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On Chomsky Hierarchy of Palindromic Languages∗

Pál Dömösi†, Szilárd Fazekas‡, and Masami Ito§

Abstract

The characterization of the structure of palindromic regular and palindromic
context-free languages is described by S. Horváth, J. Karhumäki, and J. Kleijn
in 1987. In this paper alternative proofs are given for these characterizations.

Keywords: palindromic formal languages, combinatorics of words and lan-
guages

1 Introduction

The study of combinatorial properties of words is a well established field and its
results show up in a variety of contexts in computer science and related disciplines.
In particular, formal language theory has a rich connection with combinatorics on
words, even at the most basic level. Consider, for example, the various pumping
lemmata for the different language classes of the Chomsky hierarchy, where ap-
plicability of said lemmata boils down in most cases to showing that the resulting
words, which are rich in repetitions, cannot be elements of a certain language. After
repetitions, the most studied special words are arguably the palindromes. These
are sequences, which are equal to their mirror image. Apart from their combi-
natorial appeal, palindromes come up frequently in the context of algorithms for
DNA sequences or when studying string operations inspired by biological processes,
e.g., hairpin completion [2], palindromic completion [10], pseudopalindromic com-
pletion [3], etc. Said string operations are often considered as language generating
formalisms, either by applying them to all words in a given language or by apply-
ing them iteratively to words. One of the main questions, when considering the
languages arising from these operations, is how they relate to the classes defined
by the Chomsky hierarchy. In order to investigate that, one usually needs to refer
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to the characterization of palindromic languages, i.e., languages in which all words
are palindromes.

Characterization of palindromic regular and context-free languages was given
in [7]. Regular palindromic languages have a simple characterization, which is the
basis (essentially using the same idea) of the characterizations of pseudopalindromic
and k-palindromic languages and the decidability results rooted in them [3].

In this paper we give alternative proofs of these characterizations. Due to the
previously mentioned resurgence of interest in (pseudo-)palindromic languages, we
think that it is important to have clear and, where possible, effective proofs for
these results readily available. The paper by Horváth et al. is correct, and it
conveys the main idea characterizing palindromic languages. However, the proofs
omit several (tedious) details and explicit constructions. The latter and the fact
that the availability of the paper is unfortunately rather limited, are the two main
reasons which prompted us to write the present work. While our line of thought is
similar to the original work of Horváth et al., we make use of results discovered since
then (e.g. about bounded languages) to make the proofs simpler yet complete with
details. We also present some explicit constructions in the proofs, which lead to a
normal form of context-free grammars generating palindromic languages. As the
proofs progress, we will point out differences between our work and the arguments
in [7].

2 Preliminaries

A word (over Σ) is a finite sequence of elements of some finite non-empty set Σ. We
call the set Σ an alphabet, the elements of Σ letters. If u and v are words over an
alphabet Σ, then their catenation uv is also a word over Σ. In particular, for every
word u over Σ, uλ = λu = u, where λ denotes the empty word. Two words u, v
are said to be conjugates if there exists a word w with uw = wv. For a word w, we
define the powers of w inductively, w0 = λ and wn = wn−1w, where wn is the n-th
power of w. A nonempty word w is called primitive if it is not a power of another
word, i.e., w = vk implies v = w and k = 1. Otherwise we call it a nonprimitive
word. Thus λ is also considered a nonprimitive word.

The length |w| of a word w is the number of letters in w, where each letter is
counted as many times as it occurs. Thus |λ| = 0. By the free monoid Σ∗ generated
by Σ we mean the set of all words (including the empty word λ) having catenation
as multiplication. We set Σ+ = Σ∗ \ {λ}, where the subsemigroup Σ+ of Σ∗ is said
to be the free semigroup generated by Σ. Subsets of Σ∗ are referred to as languages
over Σ. Denote by |H| the cardinality of H for every set H. A language L is said to
be slender if there exists a nonnegative integer c, such that for all integers n ≥ 0
we have |{w ∈ L : |w| = n}| ≤ c.

