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Summary: Metamaterials with a refractive index of zero exhibit physical properties such as 

infinite phase velocity and wavelength. However, there is no way to implement these materials on 

a photonic chip, restricting the investigation and application of zero-index phenomena to simple 

shapes and small scales. We designed and fabricated an on-chip integrated metamaterial with a 

refractive index of zero in the optical regime. Light refracts perpendicular to the facets of a prism 

made of this metamaterial, directly demonstrating that the index of refraction is zero. The 

metamaterial consists of low-aspect-ratio silicon pillar arrays embedded in a polymer matrix and 

clad by gold films. This structure can be fabricated using standard planar processes over a large 

area in arbitrary shapes and can efficiently couple to photonic integrated circuits and other optical 

elements. This novel on-chip metamaterial platform opens the door to exploring the physics of 

zero-index and its applications in integrated optics. 
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Introduction 

Metamaterials — composite materials whose electromagnetic properties are engineered by 

structuring their constituents1,2—make it possible to achieve a refractive index equal to zero3. 

When the index of refraction is zero, the phase velocity is infinite. In this extreme limit, the 

wavelength inside the material is infinite and the phase is uniform throughout, regardless of its 

overall size and shape. All fields within the material oscillate in unison, achieving electrostatic 

behavior at optical frequencies4. This regime allows access to a wealth of exciting physical 

phenomena and potential applications including super-coupling, cloaking, and new approaches for 

phase matching in nonlinear optics3,5-9. 

Experimental demonstrations of zero-index metamaterials typically involve metals 

operating around their plasma frequencies10-12 or metallic resonators13-16, resulting in high loss and 

impedance mismatch. Recently, zero index was demonstrated by tuning the Mie resonances in a 

purely dielectric photonic crystal structure17,18. This approach offers several important advantages. 

First, dielectric metamaterials avoid the losses associated with metals, especially in the optical 

regime. Second, tuning the Mie resonances allows for the simultaneous control of the electric and 

magnetic response19,20. In particular, when the effective relative permittivity eff

r  and 

permeability eff

r  approach zero simultaneously, the impedance 
eff

r

eff

reff can be matched 

to that of other materials. 

For integrated photonic applications, zero-index metamaterials require light to be confined 

on-chip and thus need to be realized in an in-plane geometry (that is, with the light propagating 

parallel to the substrate). This geometry would permit integrating these metamaterials with other 

optical elements, including waveguides, resonators, and interferometers. To date, zero-index 



metamaterials have been demonstrated only in an out-of-plane geometry, with functional layers of 

the metamaterials stacked on a substrate and where light propagates normal to the sample 

surface12,16,18. This geometry is not only impractical for integrated-photonics applications, but is 

also limited to short interaction lengths, and cannot be fabricated in arbitrary shapes. 

In this paper, we present an on-chip, in-plane metamaterial with zero index in the telecom 

wavelength range. Our design consists of a square array of low-aspect-ratio silicon pillars on a 

silicon-on-insulator (SOI) substrate. The array is embedded in an SU-8 slab waveguide, and clad 

above and below by gold films. We fabricate this metamaterial using conventional nanofabrication 

processes (Fig. 1a). First, we define an array of pillars in a 512-nm-thick silicon device layer using 

electron-beam lithography followed by inductively coupled plasma reactive ion etching (step I in 

Fig. 1a). Next, we use electron-beam evaporation to deposit a 50-nm-thick gold film (step II). We 

then embed the pillars within a 595-nm-thick SU-8 photoresist layer (step III). Finally, a second 

gold film is deposited to complete the fabrication process (step IV). We can produce arbitrarily 

shaped pillar arrays using such conventional planar fabrication techniques in order to realize a 

variety of metamaterial devices. 

We demonstrate zero index by measuring the refraction through a prism made of this 

metamaterial (Fig. 1b) with a 1.5-µm-thick SU-8 matrix (see last paragraph of the section: design) 

(Supplementary Information Section 1). A silicon waveguide oriented perpendicular to one of the 

prism facets guides the incident beam (Fig. 1b). Light that enters the prism is refracted at the output 

facet into a semi-circular slab of SU-8, which we use to determine the angle of refraction (Fig. 1b, 

c). The measured angles of refraction are in excellent agreement with simulations and 



unambiguously demonstrate that the metamaterial prism has zero index at a wavelength of 1570 

nm. 

Design 

Previous designs for dielectric zero-index metamaterials are based on infinitely long silicon 

pillars17,18. These designs are incompatible with integrated silicon photonic platforms, which are 

typically based on silicon device layers with thickness on the order of the wavelength. One can 

replicate the behavior of infinitely long pillars by placing short silicon pillars between parallel 

conductors21. This approach reduces the out-of-plane radiation loss and enforces the fundamental 

TM mode by ensuring that the electric field between the parallel conductors is along the pillar axis 

(Supplementary Information Section 2). So, it preserves the impedance-matched zero index using 

a structure of finite height, and allows the metamaterial to be integrated with conventional 

nanophotonic components (Fig. 1). We adjust the pitch and radius of the silicon pillar array to 

obtain zero index with low propagation loss at a wavelength of 1590 nm, near the middle of the 

1480 to 1680-nm tuning range of our laser (Supplementary Information Section 3). Propagation 

loss in this metamaterial is dominated by the conduction loss originating from the gold films 

(Supplementary Information Section 4). 

To characterize the optical properties of the designed metamaterial, we calculate its band 

structure in the plane of the array (Fig. 2a). As Fig. 2a shows, two linear dispersion bands intersect 

at the  point. These bands form a Dirac-like cone (blue, Fig. 2b) intersecting a quadratic 

dispersion band (red) at the Dirac point at the center of the Brillouin zone17. The two linear-

dispersion bands correspond to electric monopole and transverse magnetic dipole modes near the 

Dirac point (Fig. 2c). At the Dirac point, the wavenumber approaches zero, indicating that the 

effective index of the metamaterial is also zero. Furthermore, the nearly circular isofrequency 



contours in a 55-nm bandwidth around the Dirac point (Fig. 2d) suggest that the metamaterial is 

essentially isotropic, producing a refractive index of zero in almost all propagation directions. The 

effective wavelength eff  approaches infinity in the vicinity of the  point, satisfying the 

homogenization criterion17,18,22 and allowing us to treat the metamaterial as a homogeneous bulk 

medium with effective constitutive parameters in the vicinity of the Dirac point (Supplementary 

Information Section 5). We can retrieve the effective relative permittivity eff

r  and permeability 

eff

r  of this metamaterial from the simulated reflection and transmission coefficients (Fig. 2e)23. 

The computed eff

r  and eff

r  cross zero simultaneously and linearly at the design wavelength of 

1590 nm, with an effective impedance of 1.47. This simultaneous and linear electric and magnetic 

response is a unique characteristic of zero-index metamaterials corresponding to Dirac cones, and 

is essential to achieve a finite impedance17. The eff

r  and eff

r are only linear in the vicinity of the 

Dirac-point wavelength17. All of these results indicate that this metamaterial possesses a relatively 

isotropic zero effective index with good impedance matching to free space and to standard optical 

waveguides. 

Our simulations show that a Dirac cone can be obtained even for significantly larger SU-8 

layer thicknesses (Supplementary Information Section 6), providing more flexibility in the 

fabrication process. Because it is difficult to spin on a very thin SU-8 layer between the silicon 

pillars right next to a large tapered waveguide, we chose to use a 1.5-µm-thick, rather than a 595-

nm-thick SU-8 layer in the fabrication of our prisms (Fig. 1b, c). 

