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Abstract

This paper studies an optimization problem that arises in the context of distributed resource
allocation: Given a conflict graph that represents the competition of processors over resources,
we seek an allocation under which no two jobs with conflicting requirements are executed simul-
taneously. Our objective is to minimize the average response time of the system. In alternative
formulation this is known as the Minimum Color Sum (MCS) problem [25].

We show, that the algorithm based on finding iteratively a maximum independent set
(MaxIS) is a 4-approximation to the MCS. This bound is tight to within a factor of 2. We
give improved ratios for the classes of bipartite, bounded-degree, and line graphs. The bound
generalizes to a 4ρ-approximation of MCS for classes of graphs for which the maximum inde-
pendent set problem can be approximated within a factor of ρ. On the other hand, we show
that an n1−ϵ-approximation is NP-hard, for some ϵ > 0.

For some instances of the resource allocation problem, such as the Dining Philosophers, an
efficient solution requires edge coloring of the conflict graph. We introduce the Minimum Edge
Color Sum (MECS) problem which is shown to be NP-hard. We show that a 2-approximation
to MECS(G) can be obtained distributively using compact coloring within O(log2 n) communi-
cation rounds.

Key words. distributed resource allocation, response time, graph coloring, maximum independent
sets
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1 Introduction

Chromatic Sums of Graphs

Given a graph G = (V,E), a vertex coloring is a function Ψ : V → N such that adjacent vertices
are assigned distinct numbers (colors). The Minimum Color problem is to find a vertex coloring
which uses the minimum number of colors. In this paper we consider a related problem known as
Minimum Color Sum (MCS) problem [24, 25].

Given a graph G = (V,E), find a vertex coloring Ψ : V → N for G such that
∑

v∈V Ψ(v)
is minimized.

We note that the problems are not equivalent. For instance, bipartite graphs can be colored with
two colors. However, for any integer k, there exist bipartite graphs (in fact, trees) for which the
best MCS uses k colors [25].

In case each of the nodes v ∈ V has a weight w(v) associated with it, we refer to the Minimum
Weighted Color Sum (MWCS) problem in which the objective is to minimize

∑
v∈V

w(v) ·Ψ(v).

Similarly, we define the Minimum Edge Color Sum (MECS) problem.

Given a graph G = (V,E), find an edge coloring Ψ : E → N for G (i.e. edges with
common endpoints are assigned distinct colors) such that

∑
e∈E Ψ(e) is minimized.

In case each of the edges e ∈ E has a weight w(e) associated with it, we refer to the Minimum
Weighted Edge Color Sum (MWECS) problem in which the objective is to minimize

∑
e∈E

w(e) ·Ψ(e).

Applications

Our main application is the problem of resource allocation with constraints imposed by conflicting
resource requirements. In a common representation of the distributed resource allocation prob-
lem [11, 27], the constraints are given by a conflict graph G, in which the nodes represent processors,
and the edges indicate competition on resources, i.e., two nodes are adjacent if the corresponding
processors cannot run their jobs simultaneously. We focus on the one shot resource allocation
problem [32, 4], in which we have to allocate resources to one batch of requests. The allocation of
resources should satisfy the two following conditions:

• Mutual exclusion: No two conflicting jobs are executed simultaneously.

• No starvation: The request of any processor is eventually granted.

Our objective is to minimize the average response time, or equivalently to minimize the sum of the
job completion times. Assuming some fixed execution time for the jobs, this problem is the MCS
problem.
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For some resource allocation problems, such as the classic Dining Philosophers, efficient solution
requires an edge coloring of the conflict graph (see, e.g., [27, 28, 34]). The measure used for these
problems is the maximal waiting chain, which is the number of colors needed to edge color the
conflict graph G. For these problems, minimizing the average response time corresponds to finding
the Minimum Edge Color Sum.

Further applications of the MCS problem have been studied in the contexts of compiler design
and VLSI routing [29]. In a VLSI design problem, known as Over-The-Cell Routing, we are given a
set of two-terminal nets and a set of parallel, horizontal tracks of distances d = 1, 2, 3, . . . from the
baseline where the terminals lie. The nets are routed with a vertical connection from each terminal
to the assigned track along with a horizontal connection within the track. No overlapping nets can
be routed within the same track. The objective is to minimize the total wiring length, which, in
addition to the fixed and pre-determined horizontal costs, equals twice the sum of the distances
from the nets to the assigned tracks.

Main Results

In this paper we present the following results for the MCS problem.

• Hardness: Finding an n1−ϵ-approximation for the MCS is NP-hard, for some ϵ > 0, where n
is the number of vertices.

• The algorithm based on finding iteratively a maximum independent set (which we call MaxIS)
is shown to provide a 4-approximation to the MCS (MWCS). This bound is tight to within
a factor of 2. For a large subclass of graphs this algorithm is polynomial.

• A modified version of the MaxIS is shown to achieve a bound of 9
8 to the optimum for the

subclass of bipartite graphs.