For a nonempty word w = x1 · · ·xn, where x1, . . . , xn ∈ Σ, we denote its reverse,
xn · · ·x1, by wR. Moreover, by definition, let λ = λR, where λ denotes the empty
word of Σ∗. We say that a word w is a palindrome (or palindromic) if w = wR.
Further, we call a language L ⊆ Σ∗ palindromic if all of its elements are palindromes.
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A language L ⊆ Σ∗ is called a paired loop language if it is of the form L =
{uvnwxny|n ≥ 0} for some words u, v, w, x, y ∈ Σ∗.

Finally, as usual, we write a generative grammarG into the formG = (V,Σ, S, P ),
where V and Σ are disjoint nonempty finite sets, the set of nonterminals, and the
set of terminals, S ∈ V is the start symbol, and P ⊂ (V ∪ Σ)∗V V × (V ∪ Σ)∗ is
the finite set of derivation rules. For every sentential form W ∈ (V ∪ Σ)∗, LG(W )
denotes the language generated by W, and L(G) (= LG(S)) denotes the language
generated by G. Our results are related to well-known classes of the Chomsky hi-
erarchy, that of context-free languages and regular languages. Apart from those
two, we will use the notion of linear grammars (languages). For all three classes,
P ⊂ V × α, where α = (V ∪ Σ)∗ for context-free grammars, α = Σ∗(V ∪ {λ})Σ∗
for linear grammars, and α = Σ∗(V ∪ {λ}) for regular grammars.

We shall use the following classical results.

Theorem 1. [1] Let L be a regular language. Then there is a constant n such
that if z is any word in L, and |z| ≥ n, we may write z = uvw in such a way that
|uv| ≤ n, |v| ≥ 1, and for all i ≥ 0, uviw is in L. Furthermore, n is no greater than
the number of states of the finite automaton with minimal states accepting L.

Theorem 2. The family of context-free languages is closed under the inverse ho-
momorphism.

Theorem 3. [1] The language L ⊆ Σ∗ is context-free if and only if for every regular
language R ⊆ Σ∗, L ∩R is context-free.

Theorem 4. [6] Given an alphabet Σ, a nonempty word w ∈ Σ+, each context-free
language L ⊆ w∗ is regular having the form

∪ki=1w
mi(wni)∗ for some m1, n1, . . . ,mk, nk ≥ 0. (1)

Theorem 5. [8, 9, 12] Every slender context-free language is a finite disjoint union
of paired loop languages.

The following statement is well-known.

Proposition 1. Given a context-free grammar G = (V,Σ, S, P ), a sentential form
W ∈ (V ∪ Σ)∗, the language SG(W ) is also context-free.

Theorem 6. [13] Given a positive integer i, a pair u, v ∈ Σ+, let uv = pi for some
primitive word p ∈ Σ+. Then vu = qi for a primitive word q.

Theorem 7. [11] If uv = vq, u ∈ Σ+, v, q ∈ Σ∗, then u = wz, v = (wz)kw, q = zw
for some w ∈ Σ∗, z ∈ Σ+ and k ≥ 0.

Theorem 8. [11] The words u, v ∈ Σ∗ are conjugates if and only if there are words
p, q ∈ Σ∗ with u = pq and v = qp.

Theorem 9. [4] Let u, v ∈ Σ∗. u, v ∈ w+ for some w ∈ Σ+ if and only if there
are i, j ≥ 0 so that ui and vj have a common prefix (suffix) of length |u| + |v| −
gcd(|u|, |v|).
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We shall use the following direct consequence of this result.

Theorem 10. If two non-empty words pi and qj share a prefix of length |p|+ |q|,
then there exists a word r such that p, q ∈ r+.

3 Results

We start with alternative proofs of some results of S. Horváth, J. Karhumäki, J.
Kleijn [7].

First we turn to consider regular languages. We present a proof which is shorter
than the one in [7] and does not make direct reference to the underlying finite
automata and is instead based solely on the pumping lemma for regular languages
and combinatorial results. The following is a simple result, and essentially the
same idea has been used for instance for the characterization of pseudopalindromic
regular languages [3].

Theorem 11. [7] A regular language L ⊆ Σ∗ is palindromic if and only if it is a
union of finitely many languages of the form

Lp = {p}, Lq,r,s = qr(sr)∗qR, (p, q, r, s ∈ Σ∗), (2)

where p, r and s are palindromes.