Experimental results 

To experimentally measure the refractive index of the metamaterial, we illuminate the 

metamaterial prism and measure the angle of the refracted beam (Fig. 1b, c). The prism is 



illuminated with TM-polarized light delivered via the tapered silicon waveguide. The light 

propagates through the prism with an effective index eff

1n , and reaches the interface between the 

prism and a SU-8 slab waveguide at an angle of incidence of 45 . The refracted beam then 

propagates as a guided mode of the SU-8 slab waveguide with known effective index eff

2n , until it 

is scattered at the semi-circular edge of SU-8 slab waveguide (Supplementary Information Section 

7). The scattered light is imaged from above using an infrared camera to determine the refraction 

angle . This refraction angle is used to determine eff

1n  using   Snell’s   law:  

. 

Fig. 3a shows the experimentally observed refraction in the prism and the SU-8 slab 

waveguide at nm1570 , where the metamaterial shows zero index (Supplementary Information 

Section 8). Because of fabrication imperfections, this wavelength is slightly different from the 

design wavelength of 1590 nm. The yellow arrow in Fig. 3a shows the refracted beam, which 

propagates perpendicular to the interface between the prism and SU-8 slab waveguide, 

corresponding to a prism with a refractive index of zero. The prism also generates several side 

beams at nm1570  due to additional modes in the band structure (Fig. 2a) (Supplementary 

Information Section 9). 

Fig. 3b shows the corresponding numerical calculation of the out-of-plane electromagnetic 

field distribution in the prism and the SU-8 slab waveguide region at nm1570 . As in the 

observed results, the refracted beam propagates perpendicular to the interface between the prism 

and SU-8 slab waveguide, with several side beams appearing on either side. As shown in the 

sin45sineff

1

eff

2 nn



magnified view on the right in Fig. 3b, there is no spatial phase variation within the prism, as the 

effective wavelength is infinite inside the metamaterial. 

We probe the dispersion of the metamaterial index by measuring the angle of refraction 

while varying the input wavelength from 1480 to 1680 nm. The left panel of Fig. 3c shows the 

intensity measured along the curved output edge of the SU-8 slab waveguide as a function of 

wavelength and refraction angle. The right panel of Fig. 3c shows the corresponding simulated 

far-field pattern (Supplementary Information Section 10). We observe excellent agreement 

between the measured and simulated far-field patterns, with both patterns showing the refracted 

beam in the center, near 0 . The shifting of the refracted beam indicates that the refractive index 

of the prism continuously changes from a positive value at shorter wavelengths to a negative value 

at longer wavelengths. 

Using  Snell’s  law,  we  extract  the  index  of  refraction  of  the  metamaterial  from  the  position  

of the refracted beam in the wavelength range of 1480–1680 nm (Supplementary Information 

Section 11). As shown in Fig. 3d, the measured index varies from 04.015.0 at 1480 nm to 

04.057.0 at 1680 nm, exhibiting linear dispersion near the zero crossing at 1570 nm. The error 

bars represent uncertainties in the measured index due to finite image resolution and fitting 

uncertainty (Supplementary Information Section 11). Using a similar extraction method, we 

calculate the index of refraction from the simulated far-field patterns, showing excellent agreement 

with measured values. 

To determine whether our measured zero index is caused by a Dirac cone or by a small 

band gap, we measured two prisms with both smaller and larger pillar radii. Theoretically, a 

photonic Dirac cone has no band gap at the Dirac-point wavelength. Due to fabrication 

imperfections, however, a tiny band gap may open near the targeted Dirac-point wavelength of the 



fabricated zero-index metamaterial. In that case, the real part of the index has a constant zero value 

rather than linear dispersion. Given our error bars (Fig. 3d), the band gap is at most 50 nm wide. 

Index measurements of prisms with smaller or larger radii show that the band gaps of these 

metamaterials are blue-shifted or red-shifted, respectively. In addition, the bandgaps of those with 

larger radii become significantly wider. This behavior confirms that the experimentally measured 

zero index in Fig. 3 corresponds to a Dirac cone at the  point17 (Supplementary Information 

Section 12). 

As a control, we also measured the refractive index in the absence of the metamaterial 

prism. In this control experiment, light from the input silicon waveguide propagates through free 

space before refracting into the SU-8 slab waveguide. The measured index of the void is 

04.094.0  in the wavelength range 1480–1680 nm, in good agreement with the index of air 

(Supplementary Information Section 13). Therefore, the measured index shown in Fig. 3 

corresponds to the effective index of the metamaterial prism, rather than an artifact of the 

measurement setup. 

Conclusion 

We experimentally demonstrate the first on-chip integrated zero-index metamaterial in the 

optical regime and directly measure the effective index of a prism consisting of this material. The 

metamaterial is effectively two-dimensional (2D), as energy propagates in the plane of the array. 

This in-plane structure can efficiently couple to silicon waveguides to interface with standard 

integrated photonic components. Using standard planar processes, the metamaterial can be 

fabricated over a large area with high fidelity and in arbitrary shapes. This design enables direct 

implementation of zero-index phenomena on a chip, including super-couplers, surface-emitting 

lasers, and new approaches for phase matching in nonlinear optics3,5,8,9,24. It can also serve as an 



on-chip lab to explore fundamental quantum science such as photon entanglement and 

enhancement of spontaneous emission4,18. 
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Figure 1. Metamaterial design and structure fabricated to demonstrate in-plane zero index.  

a, SEM image of the metamaterial in different fabrication stages: I. Silicon pillars etched from SOI 

substrate; II. With bottom gold film; III. Embedded in SU-8 matrix; IV. Completed structure with 

top gold film. Inset: three-dimensional schematic of one unit-cell of the metamaterial. The pitch 

and radius of the silicon pillars are 690 nm and 211 nm, respectively. b, A silicon waveguide 

carries the incident beam toward the metamaterial prism, where the beam is refracted into the SU-

8 slab waveguide. Inset shows the prism, which is a right triangular array of pillars measuring 8 

unit cells across, without gold and SU-8 layers. c, Prism region showing the incident and refracted 

beams. The angle of refraction  is determined by measuring the position of the refracted beam 

at the curved output edge of SU-8 slab waveguide (yellow scattering spot in b). 



 

Figure 2. Optical properties of the zero-index metamaterial. a, Photonic band structure of the 

zero-index metamaterial (Fig. 1a) for TM modes. Two linear dispersion bands intersect at the  

point at nm1590 . b, 3D dispersion surfaces. The linear bands (blue) form a Dirac-like cone. 

The quadratic band (red) is a quasi-longitudinal mode17. We show only the three modes that form 

the cone to emphasize the Dirac-cone dispersion clearly. c, Electric fields at the Dirac point over 



a unit-cell cross-section in the plane of the array, corresponding to an electric monopole mode and 

a transverse magnetic dipole mode. The black circles indicate the boundary of the silicon pillar. d, 

Isofrequency contours of the zero-index metamaterial. The nearly circular contours indicate that 

this metamaterial is almost isotropic near the  point. e, Effective relative permittivity and 

permeability of the metamaterial retrieved from simulated reflection and transmission coefficients. 

Both parameters cross zero simultaneously resulting in finite impedance. 