For the MECS problem we derive the following results:

• The problem of finding MECS for a given graph G is NP-hard.

• A restricted version of the edge coloring problem called compact edge coloring is intro-
duced. It is shown that for a given conflict graph G any compact edge coloring provides
a 2-approximation to MECS(G). Compact edge coloring can be found for any graph G in
time that is linear in the size of G.

Previous works on distributed resource allocation refer to the maximal response time per proces-
sor and thus aim at devising algorithms with good local performance (where each processor waits
at most for the execution of its neighbors). Applying the above results, we quantify the behavior
of these algorithms with respect to the average response time of the system. In particular, we show
that any schedule which guarantees that a processor waits only if one of its conflicting neighbors
executes a job, provides a ∆+2

3 -approximation to the optimal schedule, where ∆ is the maximal
degree in the graph. We show that for a general conflict graph, finding an optimal schedule is
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NP-hard. The results in Section 2 imply that the minimal average response time is also hard to
approximate.

Using the MaxIS algorithm, a 4-approximation to the minimal average response time can be
found in polynomial time for a large subclass of conflict graphs, including bipartite graphs, interval
graphs and line graphs. This implies, that the MaxIS is a 4-approximation for instances of the
resource allocation problem, where we seek to minimize the edge color sum. For a conflict graph G
of size n and maximal degree ∆, the MaxIS can be implemented distributively within O(∆ · log2 n)
communication rounds, by using iteratively a randomized distributed algorithm for finding a max-
imum matching in G (see in [21]). We show that compact edge coloring, that can be implemented
distributively in O(log2 n) communication rounds, yields a 2-approximation to MECS(G).

Related Work

The minimum color sum problem was introduced by Kubicka in [23]. In [25] it is shown that
computing the MCS of a given graph is NP-hard. A polynomial time algorithm is given for the
case where G is a tree. Jansen shows in [22] that the MCS is solvable in polynomial time for partial
k-trees. In [24] it is shown that approximating MCS within an additive constant factor is NP-hard,

and that a first-fit algorithm yields a d
2 + 1-approximation for graphs of average degree d.

The wide literature on resource allocation problems, starting with the early work of Lynch [27],
studies algorithms that minimize the maximal response time per processor, or alternatively – the
maximal waiting chain in the system, in solutions for the Dining Philosophers version of the prob-
lem [2, 5, 11, 27]. In this context, the term of one shot resource allocation problem was coined by
Rhee [32]. The one shot problem is used in his work to show that it is NP-hard to minimize the
maximal response time for a static conflict graph.

Bar-Noy et al. consider in [6] the problem of scheduling persistent tasks with conflicting resource
requirement. Since the tasks are scheduled repeatedly, the response time for a given task is the
maximal time that elapses between two successive schedules of that task.

Other works related to the present context address the more general problem of scheduling under
constraints. Typical examples are a predetermined partial order [13, 36] or resource constrained
scheduling. In the latter case, each of the jobs is associated with a vector of requirement for
resources, and jobs cannot be scheduled simultaneously, if the sum of their requirements for a
specific resource exceeds the total amount of that resource (see in [16, 33]).

Outline of the Paper

The rest of this paper is organized as follows: In Section 2 we give some definitions and prove a hard-
ness result. In Section 3 we define the MaxIS algorithm and show that MaxIS is a 4-approximation
for the MCS and that this bound holds for the MWCS problem as well. In addition, we show
that the MaxIS has an asymptotic lower bound of 2. In Section 3.3 we give a 9

8 -approximation
algorithm for the case where G is a bipartite graph. In Section 4 we introduce the compact coloring
problem. We show in Section 4.1, that if G is a line graph then any compact coloring of G is
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a 2-approximation to MCS(G). This result is applied in Section 4.2 to the minimum edge color
sum problem. Section 5 presents the applications of the above results to the resource allocation
problem. We show that for a general conflict graph, finding a schedule that minimizes the average
response time is NP-hard, and that a 2-approximation to the MECS problem can be obtained by
a randomized distributed algorithm in O(log2 n) communication rounds1.

2 Preliminaries

2.1 Definitions and Notation

For a given undirected graph G = (V,E), let n denote the number of vertices, and ∆ the maximum
degree of the graph.

An independent set (IS) in G is a subset V ′ of V such that every vertex in V ′ has no neighbor
in V ′. A maximal independent set is an IS which is not contained in a strictly larger IS, and a
maximum independent set (MaxIS) is an IS of maximum size in G.
A c-coloring of G is a partition of V into c independent sets. A c-coloring is specified by a mapping
Ψ : V → {1, . . . , c}. The IS that consists of vertices with Ψ(v) = i, is denoted by Ci. The chromatic
number of a graph, denoted by χ(G) is the smallest possible c for which there exists a c-coloring
of G. A c-edge-coloring of G is a partition of E into c sets, such that no two edges in the same set
share an endpoint. The chromatic index of a graph, denoted by I(G) is the smallest possible c for
which there exists a c-edge-coloring of G.