Proof. Clearly, any finite union of languages in (2) is both palindromic and regular.
Conversely, let L be a palindromic regular language and n be the language-specific
constant from Theorem 1. Naturally, there are finitely many words shorter than
n, those will form the languages Lp. For any suitably long word w ∈ L, according
to Theorem 1, we have a factorization w = qvz, with 0 < |qv| ≤ n and v 6= λ,
such that qviz ∈ L, for any i ≥ 0. The two cases being symmetric, we may assume
|q| ≤ |z|, i.e., z = xqR, for some x ∈ Σ∗, with vix being a palindrome. This
gives us x = r(vR)j , for some r with vR = sr and some j ≥ 0. But, for large
enough i, vix ends in sx = (vRvR)Rx = (rRsR)2r(vR)j and it starts with vj+2,
so we instantly get v = rRs and thus s = sR. It also follows, that vR = sRr and
vR = sRrR, hence r is a palindrome, too. Then, our original word w can be written
as qr(sr)j+kqR. A similar decomposition, according to Theorem 1 is bound to exist
for all words longer than n. All parts of the decomposition, q, r and s are shorter
than n, therefore there are finitely many triplets like this.

Next we prove the following simple observation.

Proposition 2. Given a pair of positive integers i, j, let p, r, u, w ∈ Σ∗, v ∈ Σ+

be arbitrary with |p| ≤ |u|, |r| ≤ |w| and let q ∈ Σ+ be a primitive word having
|vj | ≥ |v|+ 3|q| such that pqir = uvjw. Then there exists a positive integer k such
that v and qk conjugate.
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Proof. By our assumptions, there exists a pair of factorizations u = pu′, w = v′q
such that qi = u′vjv′. Because |vj | ≥ |v| + 3|q|, |u′v′| = |qi| − |vj | ≤ |qi| − |v| −
3|q| < |qi−3|, there are a positive integer n, a suffix q2 and a prefix q3 of q such
that vj = q2q

nq3. Hence vj = q2(q1q2)nq3 = (q2q1)nq2q3 for some decomposition
q = q1q2 and prefix q3 of q. By our conditions, |vj | − |q3| ≥ |v| + 3|q| − |q3| ≥
|v| + 2|q| > |v| + |q|. Therefore, applying Theorem 10, we obtain v, q2q1 ∈ z+ for
some primitive word z ∈ Σ+. By Theorem 6, q2q1 is also primitive. Therefore,
z = q2q1. Hence v = (q2q1)k for some k > 0. Then Theorem 8 implies that v and
qk conjugate.

Now we continue with palindromic context-free languages. The line of thought
is similar to the one in [7]. The main differences are as follows. The original
proof of Theorem 12 is very succinct and only hints at the constructions needed
to transform context-free grammars generating palindromic languages into linear
grammars. We develop the result in detail. Afterwards, we show that for a linear
grammar generating a palindromic language, one can find a “normal form”, called
palindromic grammar in [7]. Again, the original proof provides the combinatorial
arguments to show that this is possible, but does not give an explicit construction.
We present such a construction in the proofs of Lemmas 4 and 5. The technical
details might at times be somewhat difficult to follow due to the proliferation of
notation. To remedy that as much as possible, we decomposed the proofs in several
lemmas.

Lemma 1. Let G = (V,Σ, S, P ) be a context-free grammar, such that L(G) is
palindromic. Then, for any rule of the form X → pAqBr ∈ P , with p, q, r ∈ Σ∗,
X,A,B ∈ V , and |LG(A)| > 1, |LG(B)| > 1, we have that both LG(A) and LG(B)
are slender context-free languages.

Proof. Without loss of generality we can assume that V is reduced, i.e., for every
X ∈ V, LG(X) 6= ∅.

We will show that for every q1, q2 ∈ Σ∗, with A
∗
⇒
G
q1, A

∗
⇒
G
q2, we have that

q1 6= q2 implies |q1| 6= |q2|. Similarly, for every r1, r2 ∈ Σ∗, with B
∗
⇒
G
r1, B

∗
⇒
G
r2, we

have r1 6= r2 implies |r1| 6= |r2|. Because G is reduced, there are u, y ∈ Σ∗ having

S
∗
⇒
G

uXy. Therefore, A
∗
⇒
G

q1 and A
∗
⇒
G

q2 imply that for every r′ ∈ LG(B),
upq1qr

′ry, upq2qr
′ry ∈ L(G), i.e., both of them are palindromes. This is impossible

if |q1| = |q2| with q1 6= q2, unless q1 = xz1x
′ and q2 = x′′z2x

′′′, where z1 and z2

are palindromes and upx = (x′qr′ry)R, upx′′ = (x′′′qr′ry)R. However, then for any
r′′ ∈ LG(B) different from r′, one of the words upq1qr

′′ry, upq2qr
′′ry will not be a

palindrome, but should be in L(G), a contradiction.