 

Figure 3. Simulation and experimental results. a, Near-infrared microscope image of the prism 

(Fig. 1b, c) at 1570 nm, showing the refracted beam, which propagates normal to the interface 



between prism and SU-8 slab waveguide. The gray area corresponds to the silicon waveguide and 

SU-8 slab waveguide. b, Left: simulated out-of-plane electric field ( nm1570 ) in the prism 

and SU-8 slab waveguide region. The refracted beam is visible at the curved output edge of SU-8 

slab waveguide at 0 . Right: magnified view of electric field distribution in the prism, illustrating 

nearly constant spatial phase distribution. c, Measured (left) and simulated (right) far-field 

patterns. The white dashed line indicates the wavelength, 1570 nm, at which the refracted beam 

crosses 0 . The image is normalized at each wavelength. d, Measured and simulated effective 

index of the zero-index metamaterial. The blue dots indicate measured refractive index, with error 

bars representing uncertainties in the measurement. 

 

Methods 

Simulations 

We measure complex indices of gold, silicon, and silica via spectroscopic ellipsometry for 

use in our numerical simulations. 

We calculate the complex reflection and transmission coefficients, electromagnetic field 

profiles, and far-field patterns using 3D finite-difference time-domain (FDTD) simulations. We 

extract the reflected and transmitted electric fields at two points prior to the source and after the 

metamaterial, respectively, to obtain the complex reflection and transmission coefficients (Fig. 

S26 of Supplementary Information). We collect the electric fields from a near-field simulation to 

obtain the far-field pattern using far-field projection. 

We compute the band structures, dispersion surfaces, and isofrequency contours using 3D 

finite-element-method (FEM) simulations. We obtain these results by first calculating all the 



modes in a unit cell of our metamaterial with Floquet periodic boundary conditions in x  and y  

directions and perfectly matched layers at the boundaries in the z  direction. We select the TM-

polarized modes by evaluating the energy ratio of electric fields in x , y , and z  directions. We 

filter out the modes with low quality factors (<10) or low core confinements in the metamaterial 

region. 

 

Fabrication 

We fabricate the zero-index metamaterial on a silicon-on-insulator (SOI) wafer using 

standard lithographic techniques (Fig. 1). Beginning with a 512-nm-thick silicon layer, the silicon 

pillars and coupling waveguides are patterned into negative-tone resist (XR-1541 6%, Dow 

Corning) using electron-beam lithography (EBL) and are subsequently structured using 

inductively coupled plasma reactive ion etching (ICP-RIE). A layer of positive-tone resist (PMMA 

495 C6, MicroChem) is spin-coated and patterned using EBL, designating the location of the 

bottom gold film. A 5-nm-thick titanium adhesion layer and a 95-nm-thick gold layer are deposited 

using e-beam evaporation and are subsequently lifted off by acetone boiling and very weak 

sonication to serve as the bottom gold film. Following this step, we spin-coat a 1.5-μm-thick SU-

8 layer and cure it using EBL, forming the polymer matrix around the silicon pillars to support the 

top gold film. The steps to structure and deposit the top gold film are the same as those for the 

bottom gold film. 

To make the four different parts showing each fabrication step (Fig. 1a), we used positive 

resist openings for selective gold deposition on the individual parts, following the fabrication 

procedure outlined above. 



Supplementary Information: 

Materials and Methods 

Figures: S1-S26 

Videos: video_S1_Ez_1530nm, video_S2_Ez_1590nm, and video_S3_Ez_1650nm 
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S.1 Prism design 

In the design of the metamaterial prism, we consider two factors: homogenity and 

transmission. As shown in Fig. S1, the far-field pattern shows a narrower refracted beam and 

weaker side beams as the size of the prism increases. The reason is that the metamaterial prism 

can be better treated as a homogenous-bulk prism if it consists of more unit cells (Section S.5). 

Fig. S2 shows that the transmission of the prism decreases as its size increases. This is because the 

total propagation loss and in-plane radiation loss are proportional to the size of the prism. For a 

finite metamaterial prism, the total losses include not only the coupling and propagation losses as 

well as the loss resulting from coupling of energy to side bands (Section S.4), but also the in-plane 

radiation loss due to the radiation of the non-output facets. Thus, there is a trade-off between a 

better homogenity and a high transmission. To guarantee that sufficient power can reach the 

numerical aperture of the microscopy and a distinguishable refracted beam in the far-field pattern, 

we choose a prism consisting of 88  pitches. 

S.2 Effect of gold structures 

The zero-index effect that is demonstrated in this work is due to Mie resonances of a purely 

dielectric photonic crystal17. Though we incorporate gold structures into our design, these metal 

layers only contribute to the enforcement of the fundamental TM mode, making the short pillars 

optically infinite tall, and the confinement of the light within the metamaterial structure; they do 

not make any plasmonic resonance-based contribution to the metamaterial. In this section, we 

show that there exist Dirac cones without any metal and that the metal only contributes to the 



overall performance of the metamaterial. The different contributions of the gold mirrors and the 

gold caps above the pillars are investigated separately below. 

A. Gold mirrors 

We simulate the modes at the  point for our proposed structure without the gold mirrors. 

By tuning the thickness of the SU-8 polymer, as discussed in section S.6, we obtain an additional 

degree of freedom by which we can engineer a degeneracy at the  point, even without the gold 

mirrors. By tuning the thickness of the SU-8 polymer layer, we obtain multiple geometries that 

exhibit the degeneracy between the monopole and dipole modes that is necessary to obtain a Dirac 

cone. These correspond to SU-8 thicknesses of 687.5 nm, 1125 nm, 1575 nm, and 1725 nm. 

We calculate the band structures for these geometries to verify their degeneracies (Fig. S3). 

In the absence of the gold mirrors, the resulting band structures are less linear and more quadratic 

near the degeneracy point. However, we still observe a conical shape and a degeneracy at a single 

wavelength, indicative of a Dirac-cone dispersion. 

We estimate the propagation loss for the structures with the modal degeneracies using 

finite-difference time-domain (FDTD) simulations and the method described in section S.4. The 

resulting propagation loss are plotted in Fig. S4. We also plot the propagation loss for the 

corresponding gold-mirror Dirac-cone structures for comparison. We obtain lower propagation 

loss when using the gold mirrors. Given the shape of the Dirac cones and the propagation loss that 

are obtained using the structures that are cladded with gold, it is clear that the performance of the 

metamaterial is better when using the gold mirrors. This is due to the additional confinement 



provided by the mirrors as well as due to the enforcement of a clean TM mode by constraining the 

electric field to be normal to the parallel plates. 

B. Gold caps 

Due to the fabrication procedure, the lower gold mirror in the structure creates a cap on top 

of the silicon pillars upon deposition. This cap is only a consequence of the fabrication procedure, 

and not a necessary component of the metamaterial. We demonstrate this by simulating the band 

structure of the proposed structure without these gold caps and also producing a Dirac-cone 

dispersion. 

Removing the gold cap causes effects analogous to a deviation from the ideal radius 

described in section S.12. We run the optimization scheme described in section S.3 to obtain new 

dimensions for the smallest possible effn , with a radius of 189 nm and a pitch of 727 nm. We 

simulate the band structure for this geometry and display it in Fig. S5. We once again obtain the 

degeneracy between the monopole mode and the dipole modes at the  point. Additionally, 

because this hypothetical design still possesses the gold mirrors, the Dirac cone it exhibits is as 

linear as those showed in Figure S15b that also have the gold caps. Thus, the gold caps do not play 

an important role in the demonstrated zero-index behavior. 