Definition 2.1 Given a graph G(V,E) and a valid coloring of G, Ψ : V → N, the color sum of G
with respect to Ψ is

CS(G,Ψ) =
∑
v∈V

Ψ(v) =
∞∑
i=1

i · |Ci|

Definition 2.2 The minimum color sum of a graph G, denoted by MCS(G), is the minimum
CS(G,Ψ) over all the legal colorings Ψ 2.

Our results extend to apply to the minimum weighted color sum problem:

Definition 2.3 Given a graph G(V,E), a weight function W : V → R and a valid coloring of G,
Ψ : V → N, the weighted color sum of G with respect to Ψ is

WCS(G,Ψ) =
∑
v∈V

w(v) ·Ψ(v)

The minimum weighted color sum of a graph G, denoted by MWCS(G), is the minimum WCS(G,Ψ)
over all the legal colorings Ψ.

1Remark: The current paper is a merger and extension of the two papers [7] and [18].
2Throughout the paper we use also the term chromatic sum when referring to the minimum color sum of a graph.
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2.2 Hardness of the MCS

In this section we give a strong lower bound on the approximability of MCS (assuming P ̸= NP).

Theorem 2.1 Suppose there exists an f(n)-approximate algorithm for MCS for a given hereditary
class of graphs. Then there exists an g(n)-approximate algorithm for Graph Coloring on the same
class of graphs, where g(n) = O(f(n) log n). If further f(n) = Ω(nc) for some c > 0, then g(n) =
O(f(n)).

Proof: Let G be a graph and k be its chromatic number. Let A be a f(n)-approximate algorithm
for MCS. Now, MCS(G) ≤ kn, and A yields a coloring with a sum of at most knf(n). At least
half of the vertices must be colored with the first 2kf(n) colors. Use those 2kf(n) color classes,
and recursively color the remaining at most n/2 vertices. The recursion is of depth log n, and the
total number of colors used is at most 2kf(n) log n, for a performance ratio of at most 2f(n) log n.

More accurately, the total number of colors used is at most

2k
∞∑
i=0

f(n/2i).

If f(n) ≥ nc, for some constant c > 0, then this convex sum is at most

2k
∞∑
i=0

1

(2c)i
f(n) ≤ O(kf(n)).

Thus, we obtain a performance ratio of O(f(n)).

Feige and Kilian have recently shown that Graph Coloring (of general graphs) is hard to ap-
proximate within n1−ϵ factor [14]. We thus obtain the same hardness bound for MCS.

Corollary 2.2 MCS cannot be approximated within n1−ϵ, for any ϵ > 0, unless NP = ZPP .

3 The MaxIS Algorithm

3.1 Upper Bound

A natural approach for solving the MCS yields the following algorithm: Iteratively, find a maximum
independent set ISi for i ≥ 1, color ISi with i and omit from G the nodes and edges of ISi, until
G = ∅.
We call this algorithm MaxIS.

Theorem 3.1 The MaxIS algorithm is a 4-approximation to the MCS.
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We use in the proof the following technical lemma.

Lemma 3.2 For any positive real numbers a1, . . . , an and 0 < q < 1

n∑
i=1

qiai

i−1∑
j=1

aj ≤
1 + 3q

2(1− q)

n∑
i=1

qia2i . (1)

Proof: Observe, that for any x, y, c > 0 and a positive integer k

c−kx2 − 2xy + cky2 = (c−k/2x− ck/2y)2 ≥ 0 , (2)

or

xy ≤ c−kx2 + cky2

2
,

thus, for some c > 0, and k = i− j − 1

i−1∑
j=1

aiaj ≤
1

2

i−1∑
j=1

(
c−(i−j−1)a2i + ci−j−1a2j

)
(3)

and

n∑
i=1

qiai

i−1∑
j=1

aj ≤ 1

2

n∑
i=1

qi
i−1∑
j=1

(
c−(i−j−1)a2i + ci−j−1a2j

)

=
1

2

n∑
i=1

i−1∑
j=1

c−(j−1)qia2i +
n−i∑
j=1

cj−1qi+ja2i


=

1

2

n∑
i=1

qia2i

i−2∑
j=0

c−j + q
n−i−1∑
j=0

(cq)j


≤ 1

2

n∑
i=1

qia2i

(
c

c− 1
+

q

1− cq

)
≡ 1

2

n∑
i=1

qia2i f(c) .

The first inequality follows directly from Inequality (3); the second and third equations are achieved
by rearranging the summations; the last inequality uses infinite summation as upper bound for the
given sums. The value c∗ which minimizes f(c) is q+1

2q . Substituting c∗ into the last inequality gives
Inequality (1).

Proof of Theorem 3.1: Let V = {V1, . . . , Vk} be the partition of the nodes by their colors 1, . . . , k
using some optimal coloring. We obtain the upper bound by dividing each of the optimal sets Vj ,
1 ≤ j ≤ k, to smaller subsets Vji, 1 ≤ i ≤ L, for some L ≥ 1. Under the optimal coloring the
nodes in Vji are covered at the j-th iteration, therefore the cost incurred by the i-th strip, defined
as ∪k

j=1Vji is
∑k

j=1 j|Vji|.

