applied to a generic weakly nonlinear block defined as 
3
ininout xaxx −=  where a = 10

–3
. In the spectral response 

shown in Fig. 3 one of the intermodulation tones is well seen 

some 20 dB above the noise floor while the other nonlinear 

components are obscured. The 3rd order intermodulation 

distortion is evident, IM3 ≅ –87 dB and it is close to the 

predicted value IM3 = 20log(3a/4) + 2Pin ≅ –86.5 dB. 

Observe that when the measurement frequency f is moved 

by one octave up the noise floor will be higher by 6L = 18 dB 

and the IM3 tone will be obscured. The frequency limit 

imposed on the measurement band including 6 dB reserve can 

be derived from the condition: 

6)(3)( −+< fIMPfP inq  dB (6) 

which by using (5) can be rewritten as: 

dB8.0
20

2.16log10)(3
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<
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f

S

 (7) 

where we assumed Pin = –12 dB FS. Having specified the IM3  
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Fig. 3. Two-tone test response using LP ΣΔ with L=2  

 

measurement range the frequency upper bound fmx/fS can be 

estimated with respect to the modulator order and FFT length. 

In a design perspective when we also specify the frequency 

upper bound the modulator order L can be estimated vs. N as 

shown in Fig. 4 where we assumed the IM3 range 100 dB. For 

example, for fmx/fS = 0.01 and L = 3 the required N  ≥ 2
15

 but 

for fmx/fS = 0.005 and L = 3 only N  = 2
9
  is sufficient. 

III. FREQUENCY SELECTIVE MEASUREMENTS 

By using band-pass ΣΔ modulation the quantization noise 

stop-band can be placed at any non-zero frequency f0 < fS/2 

that makes spectral measurements at higher frequencies viable. 

A high dynamic range DR(f0) is achieved by notch-shaped 

transfer function with zero-gain at f0. In fact, DR(f0) is limited 

by the FFT noise leakage which largely elevates the noise 

floor in the stop-band (Fig. 5).  There is no simple analytical 

model to quantify this effect. In practice the DR(f0) of the 4th 

order BP ΣΔ is comparable with DR(f) of the 2nd order LP ΣΔ 

for frequencies close to zero. By increasing the modulator 

order from 2 to 4 the noise floor at f0 drops by almost 60 dB.  

The BP ΣΔ encoding can be used both for the harmonic and 

intermodulation distortion test with the measurement band at 

f0. The frequency test plan depends on the reconstruction filter 

used to suppress spectral replicas of the stimulus. To achieve 

≥  40 dB attenuation with 2nd order filter, a span of at least 

one decade between the test tone and its first FFT replica is  

 

10
-3

10
-2

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 (

d
B

fs
)

Normalized Frequency
 

Fig. 5. Tone stimulus encoded by 2nd and 4th order BP ΣΔ  
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Fig. 4. Modulator order vs. FFT length for different measurement bands 

 

required. To measure the kth
 
harmonic the tone stimulus 

should be placed at f0/k so we have: 

( ) kfkfkffS 000 10>−−  (8) 

which means  f0/fS  < k/12  where f0/k should fall in one FFT 

bin. For example, for 2nd order harmonic distortion HD2 test 

we can choose f0/fS  = 2/16 and  f1/fS  = 2/32, accordingly. This 

frequency plan is used to measure HD2 response of a generic 

nonlinear block defined as 2
ininout xaxx −=  with a = 10

–3
 as 

shown in Fig. 6. The simulated HD2 ≅ –73 dB while the 

predicted value would be HD2 = 20loga – 6 + Pin ≅  –72 dB. 

For the intermodulation test a similar frequency plan can be 

derived. For two tones at f1 and f2 (where f1 < f2 < f0) we find 

f2/fS  < 1/12 and  f0 = 2 f2 – f1. 

IV. APPLICATION EXAMPLE 

We consider a 10-bit time-interleaved ADC with 1 GHz 
sampling frequency in a test setup shown in Fig. 7 [4]. The test 
at low frequencies will be completed by the two-tone stimulus 

encoded by LP ΣΔ. As the expected SNRmx of this ADC would 

be 6×10 + 1.76 dB then the corresponding DR would be SNRmx 

+ 10log(fS /(2Δf)) where Δf is the FFT spectral resolution. For N 

samples with the Hann window we achieve DR* ≅ 61.8 + 
10log(N/3). Using two-tone stimulus with Pin = –12 dB FS the 

IM3(f) range can be taken as –(DR* + Pin) ≅ –10logN – 45 dB. 
When substituted to (7) including 10 dB reserve for the noise  
 

10
-2

10
-1

-140

-120

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 (

d
B

fs
)

Normalized Frequency
 

Fig. 6. HD2 test with BP ΣΔ-encoded stimulus 
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Fig. 7. Test setup with stimulus stored in cyclic memory. 
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Fig. 8. ADC two-tone response for IM2/IM3 test. 

 

leakage effects it gives: 

( ) dB8.0202.71log −−< Lff S  (9) 

Choosing L = 3 or L = 4 we find the measurement band 

 f < 0.01fS or f < 0.02fS, respectively. Moreover, in the 

frequency plan we have to avoid a potential interference 

between IM3 and IM2 tones which appear at (2f1–f2) and  

(f2–f1), respectively. Hence, we infer that f1/f2 ≠ 2/3 should be 

satisfied.  

In Fig. 8 the IM2/IM3 test of the ADC is shown for L = 3 

where fIM2 = 2 MHz and  fIM3 = 10 MHz. A 2nd order LP filter 

with fT = 30 MHz is used. For comparison a response to the 

noiseless two-tone signal is also shown. The achieved 

accuracy for IM2 and IM3 is better than 1 dB.  

Going towards higher frequencies as required for HD# test 

we use a 4th order BP ΣΔ-encoded tone. For the tone at 

50 MHz the notch at f0 = 100 MHz is used to measure HD2 as 

shown in Fig. 9. The cutoff frequency of the reconstruction 

filter is 80… 120 MHz. The measurement accuracy of HD2 is 

as in the IM2/IM3 test.  

In a similar way a notch placed at f0 = 150 MHz should 

enable the HD3 measurement. In this case however, the 

stimulus noise power is increased at low frequencies, 

degrading SNR at the ADC input. The ADC tends to spread 

the noise uniformly in frequency and the notch tends to vanish 

as shown in Fig. 10. Using a more efficient LP filter or a 

higher order BP ΣΔ which offers a deeper notch at f0 does not 

help in this respect. This is unlike the model demonstrated in 

Fig. 6 where the notch is not affected. We observed that an 

ADC under test can preserve the notch for f0 > 0.1fS when 

SNR is improved by noise shaping introduced also at low 

frequencies. 
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Fig. 9. ADC harmonic response for HD2 test 
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Fig. 10. ADC harmonic response for HD3 test 

 

V. CONCLUSION 

By using 1-bit ΣΔ modulation, spectrally pure stimuli with a  
high dynamic range can be generated. In this way ADC 
dynamic test such as HD# or IM# can be carried out in a simple 
setup. The FFT artifacts can be avoided by careful frequency 

planning both for low- and band-pass ΣΔ encoding technique. 
The latter enables spectral measurements also at higher 
frequencies taking advantage of notch-shaped stimuli spectra. 
However, when the notch frequency goes up the unfiltered 
portion of the quantization noise tends to decrease SNR which 
ultimately appears a hindrance for the ADC test in this case. A 
noise shaping which is more sophisticated than offered by 

standard LP or BP ΣΔ technique is required in this case that we 
consider as a direction for the future work.  
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