S.3 Metamaterial design 

Dirac-cone metamaterials can be formed using square- or triangular-lattice photonic 

crystals17. We choose the square lattice because it brings the advantage of well-defined 

metamaterial boundaries. We initially design the pitch a  and radius r  of the Dirac-cone 

metamaterial using an analytical model for the effective constitutive parameters of a square array 

of 2D magnetodielectric cylinders25. Based on this result and the given values of height of the 



silicon pillars, the SU-8 layer thickness, and the gold layer thickness, we optimize a  and r  based 

on a 3D FDTD model of the presented structure (Fig. 1a). We choose a  and r  as the optimization 

parameters since the existence of the Dirac cone is most sensitive to these two geometric 

parameters. The figure of merit of this optimization is the absolute value of the effective index 

effn , which is retrieved from the simulated reflection and transmission coefficients, at the design 

wavelength, nm1590 . This figure of merit is selected in order to design a Dirac-cone 

metamaterial with zero real index and low propagation loss, the latter of which can be characterized 

by the imaginary part of the refractive index at the design wavelength. As shown in Fig. S6a and 

b, the minimum values of the real and imaginary parts of effn  appear along the two different 

diagonals of the 2D parameter space, and cross each other around the center.  Hence, the minimum 

value of effn  ( 046.0002.0eff in ) appears around the center of the 2D parameter space at 

nm690a  and nm211r  (Fig. S6c). These values combined with other geometric parameters 

in Fig. 1a are used as the target parameters of our nanofabrication. 

Since the existence of a Dirac cone is sensitive to the geometric parameters of the structure, 

it is important to investigate the robustness of our design with regards to the effects induced by 

parameter variations. Here, we study the effects of variations in the pillar radius r  (Fig. 1a) since 

this parameter represents the largest source of disorder among all the geometric parameters. We 

model the effect of disorder on the transmission through the structure assuming a Gaussian 

distribution with a mean radius nm211r  and standard deviation r . Using 3D FDTD 

simulations, we test the transmission through a metamaterial slab (Fig. 1a) with 8 unit cells in the 

direction of propagation, which is the number of periods in our fabricated prism sample (Fig. 1b, 

c). As depicted in Fig. S7, this metamaterial shows transmission over 10% at 1590 nm until the 



deviation of radius is as large as %6rr , which is within the fabrication tolerance we can 

achieve ( ). 

S.4 Losses 

Losses in the metamaterial originate from three major sources: (i) coupling loss at the 

interface due to impedance mismatch; (ii) propagation loss within the metamaterial; and (iii) 

coupling of energy to side bands (Section S.9). 

We estimate both the coupling and propagation losses of the metamaterial using an FDTD 

simulation. In this simulation, we couple into and out of a transversely infinite array of pillars 

using a pair of 500-nm-thick silicon slab waveguides. The fundamental TM mode is launched in 

the input slab waveguide and the transmission of 
zE  is monitored in the output waveguide. We 

increase the length of the metamaterial in the direction of propagation and plot the transmission as 

a function of the number of unit cells (Fig. S8). The intercept located at dB8.2y corresponds 

to the input and output coupling losses to the waveguides. This means that the coupling loss at a 

single interface is dB4.1  (28%). To further minimize this loss, we can engineer either or both the 

impedance of the coupling structure and that of the metamaterial. Impedance of the coupling 

structure can be engineered in various ways, such as a photonic-crystal-waveguide taper26. To tune 

the effective impedance of the metamaterial while keeping the absolute effective index closes to 

zero (Section S.3), we need an additional degree of freedom besides the radius and pitch. For 

example, we can tune the height of the pillars of an on-chip all-dielectric zero-index metamaterial 

consisting of square array of silicon pillars on a silicon-on-insulator (SOI) substrate27. We also 

extract the propagation loss of the metamaterial, which is celldB/unit 9.0 dB/3.1( m). We 
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believe this loss can be further minimized by cladding our pillar structures with a lower-loss mirror 

such as a Bragg stack28 or by converting the accessed modes into bound states in continuum29. 

We estimate the loss due to coupling of energy to side bands by investigating the refracted 

and side beams (Section S.9) of our metamaterial (Section S.3) in the FDTD simulated far-field 

pattern (Section S.10). At the input facet of the metamaterial prism (Fig. 3b), the fundamental TM 

mode in the silicon waveguide excites the main bands (the two linear bands that form the Dirac-

like cone, Fig. 2a, b) and part of the side bands (Fig. 2a). At the output facet of the prism, the main 

and side bands contribute to the refracted and side beams, respectively, which propagate in the 

SU-8 slab waveguide and eventually reach the far field (Fig. 3b). Thus, we can estimate the energy 

ratio of the main bands by evaluating that of the refracted beam in the far-field pattern. As shown 

in Figure S9, at 1590 nm, the refracted beam of a 1010  prism points in the o0  direction and 

contains the maximum electric field intensity. We obtain the energy ratio of the refracted beam by 

the division of the total electric field intensity within the beam width of the refracted beam by the 

total electric field intensity in the angular range from o90  to o90 . Here, we define the beam 

width of the refracted beam as its first-null beam width30, o3.21  to o8.16  (Fig. S9). At 1590 nm, 

the energy ratio of the refracted beam (main bands) is 36%, corresponding to an additional loss of 

dB4.4 . This ratio for prisms with sizes 55 , 1515 , and 2020  are 44% ( dB6.3 ), 40% (

dB0.4 ), and 46% ( dB4.3 ), respectively (Fig. S1). We can see that this ratio varies 

insignificantly as a function of the prism size. Using topology optimization, we could design a 

better coupling structure that only excites the main bands31,32. 

S.5 Homogenization 

We conduct a systematic homogenization analysis to verify that it is proper to treat the on-

chip Dirac-cone metamaterial macroscopically as a homogeneous bulk medium with effective 



constitutive parameters in the in-plane direction near the -point. In this analysis, we consider the 

homogenization criterion and locality conditions. Furthermore, we compare our Dirac-cone 

metamaterial with its corresponding homogenized model. Since our structure (Fig. 1a) is only 

periodic in the in-plane direction, this analysis is restricted to in-plane propagation. In this paper, 

we assume harmonic time dependence of . 

A. Homogenization criterion 

The general homogenization criterion of metamaterials requires that 1,0 kaak , where a  

is the lattice constant (Fig. 1a), 0k  and k  are the free-space wavenumber and the effective 

wavenumber in the metamaterial, respectively33. Based on this criterion, we analyze the 

homogenization of our metamaterial within the array and at the boundary, separately. 

Within the array, the metamaterial can be treated as an infinite array, which can be analyzed 

by studying its photonic band structure. Considering that the Dirac cone appears near the -point 

(Fig. 2a) where the effective wavenumber k  approaches zero, this metamaterial meets the criterion 

1ka  in the vicinity of the Dirac point. To quantitatively estimate the region, in which the 

effective constitutive parameters are valid, we compare band structures obtained using two 

different methods: a macroscopic method treating the metamaterial as a homogeneous bulk 

medium (using the retrieved effective index effn  and the expression cnk eff , and a 

microscopic method regarding the metamaterial as an infinite array (FDTD). As shown in Fig. 

S10, the two band structures agree well in the range 3.00 k  for the linear band below the Dirac 

point and in the range 4.00 k  for the linear band above the Dirac point. Thus, it is reasonable 

to treat the infinite array as a homogeneous bulk medium with effective constitutive parameters 

within these regions. Further, because our metamaterial is almost isotropic near the Dirac point 

tie



(Fig. 2d), this conclusion is valid for all propagation directions near the Dirac point in the Brillouin 

zone. 