Consider the operation of the MaxIS algorithm on G. Number the nodes in Vj , 1 ≤ j ≤ k, by
1, . . . , |Vj |, such that their colors with respect to the MaxIS algorithm are in nondecreasing order.
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Then for some m ≥ k and 1 ≤ i ≤ log |V1| ≡ L, we call strip i and denote it by li(m) the subset of
nodes numbered with the indices ⌈(m−1

m )i|V1|⌉, . . . , ⌊(m−1
m )i−1|V1|⌋. For 1 ≤ j ≤ k, the number of

nodes in strip i which belong to Vj and denoted by li(m, j), satisfies

|li(m, j)| ≤ |V1|
[(

m− 1

m

)i−1

−
(
m− 1

m

)i
]
= |V1|

(m− 1)i−1

mi
(4)

Let ci(m) be the number of sets among {V1, . . . , Vk} which contain nodes in li(m), then

|li(m)| =
k∑

j=1

|li(m, j)| ≤ (m− 1)i−1

mi
|V1|ci(m) . (5)

Assuming that li(m) is full, i.e., equality in the RHS of (5), we increase the size of each of the
optimal sets by at most a factor of m

m−1 . We note that the optimal coloring uses ci(m) colors for
covering strip i, and thus the cost incurred by that strip is

|V1|
(m− 1)i−1

mi

ci(m)∑
j=1

j = |V1|
(m− 1)i−1

mi
· ci(m)(ci(m) + 1)

2
. (6)

Hence, the optimal color sum satisfies:

MCS(G) ≥ m− 1

m
|V1|

L∑
i=1

(
ci(m) + 1

2

)
(m− 1)i−1

mi
. (7)

In obtaining an upper bound for CS(MaxIS) we use the following two claims:

Claim 3.3 MaxIS starts coloring li(m) after using at most

i−1∑
j=1

cj(m)

m− 1

 colors.

Proof: By induction on i.
Basis: The claim holds for i = 1 (with empty sum equals to 0).
Induction step: Assume that the claim holds for i, then we observe, that while the nodes in li(m)

were not fully covered, MaxIS finds in G an IS of size at least

⌈(
m−1
m

)i
|V1|

⌉
. Hence, the amount

of colors used until li(m) is fully covered is bounded by

i−1∑
j=1

cj(m)

m− 1
+

li(m)⌈(
m− 1

m

)i

|V1|
⌉ ≤

i∑
j=1

cj(m)

m− 1
, (8)

and at most

 i∑
j=1

cj(m)

m− 1

 colors precede the first color used for covering nodes in li+1(m).
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Claim 3.4 The average cost for coloring a node in li(m) is bounded by

⌊∑i−1

j=1
cj(m)

m−1

⌋
+

⌈
ci(m)
m−1

⌉
+ 1

2
.

Proof: Observe, that the upper bound on the cost of coloring li(m) is obtained for the case

where

⌈(
m−1
m

)i
|V1|

⌉
divides li(m), and MaxIS covers in each iteration exactly

⌈(
m−1
m

)i
|V1|

⌉
nodes

in li(m). The number of such iterations is
⌈
ci(m)
m−1

⌉
. Thus, the cost incurred by li(m) is bounded by

⌈
ci(m)

m−1

⌉
∑
k=1

⌈(
m− 1

m

)i

|V1|
⌉
·
(⌊∑i−1

j=1 cj(m)

m− 1

⌋
+ k

)

=

⌈
ci(m)

m− 1

⌉
·
⌈(

m− 1

m

)i

|V1|
⌉
·

⌊∑i−1
j=1 cj(m)

m− 1

⌋
+

⌈
ci(m)
m−1

⌉
+ 1

2



≤ li(m) ·

⌊∑i−1
j=1 cj(m)

m− 1

⌋
+

⌈
ci(m)
m−1

⌉
+ 1

2


and the claim follows.

From Inequality (5) and Claims 3.3, 3.4,

CS(MaxIS) ≤ |V1|
L∑
i=1

ci(m)
(m− 1)i−1

mi


⌈
ci(m)
m−1

⌉
+ 1

2
+

⌊∑i−1
j=1 cj(m)

m− 1

⌋
≤ |V1|

L∑
i=1

ci(m)
(m− 1)i−1

mi

(
ci(m)

2(m− 1)
+

∑i−1
j=1 cj(m)

m− 1
+ 1

)
.