Similarly, B
∗
⇒
G
r1 and B

∗
⇒
G
r2 imply that for every q′ ∈ LG(A), we have upq′qr1ry,

upq′qr2ry ∈ L(G), i.e., both of them are palindromes. This is impossible if |r1| =
|r2| and r1 6= r2, and |LG(A)| > 1. This means, that both LG(A) and LG(B) are
slender context-free.
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Lemma 2. Let L1 and L2 be paired loop languages. If L1L2 is palindromic, then
L1L2 can be generated by a linear grammar.

Proof. The words in L1L2 are of the form u1v
i
1w1x

i
1u2v

j
2w2x

j
2u3 and we assume

they are palindromes for any i, j ≥ 0.
If one of the words v1, x1, v2, x2 is empty, then we can generate L1L2 with

linear rules, e.g., if x1 is empty then we can generate u1v
i
1w1, i ≥ 0, by linear

rules X → u1A, A → v1A, A → w1u2B and the rest of the word by linear rules
B → Cu3, C → v2Cx2, C → w2.

Therefore, if one of v1, x1, v2, x2 is empty then we are ready, so let us assume
that none of them are λ.

W.l.o.g. we may assume that |u1| ≥ |u3|. Choose j ≥ 2 such that:

• |xj2u3| − |u1| ≤ 2|x2|,

• |u1v
2
1 | ≤ |x

j
2u3| and

• |vj2| ≥ 2|v1|.

Choose i such that |u1v
i
1| ≥ |u2v

j
2w2x

j
2u3|. As the word is a palindrome, this means

that (u2v
j
2w2x

j
2u3)Rt = u1v

i
1, for some possibly empty word t. By Theorem 9, we

get that the primitive roots of v1, v
R
2 , x

R
2 are all conjugates of some primitive word

z and (u2v
j
2w2x2)R is a factor of zk, for large enough k. If we choose j and i such

that |vj2u3| > |u1v
i
1w1x

i
1| and |xi1| > 2|x2|, then again from Theorem 9, we get that

the primitive root of x1 is also a conjugate of z. Moreover, if we choose i such
that either v1 or x1 is in the middle of the word, then we get that there exist some
palindromes z1, z2 such that z1z2 is a conjugate of z. This means that for any
i, j we have u1v

i
1w1x

i
1u2v

j
2w2x

j
2u3 ∈ uR3 (z1z2)+z1u3. As |v1|, |x1|, |v2| and |x2| are

all multiples of |z1z2|, we get that L can be generated by a linear grammar with
derivation rules of the form S → uR3 z1Xu3 and X → (z2z1)n1X, X → (z2z1)n2X,
X → (z2z1)m, for some positive integers m,n1, n2, such that n1 · |z| = |v1x1|,
n2 · |z| = |v2x2| and m · |z| = |w1|+ |u2|+ |w2|+ (|u1| − |u3| − |z1|).

Theorem 12. [7] Every palindromic context-free language is linear.

Proof. Let G = (V,Σ, S, P ) be a context-free grammar generating the palindromic
language L. Without loss of generality we can assume that V is reduced, i.e.,
for every X ∈ V, LG(X) 6= ∅. In particular, we may assume for every X ∈ V,
|LG(X)| =∞. Indeed, if |LG(X)| <∞, then we can eliminate the derivation rules

Y →W1XW2X · · ·WnXWn+1, X →W ∈ P,

W,W1,W2, . . . ,Wn+1 ∈ ((V \ {X}) ∪ Σ)∗ by new derivation rules of the form

Y →W1w1W2w2 · · ·wnWn+1, w1, . . . , wn ∈ LG(X).