Because the lattice constant of our Dirac-cone metamaterial is not much smaller than the 

free-space wavelength ( 73.20ak ), the homogenization criterion 10ak  is not met and we 

cannot define the physical boundary of this metamaterial unambiguously. Instead, there is a 

transition layer in which the local effective constitutive parameters vary from the values of the 

infinite array to the values of the background medium surrounding the metamaterial34. To 

investigate this transition layer quantitatively, we use 3D FDTD to compare the phase of the 

electric field at the interface of our Dirac-cone metamaterial with that of a corresponding bulk 

zero-index medium with retrieved constitutive parameters (Fig. 2e). Here, we analyze the phase 

instead of the local effective constitutive parameters due to following reasons: first, phase can 

directly  reflect  the  variation  in  the  local  constitutive  parameters;;  second,  it’s  challenging  to  extract  

the local effective constitutive parameters at the interface. To observe the change in the phase near 

the boundary clearly, we position the SU-8 background medium, metamaterial, and its 

homogenized model between gold layers (Fig. S11a). This guarantees an efficient coupling 

between the TM mode in the input waveguide and that in the metamaterial/homogenized model. 

Within the metamaterial, we only consider the phase of the electric field in-between the pillars 

since the local effective constitutive parameters are a consequence of the interaction of the 

electromagnetic fields scattered by the pillars in the array. As shown in Fig. S11b and c, the 

behavior of the phase at the interface of the metamaterial is very similar to that of the homogenized 

model. Fig. S11d illustrates this agreement more clearly: the phase advance is essentially linear 

along the propagation direction in the positive-index input waveguide. However, we observe 

uniform phase within the metamaterial/homogenized-model due to their zero indices. The 



transition between these two behaviors happens very sharply at the interface, indicating a 

discontinuity in the local constitutive parameters at the boundary of the metamaterial. In other 

words, similar to its homogenized model, our metamaterial also has a well-defined boundary in 

terms of local constitutive parameters even though its lattice constant is not much smaller than the 

free-space wavelength. The minor phase oscillation in the input waveguide is due to a standing 

wave consisting of the incident traveling wave and the wave reflected by the metamaterial or its 

homogenized model, and the phase oscillation in the metamaterial regime is due to the interaction 

of the electromagnetic fields scattered by the pillars in the array. As for the phase of the electric 

field within one unit cell of the metamaterial, we would like to clarify that the mode continuously 

oscillates between an electric-monopole mode and a transverse-magnetic-dipole mode (see 

animations: video_S1_Ez_1530nm, video_S2_Ez_1590nm, and video_S3_Ez_1650nm). 

However, the phase advance remains zero between two same positions in different unit cells. (Fig. 

S11b, top). 

To further investigate the homogenization at the boundary, we simulate the angle-

dependent transmission of both our Dirac-cone metamaterial and its homogenized model. We 

calculate the transmission through a metamaterial slab with a thickness of five unit cells (along the 

propagation direction) and an identically sized bulk medium (Fig. 1a). Fig. S12 shows the 

transmission at incident angles ranging from 0  (normal incidence) to 80  at the design 

wavelength of 1590 nm. This range was selected to avoid artifacts in transmission for angles of 

incidence greater than . 

We observe high transmission near normal incidence for both cases, indicating strong 

angular selectivity and good agreement between the metamaterial and homogenized model. 

Considering the critical angle of a material with an index of zero, transmission at only normal 

80



incidence is expected. Extraneous transmission at higher angles of incidence, as observed in the 

case of the metamaterial, can be attributed to incident light coupling into the longitudinal magnetic 

dipole mode crossing the Dirac point as a quadratic band (Fig. 2b). This mode can only be excited 

when the incident light has non-zero k-components parallel to the interface17. This extraneous 

transmission is reduced at wavelengths less than the Dirac-point wavelength of 1590 nm, as the 

longitudinal mode does not exist in this regime (Fig. S12a, Fig. 2b). We also observe a decrease 

in angular selectivity for both the metamaterial and bulk medium at lower wavelengths since the 

indices of both cases are deviating from zero in this regime. 

B. Locality conditions 

Effective constitutive parameters of metamaterials have to satisfy the conditions of locality: 

passivity, causality, isotropy, and absence of radiation loss34. Most metamaterials cannot meet the 

fourth condition since the size of the resonator is not much smaller than the wavelength so that 

there is scattering from single inclusions. Fig. S13 shows that the medium is passive, since 

0Im eff

r  and 0Im eff

r  simultaneously near the Dirac-point wavelength. As shown in Fig. 

2e, the fact that both 0Re eff

r  and 0Re eff

r  near the Dirac-point wavelength 

indicates that the medium satisfies the basic causality conditions represented by the Kramers-

Kronig relations35. The isotropy of our metamaterial in the vicinity of the Dirac point has already 

been verified in Fig. 2d. Similar to most metamaterials, our metamaterial does not satisfy the fourth 



condition since its inclusion size is not much smaller than the free-space wavelength so that the 

scattering loss cannot be ignored. 

C. Comparison of Dirac-cone metamaterial prism with its homogenized model 

We compare the FDTD simulations of the prism composed of the Dirac-cone metamaterial 

(Fig. 1a) with its corresponding homogenized model using the retrieved effective constitutive 

parameters at the designed zero-index wavelength 1590 nm (Fig. 2e). As shown in Fig. S14, both 

prisms show good transmission at the input interface due to their finite characteristic impedance 

~1.47. Within both prisms, the electric fields exhibit almost uniform distribution due to the near-

zero real indices of the prisms 
3

ff 109.1Re
e
n . The fields decay along the propagation 

direction, which is normal to the input interface, due to the propagation losses of the prisms 

2

ff 106.4Im
e
n . In the SU-8 slab waveguide region, both prisms show the refracted beam 

normal to the output interface. Unlike the metamaterial, the homogenized-model prism shows a 

refracted beam without any side beams since no side bands exist in the band structure of the 

homogenized model (Section S.9). 

S.6 Dirac cones of metamaterials with large SU-8 thickness 

Here we analyze the effect of variations in SU-8 thickness on the existence of a Dirac cone, 

especially for thicknesses much larger than height of the silicon pillars (Fig. 1a). 

The Dirac cone is a consequence of the degeneracy of an electric monopole mode and a 

transverse magnetic dipole mode at the  point, so any variation in the wavelengths of these 

modes at the  point would adversely affect the existence of the Dirac cone.  Fig. S15a shows the 

 point wavelengths of these modes for various SU-8 thicknesses. As the SU-8 thickness increases 

from  500  nm  to  2  μm,  the  electric  monopole  mode  at  the    point remains nearly unchanged around 



1590 nm while there are four different magnetic dipole modes at the  point, ivid . Each of these 

dipole modes intersects with the electric monopole mode at a particular SU-8 thickness, which 

indicates the existence of a Dirac cone. To confirm this fact, we calculated the band structure near 

the  point with SU-8 thicknesses corresponding to each of those intersections (Fig. S15b). 

Results clearly show the existence of Dirac cones when SU-8 thickness equals to 550 nm, 975 nm, 

1475 nm, and 1975 nm, respectively. 

Although our structure shows Dirac cones with different values of SU-8 thickness, we still 

need to verify that those Dirac cones are due to the silicon pillars rather than metallic waveguides, 

especially when the SU-8 thickness is much larger than the height of the pillars. We analyze the 

mode profiles of the two modes forming the Dirac cone by observing the spatial distribution of the 

out-of-plane electric field component 
z

E  in a single unit cell. As depicted in Fig. S16, for all SU-

8 thickness showing Dirac cones, the fields of both the electric monopole mode and the transverse 

magnetic dipole mode are confined within the pillar region. This confirms that the Dirac cones 

corresponding to structures with different SU-8 thicknesses (Fig. S15) are all due to the interaction 

between the electromagnetic wave and the array of pillars which form the patterned metamaterial, 

rather than the metallic waveguide. 