Setting q = (m− 1)/m, n = L, and ai = ci(m) for 1 ≤ i ≤ L in (1), we have

L∑
i=1

(m− 1)i

mi
ci(m)

i−1∑
j=1

cj(m) ≤ 4m− 3

2

L∑
i=1

c2i (m)
(m− 1)i

mi
. (9)

Using inequality (7) we have

CS(MaxIS) ≤ |V1|
L∑
i=1

(m− 1)i−1

mi

(
4m− 2

2
c2i (m) + ci(m)

)

≤ 4m− 2

m− 1
MCS(G)− m

m− 1
|V1|

L∑
i=1

ci(m) .
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Hence,
CS(MaxIS)

MCS(G)
≤ 4 +O(

1

m
) . (10)

For the general case, where the independent set algorithm is not exact but finds a ρ-approximate
solution, we note, that the average cost for coloring a node in li(m) is bounded by

ρ

⌊∑i−1

j=1
cj(m)

m−1

⌋
+

⌈
ci(m)
m−1

⌉
+ 1

2

. Thus we have

Corollary 3.5 When using a ρ-approximate independent set algorithm, the MaxIS algorithm is a
4ρ-approximation to the MCS.

This immediately gives us a fairly good characterization of the approximability of MCS on various
classes of graphs: O(n/ log2 n) on general graphs [10], O(∆ log log∆/ log∆) on graphs of maximum
degree ∆ [35], O(n.2134) on 3-colorable graphs [8], and at most 4 on all perfect graphs and partial
k-trees, among others.
We show below, that the bound in Theorem 3.1 applies also to the MWCS problem. In that case,
the weighted MaxIS algorithm (W MaxIS) chooses iteratively an IS with maximum weight in G.

Theorem 3.6 The W MaxIS algorithm is a 4-approximation to the MWCS.

Proof: Assuming first integer weights, the proof follows the steps of the proof of Theorem 3.1,
except that we replace the set Vj , j = 1, . . . , k with a set V ′

j of W (Vj) nodes, where W (Vj) =∑
v∈Vj

w(v), such that for any v ∈ V ′
j w(v) = 1. Thus, each node in Vj is represented by w(v) nodes in

V ′
j . We define a partition of the sets V ′

j to the subsets V ′
ji, 1 ≤ i ≤ L, with L ≡ lgW (V1). Applying

the MaxIS algorithm to G, each node in V ′
j gets the color of the node v ∈ Vj to which it belongs.

Then we number the nodes in V ′
j in such a way that their colors are in nondecreasing order, and

define li(m) as the subset of nodes numbered with indices ⌈(m−1
m )iW (V1)⌉, . . . , ⌊(m−1

m )i−1W (V1)⌋.
Replacing in each step of the proof |V1| with W (V1) we have the statement of the theorem.
The proof can be easily extended to apply to non-integral weights. Thus we omit the details.

3.2 Lower Bound

In this subsection we show that there exist graphs for which MaxIS is at least 2-approximation to
the MCS. We construct a family of k-partite graphs Gk for k ≥ 2, such that MaxIS is a 2k

k+1 − o(1)-
approximation to MCS(Gk).

Intuitively, we construct a balanced k-partite graph that recursively has the property that the
largest independent set contains equally many vertices from each partition. Hence, MaxIS colors
n/k vertices with the first color, n(k − 1)/k2 with the second color, n(k − 1)2/k3 with the third
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color, and so on. The total cost sums up to be nk, while the cost of the balanced k-coloring is
n(k + 1)/2, for a ratio of 2−O(1/k).

Throughout our analysis we use the following known equalities:

n∑
i=0

(
k − 1

k

)i

= k − (k − 1)n+1

kn
,

and
n∑

i=1

i

(
k − 1

k

)i−1

= k2 − (n+ k)
(k − 1)n

kn−1
.

We describe first the construction for k = 2: Let G2 be a bipartite graph with two large
independent sets A and B of the same size. The edges between A and B will be chosen in a way
that will force MaxIS to pick x vertices from both A and B (i.e., 2x > |A|). In the second stage,
MaxIS will pick y vertices from the remains of A and B. (i.e., 2y > |A|−x). This process continues
until MaxIS picks all the vertices of G2.

More formally, we define the graph Gm
2 as follows. The vertices are composed of two independent

sets A and B each of size 2m − 1. Let A = A0 ∪ A1 · · · ∪ Am−1 and B = B0 ∪ B1 · · · ∪ Bm−1 such
that |Ai| = |Bi| = 2i for 0 ≤ i ≤ m− 1. Indeed,

m−1∑
i=0

|Ai| =
m−1∑
i=0

2i = 2m − 1 = |A| .

The edges of Gm
2 are all the possible edges between A and B except those edges from Ai to Bi for

0 ≤ i ≤ m− 1.

Since Gm
2 is a bipartite graph we can color A with 1 and B with 2 and it follows that

MCS(Gm
2 ) ≤ 3(2m − 1) .

We now compute the cost of MaxIS. For 0 ≤ i ≤ m − 1, let Di = Ai ∪ Bi. The set Di is
independent and |Di| = 2i+1. The largest IS of Gm

2 is Dm−1. By induction one can verify that the
largest IS of Gm

2 −{Dm−1 ∪ · · · ∪Di+1} is Di. Therefore, MaxIS colors the set Di with color m− i
for 0 ≤ i ≤ m− 1. Consequently,

CS(MaxIS) =
m∑
i=1

i2m+1−i = 4(2m − 1)− 2m .