It can also be assumed that for every X →W ∈ P, there are at most two (not neces-
sarily different) nonterminals appearing in W. Indeed, if
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X → u1A1 · · ·unAnun+1 ∈ P with X,A1, . . . , An ∈ V, u1, . . . , un ∈ Σ∗, n > 2
then we can eliminate this derivation rule by the following new derivation rules
using some new nonterminals A′1, . . . , A

′
n−1 :

X → u1A1u2A
′
2, A

′
2 → A2u3A

′
3, . . . , A

′
n−2 → An−2un−1A

′
n−1, A

′
n−1 → An−1un.

Next we show that the derivation rules of the form X → pAqBr with p, q, r ∈
Σ∗, A,B ∈ V can be eliminated.

Since we assumed LG(A) and LG(B) are infinite languages, by Lemma 1 both
of them are slender context-free languages, hence so are {p} · LG(A) · {q} and
LG(B) · {r}. Using Theorem 5, we get that LG(pAqBr) is a concatenation of two
paired loop languages and it is palindromic. From here, applying Lemma 2 gives
that LG(pAqBr) can be generated by linear derivation rules.

Thus we receive that L(G) can be generated by a linear grammar.

Lemma 3. Given an alphabet Σ, words v, z ∈ Σ∗, a non-empty word w ∈ Σ+, each
context-free language L ⊆ vw∗z is regular having the form

v(∪ki=1w
mi(wni)∗)z for some m1, n1, . . . ,mk, nk ≥ 0. (3)

Proof. Let a, b, c distinct symbols and consider a homomorphism ψ : {a, b, c} → Σ∗

with ψ(a) = v, ψ(b) = w,ψ(c) = z. Then ψ−1(L)∩ab∗c = {abkc | vwkz ∈ L, k ≥ 0}.
On the other hand, using that ab∗c is obviously a regular language, Theorem 2 and
Theorem 3 imply that ψ−1(L) ∩ ab∗c is also context-free. Let ψ′ : {a, b, c} →
b∗ be a homomorphism with ψ′(a) = ψ′(c) = λ and ψ′(b) = b. By Theorem 2,
ψ′(ψ−1(L) ∩ ab∗c) is also context-free. On the other hand, ψ′(ψ−1(L) ∩ ab∗c) =
{bk | vwkz ∈ L, k ≥ 0}, therefore, by Theorem 4, it is regular which can be written
into the form ∪ki=1b

mi(bni)∗ for some m1, n1, . . . ,mk, nk ≥ 0. This implies that L
is regular having the form as in (3).

Given a grammar G = (V,Σ, S, P ), we say that a nonterminal X ∈ V is non-

balanced if there are p, q ∈ Σ∗ with |p| 6= |q| such that X
∗
⇒
G
pXq. Otherwise,

we say that X is balanced. We will show that for each palindromic context-free
language, there exists a linear grammar in a palindromic normal form. The proof
requires two steps: first we show that such languages can be generated by grammars
with balanced nonterminals, and then we show that any grammar with balanced
nonterminals can be effectively transformed into a grammar in palindromic normal
form.

Lemma 4. Every palindromic context-free language can be generated by a G =
(V,Σ, S, P ), such that each non-terminal in V is balanced.

Proof. Consider an arbitrary palindromic context-free language L. By Theorem 12,
we have that L is linear. Thus there exists a linear grammar G = (V,Σ, S, P ), such
that L(G) = L. Without loss of generality, we may assume that G is reduced,
moreover, P ⊆ {X → aY b | X ∈ V, Y ∈ V ∪ {λ}, a, b ∈ Σ ∪ {λ}, ab 6= λ}. Indeed,
if X → paY bq ∈ P with p, q ∈ Σ∗, pq ∈ Σ+, a, b ∈ Σ ∪ {λ}, ab 6= λ, Y ∈ V ∪ {λ},
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then we can eliminate the derivation rule X → paY bq ∈ P by introducing a new
nonterminal symbol Z and the new derivation rules X → pZq, Z → aY b. Thus
we get in finite-many steps that all derivation rules have the form X → aY b,X ∈
V, a, b ∈ Σ ∪ {λ}, Y ∈ V ∪ {λ}.