Our fabricated Dirac-cone metamaterial prism (Fig. 1b, c) has an SU-8 thickness around 

1500 nm, instead of the initially designed value of 595 nm (Fig. 1a). This thickness corresponds 



to intersection C in Fig. S15, between the third order transverse magnetic dipole mode 
iiid  and the 

electric monopole mode m. 

S.7 Modes in SU-8 slab waveguide 

In Fig. S17a (Fig. 3b), we observe a low-frequency oscillating pattern in the SU-8 slab 

waveguide at the prism output. We claim that this is due to the interference between the multiple 

propagating TM modes in the SU-8 planar waveguide. We prove that this is the origin of the low-

frequency oscillating pattern using two methods. 

First, we solve Helmholtz equation for an asymmetric slab waveguide36. In the case of a 2-

μm-thick SU-8 slab on a silica substrate in air, the solution at μm1.57  yields a pair of TM 

modes with effective indices 1.5372 and 1.4526. These indices correspond to effective 

wavelengths of 1.021 and 1.080 μm , respectively. We can combine two beams to obtain a beat-

wavelength of: 

μm5.18
11

1

2

eff

1

eff

beat  

This is precisely the spatial extent of the oscillating patterns shown in Fig. S17a. 

Second, we plot the electric field of the refracted beam along the propagation direction 

(Fig. S17c), as well as its Fourier transform (Fig. S17d), to reveal the dominant spatial frequencies. 

Two peaks are apparent at the spatial frequencies of 0.9239 and 0.9828 -1μm , corresponding to 

effective wavelengths of 1.082 and 1.018 μm . These wavelengths match the results found in the 

first method for the two propagating TM modes in the planar waveguide. 

Finally, we simulate an identical prism structure followed by a thinner SU-8 planar 

waveguide, which only supports one propagating TM mode. Numerical calculations show that the 



low-frequency oscillating pattern has been suppressed (Fig. S17b), confirming our claim that the 

oscillation is due to the interference between the multiple propagating TM modes. 

S.8 Experimental results near zero-index wavelength 

To illustrate the refractions of our metamaterial prism near its zero-index wavelength, we 

show the experimental results at 1480 and 1620 nm (Fig. S18). As indicated by the yellow arrow, 

the refracted beam propagates toward a positive and a negative refraction angle, respectively, at 

1480 and 1620 nm. We can also observe several side beams at those wavelengths. 

S.9 Side beams 

The side beams in Fig. 3 and Fig. S20 are due to coupling to the bands which appear near 

the Dirac-cone frequency regime but do not form the Dirac cone. Here, we call those  bands  “side  

bands”.  Due to the gold layers and the finite thickness of the pillars, multiple side bands (Fig. 2a) 

exist in the band structure of our metamaterial (Fig. 1a). To clearly investigate the relationship 

between the side bands and the side beams, we choose to analyze a simplified version of our 

metamaterial—a 2D square array of infinitely long silicon pillars in an SU-8 matrix (Fig. S19 a). 

We design this 2D metamaterial with a zero index at 1550 nm (193.55 THz). Its band structure 

shows a Dirac-cone dispersion at the  point and at 193.55 THz there only a few side bands (Fig. 

S19 c, d). By comparing Fig. S19 b, c, and d, we can see that the linear dispersion bands from 180 

to ~202 THz near the  point correspond to the refracted beam continuously changing from 6  

at 180 THz to 6  at ~202 THz. Due to the fact that there is no side bands above the SU-8 light line 

in this frequency regime and the fact that the quadratic band crossing the Dirac point cannot be 

excited by the fundamental TM mode of the input waveguide, there is no side beam in this 

frequency regime (Fig. S19 b). In the frequency regime higher than ~202 THz, two side bands 



appear on both sides of the M point above the SU-8 light lines, of which the side band in -M  is 

much stronger than that in the X-M (Fig. S19c, d). We believe that the side band in -M  

corresponds to the side beam continuously varying from 70 at ~202 THz to 58  at 210 THz 

(Fig. S19 b). Because this side band is also stronger than the linear bands near the  point, its 

corresponding side beam is stronger than the refracted beam. We also note that the refracted beam 

shows a gap at ~202 THz. It is due to the fact that most power at this frequency is shifted from the 

linear bands to the side band in . 

Because the period of the pillar array (690 nm) is not much smaller than the effective 

wavelength in the SU-8 slab waveguide (1033 nm at the design wavelength of 1590 nm), we also 

consider the effects of diffraction at the interface between the prism and the SU-8 slab waveguide37 

(Fig. 1). This diffraction is described by the grating equation, mdd
m eff2eff1 sin45sin , 

where d  is the spacing between neighboring silicon pillars along the interface ( a2 , where a  is 

the period of the silicon pillar arrays as shown in Fig. 1a), 
m

 is the angle between the diffracted 

ray and the surface normal, m  is the order of the diffracted mode, eff1 and eff2  are the effective 

wavelengths in the prism and the SU-8 slab waveguide, respectively. In our case, 

i19.52-9069021033sin 1

1
, indicates that the output from the prism only includes 

a zeroth-order beam,  which   is   the  refracted  beam  obeying  Snell’s   law,  without  any  diffraction. 

However, diffraction will appear if the mode index of the output slab waveguide is larger than 

1.63. In practical integrated-photonics applications, the diffractions can be suppressed by aligning 

-M



the output facet to the X  orientation, by decreasing the mode indices of the input and output 

waveguides, or by adiabatically tapering down the pillar spacing at the boundaries. 

S.10 Far-field patterns with different normalizations 

In Fig. 3c, we show the far-field patterns normalized at each wavelength in the refraction-

angle range of 4545 . Here, we show the far-field patterns normalized to the global 

maximum and at each wavelength, respectively, in the refraction-angle range of 9090 . 

As shown in Fig. S20a, both measured and FDTD far-field patterns show that most of the energy 

goes to the refracted beam around the zero-index wavelength, 1570 nm. This is because we 

optimize our metamaterial to exhibit both a real index of zero and low propagation loss at the 

design wavelength (Section 3). Fig. S20b shows that one side beam shifts from 75  at 1580 nm 

to 60  at 1480 nm while the other side beam shifts from 40  at 1680 nm to  at 1643 nm. 

S.11 Prism index extraction and error estimation 

We extract the prism index from InGaAs images of refraction through a zero-index 

metamaterial prism. Figs. 1b and S21a show a silicon waveguide feeding into a triangular prism, 

which couples to a large SU-8 slab waveguide with a radius of 125 μm . Light enters through the 

silicon waveguide and refracts through the prism into the SU-8 slab waveguide. This beam scatters 

at the edge of the SU-8 slab waveguide, and is imaged from above using an InGaAs camera (Fig. 

S21b). Images are taken for a range of input wavelengths between 1480 nm and 1680 nm. In 

addition to refraction images, we use reference images to identify alignment marks, which are used 

to locate and orient the prism. 

We first determine the position of the alignment marks in the microscope images using a 

2D Gaussian fit. This allows us to orient the prism and map pixels near the edge to polar 

45



coordinates. The refracted beam is then located using a polar 2D Gaussian fit to extract the 

refracted  angle.  This  refracted  angle  is  used  to  calculate  the  prism  index  using  Snell’s  law  and  the  

effective index of the SU-8 slab waveguide. The measurement error is propagated throughout the 

calculation and includes the effects of camera pixel size, resolution, and fit uncertainty due to 

variance in the data. 

A. Alignment marks 

There are two alignment marks placed at 45  relative to the surface normal of the prism 

output, and 139.2 μm  from the center of the prism (Fig. S21a). They are both 3 μm  wide, and 

show up brightly in the images as shown in Fig. S22a. By identifying the locations of each 

alignment mark we can determine the SU-8 slab waveguide’s  radius   r , rotation offset , and 

prism location from which we define the origin : 
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where the measured values AM1AM1, yx  and AM2AM2 , yx  are the coordinates of the two alignment 

marks. 