It follows that for Gm
2 ,

CS(MaxIS)

MCS(Gm
2 )

≥ 4

3
− 2m

3(2m − 1)
,

and for large m we get
CS(MaxIS)

MCS(Gm
2 )

≥ 4

3
− o(1) .
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We now generalize the above construction to k ≥ 2: Informally, Gk will be a k-partite graph
with k large independent sets A1, . . . , Ak of the same size. The edges between the k independent
sets will be chosen in a way that will force MaxIS to pick x vertices from each of them (i.e.,
kx > |A1|). In the second stage, MaxIS will pick y vertices from the remain of each of the sets (i.e.,
ky > |A1| − x). This process will continue until MaxIS picked all the vertices of Gk.

In the following formal description we choose |A1|, x, and y in a way that facilitates the analysis.
However, even the best choice cannot produce a better lower bound than 2k

k+1 . We define the graph

Gm
k as follows. The vertices are composed of k independent sets A1, . . . , Ak each of size km−(k−1)m.

Let Aj = Aj
0 ∪ Aj

1 · · · ∪ Aj
m−1 for 1 ≤ j ≤ k such that |Aj

i | = (k − 1)m−1−iki for 1 ≤ j ≤ k and
0 ≤ i ≤ m− 1. We note, that

m−1∑
i=0

|Aj
i | =

m−1∑
i=0

(k − 1)m−1−iki = km − (k − 1)m = |Aj | .

The edges of Gm
2 are all the possible edges between the Ajs except those edges between the corre-

sponding subsets, i.e., between Aj
i and Aj′

i for 1 ≤ j ̸= j′ ≤ k and 0 ≤ i ≤ m− 1.

Since Gm
k is a k-partite graph we can color Aj with j for 1 ≤ j ≤ k and it follows that

MCS(Gm
k ) ≤ k(k + 1)

2
(km − (k − 1)m) .

We now compute the cost of MaxIS. For 0 ≤ i ≤ m − 1, let Di = A1
i ∪ · · · ∪ Ak

i . The set Di

is independent and |Di| = (k − 1)m−1−iki+1. The largest IS of Gm
k is Dm−1. It can be shown

inductively, that the largest IS of Gm
k −{Dm−1 ∪ · · · ∪Di+1} is Di. Therefore, MaxIS colors the set

Di with color m− i for 0 ≤ i ≤ m− 1. Consequently,

CS(MaxIS) =
m∑
i=1

i(k − 1)i−1km+1−i = k2(km − (k − 1)m)− km(k − 1)m .

It follows that for Gm
k ,

CS(MaxIS)

MCS(Gm
k )

≥ 2k

k + 1
− 2m(k − 1)m

(k + 1)(km − (k − 1)m)
,

and for large m
CS(MaxIS)

MCS(Gm
k )

≥ 2k

k + 1
− o(1) .

3.3 Approximating the Chromatic Sum for Bipartite Graphs

In the following we describe an algorithm that achieves a ratio of 9
8 for the MCS of bipartite graphs.

That is, given a bipartite graph G, the algorithm generates a coloring Ψ such that CS(G,Ψ) ≤
9
8 ·MCS(G).
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The algorithm colors the graph in two ways, and then chooses the coloring with the smaller
sum. One coloring is any two-coloring. The other coloring colors a maximum independent set with
the first color, and then two-colors the remaining vertices. Note that a maximum independent set
of a bipartite graph can be found in polynomial time by computing a maximum matching [15].

Theorem 3.7 The above algorithm achieves a ratio of 9
8 to the MCS for any bipartite graph.

Proof: Let α be the size of the maximum independent set of the graph. The cost of our former
coloring is at most 3n/2 and the latter coloring is at most α + (n − α) · 5/2 = 5n/2 − 3α/2. The
cost of the optimal coloring is at least α+ 2(n− α) = 2n− α. Hence, the ratio is at most

min{ 3n/2

2n− α
,
5n/2− 3α/2

2n− α
} = 1 +min{α− n/2

2n− α
,
n/2− α/2

2n− α
}

which is maximized when α− n/2 = n/2− α/2 or α = 2n/3, in which case the ratio is 9/8.

4 Using Compact Coloring to Approximate the Chromatic Sum

A coloring Ψ : V → {1 . . . k} is compact if Ci = {v ∈ V |Ψ(v) = i} comprises a maximal independent
set in G \

∪
j<iCj , for every 1 ≤ i ≤ k. This definition provides a simple greedy polynomial time

algorithm for compact coloring of any graph G. The algorithm consists of at most ∆+1 phases: In
phase i we color with i the subset of vertices Ci, that is a maximal independent set in G \

∪
j<iCj .