Clearly, then

L = ∪{{p}LG(X){q} | S
∗
⇒
G
pXq, X ∈ V, p, q ∈ Σ∗, |p|, |q| ≤ |V |}. (4)

Consider a non-balanced nonterminal X, as above. Let us assume X ap-
pears in a derivation at some point as S ⇒ uXv. Then, because X ⇒ pXq,
we get S ⇒ upiXqiv, for all i ≥ 1. Without loss of generality, we may assume
|u| ≤ |v|, that is, since the derived word will be a palindrome, v = wuR, for some
w ∈ Σ∗. Now, to keep arguments simple, let X stand for any word in LG(X).
So, we know that piXqiw is a palindrome for any positive i. For large enough
i, this gives us that wR = pjp1, for some j ≥ 0 and p1 ∈ Σ∗ prefix of p, hence
piXqipR1 (pR)j is a palindrome. Again, if i was big enough for |pi| > |q2pR1 (pR)j |,
then by Theorem 9, we get that for a decomposition q1q2 of qR, its conjugate q2q1

has the same primitive root as p, i.e., there exists some primitive word z ∈ Σ+,
m,n ≥ 1, such that q2q1 = zm and p = zn. Rewriting piXqipR1 (pR)j with
these powers of z, we have zniX(qR2 q

R
1 )ip1(zR)nj = zniXqR2 (qR1 q

R
2 )i−1qR1 p1(zR)nj =

zniXqR2 (zR)m(i−1)qR1 p1(zR)nj is a palindrome, therefore zn(i−j)XqR2 (zR)m(i−1)qR1 p1

is, as well. This means pR1 q1z
2 is a prefix of zn(i−j), and we can apply Theorem 9

again to get that, since z is primitive, pR1 q1 = zk, for some integer k. Since pR1 is
a suffix of pR = (zR)n and q1 is a suffix of zm, there exist non-negative integers
i1, i2 and z′r suffix of zR, z′ suffix of z, such that z′r(z

R)i1z′zi2 = zk. From here,
there is some prefix z′′r of zR, with z′′r z

′
r = zR, z′rz

′′
r = z, so both z′′r and z′r are

palindromes and so are p1 = z′r(z
′′
r z
′
r)
i1 and q1 = (z′′r z

′
r)
k−i1−1z′′r . But q2q1 =

zm = (z′rz
′′
r )m, so q2 = z′r(z

′′
r z
′
r)
m−k+i1+1. From here, zniX(qR2 q

R
1 )ip1(zR)nj =

(z′rz
′′
r )niX(z′rz

′′
r )miz′r(z

′′
r z
′
r)
i1(z′′r z

′
r)
nj=(z′rz

′′
r )niX(z′rz

′′
r )mi+i1+njz′r is a palindrome

for all i ≥ 1. As our original assumption was |p| 6= |q|, i.e., m 6= n, for a large enough
i, the word X will be entirely to the left or right from the center of a palindrome of
the form (z′rz

′′
r )j1X(z′rz

′′
r )j2z′r. Since z′rz

′′
r is primitive, the center of the palindrome

has to be exactly z′r or z′′r , and this means that X ∈ (z′rz
′′
r )+. Then, the language

LG(X) is isomorphic to a unary context-free language, hence it is regular with
rules of the form X → (z′rz

′′
r )m+nX. This way, in our original grammar we can re-

place all rules with X on the left with balanced rules X → (z′rz
′′
r )

m+n
2 X(z′rz

′′
r )

m+n
2

and X → λ, or if m + n is odd, with rules X → (z′rz
′′
r )m+nX(z′rz

′′
r )m+n and

X → (z′rz
′′
r )m+n|λ.

Lemma 5. Every palindromic context-free language can be generated by a grammar
G = (V,Σ, S, P ) having P ⊆ {X → aY a | X,Y ∈ V, a ∈ Σ} ∪ {X → a | X ∈ V, a ∈
Σ} ∪ {X → λ}.