To determine the center of the alignment marks, we fit the intensity profile of each mark 

to a 2D Gaussian function: 
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The fitting parameters are amplitude a , x -center position xb , y -center position yb , width c , 

and intensity offset d . We use a nonlinear least-squares optimization method to minimize the 

residuals of the data (Fig. S22b). This solution also includes an estimate of the covariance of the 

fitting parameters. 

To ensure accurate fits for the data, we consider only the pixels in the vicinity of the 

alignment marks. Too narrow a window would reduce the fit quality, and too wide a window would 

include other peaks. We use a 20-pixel-wide window, which is significantly wider than the 

alignment mark ( 38.1c px), but small enough to exclude extraneous features. The window is 

centered at the maximum intensity for each alignment mark. From the fit, we calculate the SU-8 

slab waveguide radius r , offset angle  and the origin position . 

B. Refraction angle 

From the measured positions of the alignment marks, we can define the edge of the SU-8 

slab waveguide. The refracted beam propagating along the SU-8 slab waveguide will be scattered 

from this edge, appearing as a bright band. Since the edge is curved, it is convenient to map the 

positions of the pixels to polar coordinates centered at the prism (Fig. S23b). We can then locate 

the center of the refracted beam using the same method as for the alignment marks. 

Pixels are mapped to polar coordinates ,, ryx  according to the alignment mark 

measurements: 
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In polar coordinates, we fit the beam intensity profile to another 2D Gaussian, this time 

allowing for two peaks to account for the sometimes-irregular beam profile: 
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The refracted angle is measured using the stronger of the two peaks. Fig. S23d shows an 

example of the 2D Gaussian fit for an excitation wavelength of 1590 nm. We repeat this 

measurement for several wavelengths to track the refracted beam. 

C. Prism index 

The prism index is calculated using the measured refraction angle. Light enters the prism 

normal to the input surface, and refracts into the SU-8 slab waveguide at an incident angle of 45 . 

From  Snell’s  law: 

c
c

slabprism sin254.1
45sin
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nn  

The extracted index shows a continuous transition from positive to negative index with 

increasing wavelength (Fig. 3d). The zero crossing is centered on 1570 nm, where the index 

dispersion is linear. The error bars in this plot represent the uncertainty in the measured index, 

assuming a confidence level of 95%38. They include the effects of the image size, pixel size, 

resolution, and propagated errors from each measurement stage. Given the calculated uncertainty 

in  the  measurement,  the  observed  zero  index  “bandgap”,  in  which  the  real  index  is  equal  to  zero  

with 95% confidence, is at most 49 nm wide. 

S.12 Change in Dirac cone with different pillar radii 

To verify that the measured zero index is due to the existence of a Dirac cone, we simulate 

and fabricate a prism with pillar radii that are larger than that of the prism in Fig. 3, . nm190r



For this prism, we compare the band structure as well as the measured and simulated indices to the 

ideal case. The simulated band structure only exhibits a Dirac cone for the ideal radius 

; otherwise, a bandgap appears between the electric monopole mode and the transverse magnetic 

dipole modes (Fig. S24a, c). When the radius deviates from the ideal case, the real part of the index 

is fixed at zero over a range of wavelengths between the positive and negative index regimes, 

indicating a bandgap. From an effective medium perspective, changing the pillar radius breaks the 

degeneracy of the magnetic and electric plasma frequencies, resulting in a frequency range in 

which either the effective permittivity or effective permeability is negative, but not both. 

The band structure for a metamaterial with larger  shows dipole modes at the  point 

that are redshifted, so as to open a bandgap in the wavelength regime of 1570 to 1610 nm (Fig. 

S24a). This fact is clearly verified by the measured and simulated  shown in Fig. S24b: the 

zero crossing of the index is redshifted, and the measured index remains at zero throughout the 

bandgap region. In simulations, the refracted beam is relatively weak for these wavelengths, 

resulting in relatively large fitting uncertainty within the bandgap. Here, we plot the simulated 

index with a dashed line when the uncertainty is larger than the average uncertainty over the entire 

bandwidth. Considering the error bars, the measured bandgap is at most 95 nm wide, centered at 

1568 nm (from 1520 to 1615 nm), which is 94% wider than that of the prism with ideal radius. 

These results confirm the importance of degeneracy of the monopole and dipole modes, 

and establish a connection between predicted band structure and prism index. We show that the 

experimentally measured zero index of our metamaterial with the ideal radius of  

corresponds to a Dirac cone at the  point. 
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S.13 Control experiment 

To validate the results of the metamaterial prism index measurement, we perform a control 

measurement on the same measurement setup (Fig. 1b, c) without the prism. In this control device, 

light from the input silicon waveguide couples directly into free space ( 1airn ) before entering 

the SU-8 slab waveguide at an incident angle of 45  (Fig. S25a). Using the same experimental 

and simulation methods as the prism measurement, we observe a refracted beam in the far field at 

an angle of 32.161.25  (Fig. S25b).   Based   on   the   Snell’s   law,   this   angle   corresponds   to  

refraction from a material with index 04.094.0n , which is very close to the index of air. Fig. 

S25c shows the measured and simulated indices of the control experiment, which agree with each 

other well throughout the measurement wavelength range. 

These results confirm that the measured index shown in Fig. 3 corresponds to the effective 

index of the metamaterial prism, instead of the artifact of the measurement setup. 

 



 

Fig.S1. Simulated far-field patterns for metamaterial prisms with (a) 55 pitches, (b) 1010  

pitches, (c) 1515 pitches, and (d) 2020 pitches. The white dashed line indicates the 

wavelength, 1590 nm, at which the metamaterial is designed to exhibit a zero index (Section S.3). 



 

Fig.S2. Transmission of metamaterial prisms of various sizes: 55 pitches, 1010 pitches, 

1515  pitches, and 2020 pitches. This represents the total power transmitted from the output 

facet of the prism to the SU-8 slab waveguide (Fig. 3b). 



 

Fig.S3. Dirac cones correspond to the structures without the gold mirrors. Band structures 

corresponding to four different geometries that exhibit degeneracies for the electric monopole 



mode (red dots) and the transverse magnetic dipole mode. A, B, C and D correspond to SU-8 

thicknesses of 687.5 nm, 1125 nm, 1575 nm and 1725 nm, respectively. 

 

Fig.S4. Propagation loss for structures with modal degeneracies with (blue) and without (red) gold 

mirrors for the geometries (A, B, C, D) indicated in Fig. S3 and Fig. S15. 



 

Fig.S5. Dirac cone corresponds to the structure without the gold caps on top of the silicon pillars 

for a radius of 189 nm and a pitch of 727 nm. Red dots: electric monopole mode. This dispersion 

was designed using the method outlined in section S.3.  



 

Fig.S6. Effective index effn  of the presented Dirac-cone metamaterial as a function of pitch a  and 

radius r  (Fig. 1a) at the design wavelength, nm1590 : (a) Real effn ; (b) Imaginary effn ; (c) 

Absolute value of effn . 



 

Fig.S7. Effect of disorder in pillar radius on the transmission through 8 unit cells. 



 

Fig.S8. Propagation loss as a function of number of unit cells: the slope of the line corresponds to 

the propagation loss; the intercept between the line and the  axis corresponds to the coupling 

loss associated with the metamaterial. 

y



 

 

Fig.S9. Simulated far-field pattern for metamaterial prism with 1010  pitches for the wavelength 

at which the metamaterial exhibits a designed zero index,  λ = 1590 nm (Section S.3). 