Indeed, Theorem 3.1 implies that the above algorithm produces a 4∆-approximation to MCS(G),
since the size of a MaxIS in G is at most ∆ times the size of any maximal independent set in G.
We derive below a tighter bound of ∆+2

3 .
The following observation, which gives an alternative definition for compact coloring, can be easily
verified.

Lemma 4.1 A coloring Ψ is compact if and only if every vertex v with Ψ(v) = i has a neighbor u
with Ψ(u) = j for all 1 ≤ j ≤ i− 1.

This suggests an alternative formulation of the greedy algorithm, often referred to as first-fit:
Process the vertices in an arbitrary order and assign a vertex to the smallest color with which none
of its preceding neighbors have been colored. This method has the advantage of being on-line,
processing resource requests as they arrive.

The following general upper bound on the chromatic sum has been observed several times in
the past. Let m denote the number of edges in the graph.

Lemma 4.2 ([9, 24]) The sum of any compact coloring is at most m+ n.

This bound is tight for disjoint collection of cliques. It can be attained by a parallel algorithm [17].
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Theorem 4.3 Any compact coloring of a graph G = (V,E) provides a ∆+2
3 -approximation to

MCS(G), and that is tight.

Proof: All edges have at least one endpoint outside the first color class of the optimal solution.
Thus, when maximum degree is bounded by ∆, there are at least ⌈m/∆⌉ vertices outside the first
color class. That is, we have:

MCS(G) ≥ n+m/∆ (11)

Thus, by Lemma 4.2, the performance ratio of a compact coloring is at most

m+ n

n+m/∆
=

d/2 + 1

1 + d/(2∆)
.

This is maximized at d = ∆ (i.e., when G is regular with degree ∆), for a ratio of (∆ + 2)/3.

This ratio is tight for the graph Bp,p formed by a complete bipartite graph from which a single
bipartite matching has been removed. Namely, the graph contains vertex set {v1, . . . vp, u1, . . . up}
and the edge set {(vi, uj) | 1 ≤ i, j ≤ p, i ̸= j}. One compact coloring contains p classes with 2
vertices each, for a cost of 2

(p
2

)
= p(p + 1) versus an optimal coloring of cost 3p, for a ratio of

(p+ 1)/3 = (∆ + 2)/3.

4.1 Compact Coloring of Line Graphs

While for general graphs we have the approximation ratio ∆+2
3 , we show below that for the subclass

of line graphs, compact coloring is a 2-approximation to the chromatic sum.

Given a graph G = (V,E), the line graph of G, denoted by L(G) is the intersection graph of
E: The vertices in L(G) are the edges of G. Two vertices in L(G) are adjacent whenever the
corresponding edges in G are. We say that G is a line graph, if there exists some graph G′, such
that G = L(G′).

The following property of line graphs is used in the proof of the next theorem:

Property 4.4 [19] If G = (V,E) is a line graph, then E can be partitioned into cliques, such that
each vertex belongs to at most two cliques.

Theorem 4.5 If G is a line graph, then any compact coloring of G is a 2-approximation to
MCS(G).

Proof: We prove a stronger ratio of 2− 4/(d+4), which follows from the combination of Lemma
4.2 and the following lemma.

Lemma 4.6 For a line graph G, MCS(G) ≥ (m+ 2n)/2.
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Proof: Let Q1, Q2, . . . Ql be the clique partition of G, with qi denoting the size of each clique.
Extend the partition so that each vertex appears exactly twice, by adding singleton cliques for those
vertices that appeared only once. Let Q denote the set of all 2n pairs (i, v) where v is contained in
clique Qi.

We define a clique labeling to be an assignment of positive integers to the pairs of Q such that,
for each Qi and each distinct u,w in Qi, (i, v) and (i, w) have different labels. The cost of a clique
labeling is the sum of the labels. Let CL(G) denote the optimal clique labeling of line graph G.
The minimum cost clique labeling has the labels involving a given clique Qi arranged to be exactly
the first qi positive integers. Hence,

CL(G) =
∑
i

(
qi + 1

2

)
=
∑
i

(
qi
2

)
+ qi =

∑
i

|E(Qi)|+ |V (Qi)| = m+ 2n. (12)

Intuitively, we have a labeling of the vertices, where each vertex may receive two labels, one
for each of its cliques. An ordinary vertex coloring can easily be extended to a clique labeling by
doubling each label. Thus, the optimal chromatic sum is at least half the cost of an optimal clique
labeling, i.e. CL(G) ≤ 2 ·MCS(G). The lemma now follows from (12).

4.2 The Minimum Edge Color Sum Problem

We now introduce the minimum edge color sum problem:

Definition 4.1 Given a graph G(V,E) with a valid edge coloring Ψ : E → N, let Bi denote the
set of edges e ∈ E, with Ψ(e) = i. The edge color sum of G with respect to Ψ is

ECS(G,Ψ) =
∑
e∈E

Ψ(e) =
∞∑
i=1

i · |Bi|

Definition 4.2 The minimum edge color sum of a graph G, denoted by MECS(G), is the minimum
ECS(G,Ψ) over all legal edge colorings Ψ.