Proof. Now we may assume that V contains only balanced nonterminals, i.e., for

every derivation, X
∗
⇒
G
uXx, where X ∈ V , u, x ∈ Σ∗, |u| = |x|. Then, for every
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X ∈ V , p, q ∈ Σ∗, S
∗
⇒
G
pXq implies ||p| − |q|| < |V |. This obviously holds for

derivations of less than |V | steps, as in each step we add at most one letter to
either side. Assume the contrary for a longer derivation:

X0
⇒
G
x1X1y1

⇒
G
· · ·⇒

G
xn−1Xn−1yn−1 · · · y1

⇒
G
x1 · · ·xnXnyn · · · y1, (5)

where X0 = S, x1, . . . , xn, y1, . . . , yn ∈ Σ ∪ {λ} and n > |V |. Then, there exist
0 ≤ i < j ≤ n, such that Xi = Xj , but Xi is balanced, so |xi · · ·xj | = |yj · · · yi|,
therefore we can remove them from both sides and get that ||x1 · · ·xn|−|yn · · · y1|| =
||x1 · · ·xi−1xj+1 · · ·xn| − |yn · · · yj+1yj−1 · · · yi+1||. Repeating this until we get a
derivation with at most |V | steps, gives us ||x1 · · ·xn| − |yn · · · y1|| ≤ |V |.

Now, to every derivation, we assign two queues (first-in-first-out storages), called
left store and right store. Either both of them are empty, or one of them is empty
and the other one contains a non-empty terminal string of length less than |V |.

At the start, both stores are empty. This status does not change as long as the
applied derivation rules are of the form X → aY a, X, Y ∈ V, a ∈ Σ ∪ {λ}. If the
applied derivation rule has the form X → aY,X, Y ∈ V, a ∈ Σ, then there are two
cases: if the left store is empty, then we drop the terminal letter a onto the top
of the right store; otherwise we delete the terminal letter contained at the bottom
of the left store. In the second case, the bottom of the left store should contain
the same terminal letter a. Otherwise the generated word will not be a palindrome.
Similarly, if the applied derivation rule has the form X → Y b,X, Y ∈ V, b ∈ Σ,
then we have two cases: if the right store is empty, then we drop the terminal letter
b onto the top of the left store; otherwise we delete the terminal letter contained
at the bottom of the right store. In the second case again, the bottom of the right
store should contain the same terminal letter b. Otherwise the generated word will
not be a palindrome.

If the applied derivation rule has the form X → aY b,X, Y ∈ V, a, b ∈ Σ, then
we have the following possibilities: if one of the stores is not empty, then our
procedure works as in the previous cases (like, in order, applying a derivation rule
X → aZ, a ∈ Σ, X, Z ∈ V, and then a derivation rule Z → Y b, b ∈ Σ, Z, Y ∈ V );
if both stores are empty then a = b should hold, otherwise the generated string
will not be a palindrome. After applying the considered derivation rule X →
aY b,X, Y ∈ V, a, b ∈ Σ, the contents of the stores remain the same.

We will construct our grammar such that a derivation rule of the form X →
a, a ∈ Σ ∪ {λ}, X ∈ V can be applied only if either one of the stores contains the
letter a or both stores are empty.

In addition, if both stores are empty, and X
∗
⇒
G
w may hold for the nonterminal

X contained on the left-hand side of the applied derivation rule, then w should
be a palindrome. In addition, if |w| < |V |, then either w = b with b ∈ Σ ∪ {λ},
or w = c1 · · · ctdct · · · c1 for some c1, . . . , ct ∈ Σ, d ∈ Σ ∪ {λ}, 1 ≤ t < |V |. For
the second case, we assume the existence of some derivation rules of the form
X → c1Z1c1, Z1 → c2Z2c2, . . . , Zt−1 → ctZtct, Zt → d, Z1, . . . , Zt ∈ V.

Having these properties, we formally define the following set of derivation rules,
where the (new) nonterminals are supplied by the queues discussed above.
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Let V̄ = {X ∈ V | X
∗
⇒
G
w,w ∈ Σ+, |w| < |V |} and define, in order,