 



 

Fig.S10. Comparison of band structures of the presented metamaterial (Fig. 1a) computed by 

determining the angular frequencies as a function of wave vector for all the Bloch modes (blue 

dot), and by cnk eff  with the retrieved effective index effn  (red curve). 



 



Fig.S11. The phase of the electric field within a Dirac-cone metamaterial compared with that of a 

homogenized zero-index medium near the interface with an input waveguide. (a): Cross-sectional 

views of the Dirac-cone metamaterial (top, parameters are as in Fig. 1a) and its homogenized 

model (bottom). The input waveguide consists of SU-8 clad by gold films, and the homogenized 

zero-index medium is defined by the retrieved constitutive parameters at 1590 nm in Fig. 2e. (b): 

Phase of zE  in the range of 2,0  of the Dirac-cone metamaterial (top) and its homogenized 

model (bottom) in a plane parallel to the substrate. The phase corresponds to the electric field 

perpendicular to the plane of propagation, zE  at a wavelength of 1590 nm. The dashed lines 

indicate the interface (the left edge of the metamaterial unit-cell or the boundary of the 

homogenized model) and pillar positions within the Dirac-cone metamaterial. (c): Same phase as 

in (b) but unwrapped to show constant phase advance in the SU-8 region. (d): Comparison of the 

unwrapped phase along the propagation direction in the Dirac-cone metamaterial and the 



corresponding homogenized model. The phase is sampled along the top or bottom edge of the 

simulation region in (c). 

 

Fig.S12. Angle-dependent transmission of (a) the Dirac-cone metamaterial and (b) its 

homogenized model. Transmission is normalized to its maximum value. 

 



Fig.S13. Imaginary parts of the effective relative permittivity and permeability of the metamaterial 

retrieved from numerically calculated reflection and transmission coefficients. 

 

Fig.S14. Simulated zE  in the prism and SU-8 slab waveguide region at 1590 nm. Comparison of 

(a): a metamaterial prism (parameters are as in Fig. 1a), and (b): a prism composed of a 

homogenized model based on the retrieved constitutive parameters from Fig. 2e. 



 



Fig.S15. Effect of variation in SU-8 thickness 8-SUh  on modes forming the Dirac cone. (a): 

Wavelengths of the electric monopole mode (m: red curve) and the transverse magnetic dipole 

modes ( viii dd : blue curve) at point for various 8-SUh . (b): Band structures corresponding to 



the four intersections (A, B, C, D) of the electric monopole mode and the four different transverse 

magnetic dipole modes ( ivi dd  in  (a)). 

 

Fig.S16. Simulated mode profiles in one unit-cell of metamaterials with different SU-8 thicknesses 

8-SUh  at the Dirac-point wavelength (Fig. S15b). (a) xy -plane and xz -plane zE  corresponding to 

the electric monopole mode of the metamaterial with nm5508-SUh . (b) xy -plane and xz -plane 

zE  corresponding to the transverse magnetic dipole mode of the metamaterial with nm5508-SUh



. (c-e) xz -plane zE corresponding to the electric monopole mode (left) and transverse magnetic 

dipole mode (right) of the metamaterial with nm1475nm,9758-SUh  and nm1975 , respectively. 

 

Fig.S17. Simulated zE  and interference patterns in the spatial and spectral domains. Comparison 

of the (a) simulated zE  for our fabricated prism structure when coupled to a 2-μm-thick SU-8 slab 

waveguide and (b) our fabricated prism structure when coupled to a 0.8-μm-thick SU-8 slab 



waveguide. (c) zE  sampled in a plane perpendicular to the propagation plane along the refracted 

beam and (d) its corresponding Fourier transform. 

 

Fig.S18. Near-infrared microscope images of the prism and SU-8 slab waveguide region (Fig. 1b, 

c) at (a)1480 nm, (b)1570 nm, and (c)1620 nm. 



 

Fig.S19. 2D metamaterial with its corresponding band structure and far-field pattern. (a) The 

metamaterial consists of a 2D square array of infinitely long silicon pillars in an SU-8 matrix. The 

pitch and radius of the silicon pillars are 659.5 nm and 170.25 nm, respectively. (b) Simulated far-

field pattern of a metamaterial prism consisting of 88  pitches, whose output facet is coupled to 

a 2D semi-circular slab of SU-8 (cross-section is the same as that in Fig. 1b). The white dashed 

line indicates the frequency, 193.55 THz (1550 nm), at which the 2D metamaterial shows a zero 



index. (c) Photonic band structure of this 2D metamaterial for TM modes. The red lines are the 

light lines of the output 2D SU-8 slab waveguide. (d) Same as (c) but in linear scale. 

 

Fig.S20. Measured (left) and simulated (right) far-field patterns normalized to global maximum, 

(a), and at each wavelength, (b). The white dashed line indicates the wavelength, 1570 nm, at 

which the refracted beam crosses . 0



 

Fig.S21. Prism-based measurement configuration. (a) Schematic and (b) microscope image of the 

measurement configuration. In (a), a silicon waveguide directs light into a metamaterial prism, 

which couples to an SU-8 slab waveguide. A separate SU-8 waveguide, outside of the SU-8 slab 

waveguide, is used to illuminate alignment marks. In (b), white dashed lines indicate the position 

of the silicon waveguide and the SU-8 slab waveguide. 

 

Fig.S22. Location of illuminated alignment marks. (a) InGaAs image of an alignment mark. (b) 

2D Gaussian fit of the measured intensity. Red dots: measured intensities; colored surface: 



Gaussian surface fit. In (b), we fit the measured intensity values to a 2D Gaussian model using a 

nonlinear least-squares algorithm. 

 

Fig.S23. Extracting refraction angle from InGaAs images. (a) Measured intensity values in the 

Cartesian coordinate. (b) Measured intensity values mapped to the polar coordinate. From (a) to 

(b), the curved edge of the SU-8 slab waveguide is transformed to a horizontal line. (c) Magnified 

view of the refracted beam region. (d) 2D Gaussian fit of the measured intensity in (c). Red dots: 



measured intensities; colored surface: Gaussian surface fit. In (d), we fit the measured intensity 

values to a 2D Gaussian model to extract the refracted angle. 

Fig.S24. Change in photonic band structure and extracted effn  for different pillar radii. (a, c): Band 

structures of metamaterials with pillar radii r  210.5 nm and 190 nm, respectively. The electric 

monopole mode is indicated by red dots, and the magnetic dipole modes are indicated by blue dots. 

Insets show 
zE  profiles corresponding to each band at the  point. (b, d): Effective indices effn  

extracted from refractions through prisms with r  210.5 nm and 190 nm, respectively. 



Simulations are shown by red curves, and measured results are shown by blue dots with error bars. 

The grey bar indicates the bandgap region, as predicted by the band structure. 

 

Fig.S25. Optical image, simulation and experimental results of the control experiment. (a) Optical 

image of the control device. This device is the same as the measurement setup in Fig. 1b, c except 

for the absence of the metamaterial prism. (b): Simulated (left) and measured (right) far-field 

patterns. (c) Measured and simulated effective index of the control experiment. The blue dots 



indicate the measured refractive index, with error bars representing the uncertainties in the 

measurement. The measurement agrees well with the simulated effective index (red line). 

 

Fig.S26. (a) Magnitude and (b) phase of the numerically calculated reflection (
11S ) and 

transmission (
21S ) coefficients (S parameters) of the presented metamaterial (Fig. 1a). 

 

 