V ′ = {Xλ,λ | X ∈ V } ∪ {Xa1···ak,λ | X ∈ V, a1, . . . , ak ∈ Σ, k < |V |}
∪ {Xλ,b1···bk | X ∈ V, b1, . . . , bk ∈ Σ, k < |V |}

and
P ′ = {Xa1···ak,λ → aYa1···aka,λa,Xλ,a1···ak → Yλ,a1···ak−1

, Xλ,λ → aYa,λa
| X → Y a ∈ P,X, Y ∈ V, a1, . . . , ak, a ∈ Σ, k < |V |} ∪
{Xa1···ak,λ → Ya1···ak−1,λ, Xλ,a1···ak → aYλ,a1···akaa,Xλ,λ → aYλ,aa
| X → aY ∈ P,X, Y ∈ V, a1, . . . , ak, a ∈ Σ, k < |V |} ∪
{Xa1···ak,λ → bYa1···ak−1b,λb,Xλ,a1···ak → aYλ,a1···ak−1aa,Xλ,λ → aYλ,λb
| X → aY b ∈ P,X, Y ∈ V, a1, . . . , ak, a, b ∈ Σ ∪ {λ}} ∪
{Xa1···ak,λ → Ya1···ak,λ, Xλ,a1···ak → Yλ,a1···ak , Xλ,λ → Yλ,λ
| X → Y ∈ P,X, Y ∈ V, a1, . . . , ak,∈ Σ ∪ {λ}} ∪ {Xa,λ → λ,Xλ,a → λ,
Xλ,λ → a | X → a ∈ P,X ∈ V, a ∈ Σ} ∪
{Xλ,λ → λ | X → λ ∈ P} ∪ {Xλ,λ → c1Z1Xλ,λc1,

Z1Xλ,λ → c2Z2Xλ,λc2, . . . , Zt−1Xλ,λ → ctZtXλ,λct, ZtXλ,λ → d | X ∈ V̄ ,

X
∗
⇒
G
c1 · · · ctdct · · · c1, c1, . . . , ct ∈ Σ, d ∈ Σ ∪ {λ}}.

Thus we get that L(G) = L(G′), where G′ = (V ′,Σ, Sλ,λ, P
′), and G′ has the

desired form.

Theorem 13. [7] A context-free language L ⊆ Σ∗ is palindromic if and only if
it is a disjoint union of |V | languages of the form {papR | p ∈ La}, where the
La (a ∈ Σ ∪ {λ}) are regular languages (uniquely determined by L).

Proof. Given an alphabet Σ, for every a ∈ Σ ∪ {λ} consider a regular language
La. It is clear that L =

⋃
a∈Σ∪{λ} {papR : p ∈ La} is palindromic and linear

(and thus, it is also context-free). Conversely, consider a palindromic context-free
language L. By Lemma 5, it can be generated by a grammar G = (V,Σ, S, P )
having P ⊆ {X → aY a | X,Y ∈ V, a ∈ Σ} ∪ {X → a | X ∈ V, a ∈ Σ} ∪ {X →
λ | X ∈ Σ}. For every a ∈ Σ ∪ {λ}, define the grammar Ga = (V,Σ, S, Pa) with
Pa = P \ {X → b | b ∈ Σ∪ {λ}, b 6= a}). Obviously, L(G) = ∪a∈ΣL(Ga). Moreover.
for every a, b ∈ Σ ∪ {λ}, L(Ga) ∩ L(Gb) 6= ∅ if and only if a = b. Therefore, L
is a disjoint union of the languages L(Ga), a ∈ Σ ∪ {λ}. By the construction of
Ga, a ∈ Σ ∪ {λ}, it is clear that Ga,` = (V,Σ, S, Pa,` with Pa,` = {X → Y b | X →
bY b ∈ Pa, X, Y ∈ V, a ∈ Σ} ∪ {X → b | X → b ∈ Pa, X ∈ V, a ∈ Σ ∪ {λ}} is a
regular language. Similarly, Ga,r = (V,Σ, S, Pa,r with Pa,r = {X → bY | X →
bY b ∈ Pa, X, Y ∈ V, a ∈ Σ}∪{X → b | X → b ∈ Pa, X ∈ V, a ∈ Σ∪{λ}} is regular.
Moreover, La = L(Ga,`) = L(Ga,r), and L =

⋃
a∈Σ∪{λ} {papR : p ∈ La}.

Finally, for the sake of completeness, let us make an easy observation. Every
palindromic context-sensitive (phrase-structured) language has the form

L =
⋃

a∈Σ∪{λ}

{papR : p ∈ L(a)},

where the L(a) (a ∈ Σ ∪ {λ}) are context-sensitive (phrase-structured) languages
(uniquely determined by L).
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