In this section we show that the minimum edge color sum problem is NP-hard, and that the
results in the previous sections imply the existence of polynomial time algorithms for approximating
MECS(G) to within a constant factor.

Theorem 4.7 The problem of finding MECS(G) for a given graph G is NP-hard.
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Proof: The proof is by reduction from the Chromatic Index [15]:
Given a graph G = (V,E) and the question: ‘Is I(G) = ∆ ?’, denote by S the following subset of
edges in E:

S = {ei = (vi, ui) | d(vi) + d(ui) ≥ ∆} .

We number the edges in S with 1, . . . , |S| and construct the extended graphs G′
1, . . . , G

′
|S|. In G′

i

we replace the edge i with |E|2 + 1 parallel edges. Choosing w = |E|4
2 + |E|2(∆ + 1

2) +
|E|(∆+1)

2 , it
can be verified that

1. If I(G) = ∆ then, for every i, 1 ≤ i ≤ |S|, MECS(G′
i) ≤ w.

2. If I(G) = ∆ + 1 then, there exists some i, 1 ≤ i ≤ |S|, such that MECS(G′
i) > w.

By a theorem of Vizing, I(G) is always either ∆ or ∆ + 1.

Definition 4.3 An edge coloring Ψ : E → {1, . . . , k} is compact if and only if every edge e with
Ψ(e) = j, has neighboring edges with all colors 1, . . . , j − 1.

Theorem 4.8 Any compact edge coloring of a graph G is a 2-approximation to MECS(G).

Proof: Let Ψ : E → {1, . . . , k} be some compact edge coloring of a graph G. Let G′ = (V ′, E′)
be the line graph of G. Then Ψ induces a compact vertex coloring Ψ′ : V ′ → {1, . . . , k} on G′. By
Theorem 4.5 any compact coloring of G′ is a 2-approximation to MCS(G′) = MECS(G).

5 Application to the Resource Allocation Problem

The resource allocation problem was introduced by Chandy and Misra [11] as the abstracted drink-
ing philosophers problem. An instance of the resource allocation problem is a resource allocation
graph G. The vertices represent processors, and there is an edge between any pair of processors
that may compete on some resource. The requirements of processors for resources may vary over
time. The current requirements are represented by a dynamic conflict graph C, where the vertices
are processors currently waiting to execute their jobs, and there is an edge between two processors
that compete on some resource. Clearly C ⊆ G. An algorithm for the resource allocation problem
is called a scheduler. We denote by µ the maximum execution time of any job.

Any scheduler needs to satisfy the properties of safety and liveness mentioned above.
The total time that elapses from a processor’s request for resources until it can execute its job is
regarded as the response time for that processor. We seek solutions for the problem that minimize
the average response time of the system.

Theorem 5.1 It is NP-hard to find a schedule for the resource allocation problem that achieves
the minimum average response time.
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Proof: We use in the proof a special instance of the resource allocation problem.

Definition 5.1 The following is the one-shot resource allocation problem:
Input: A set of k jobs J1, . . . , Jk with the execution times µ1, . . . , µk respectively and the corre-
sponding conflict graph C.
Output: A legal schedule for J1, . . . , Jk satisfying the safety and liveness properties.

Definition 5.2 Given a set of jobs J1, . . . , Jk with the execution times 1 ≤ µi ≤ µ ∀ 1 ≤ i ≤ k,
a slow execution of the resource allocation problem is an execution in which all the processors use
the resources for exactly µ time units.

We show that every sequential algorithm which finds the optimal schedule, can be used to find in
polynomial time the chromatic sum of a graph.
Given a graph G, an integer k and the question ‘Is MCS(G) < k ?’, construct a conflict graph
C = G and apply the optimal scheduling algorithm on a slow execution of the one-shot resource
allocation problem.

Claim 5.2 MCS(G) < k if and only if the average response time for C is less than ( k
N − 1)µ.

Proof: As the scheduler is optimal, there is no delay between executions of two successive jobs
of competing processors. Combining that with the fact that all execution times equal to µ implies
that the schedule is a partition of the conflicting processors into non-overlapping execution sets.
The members of the first set execute their jobs exactly at the interval [0, µ), the members of the
second set execute their jobs exactly on the interval [µ, 2µ) etc.

For a given optimal execution, associate with each processor Pi a label L(Pi), such that L(Pi) = c
if and only if Pi executes its job in the interval [(c− 1)µ, cµ). The mutual exclusion property yields
that L is a coloring of G. In addition, for every Pi ∈ C, response-time(Pi) = (c− 1)µ if and only if
L(Pi) = c. Thus, CS(G,L) < k if and only if

∑
Pi∈C response-time (Pi) < (k−N)µ, or the average

response time is less than ( k
N − 1)µ.

The above reduction is clearly polynomial, and since it is NP-hard to determine the chromatic sum
of a given graph [25], the problem of scheduling the jobs so as to minimize the average response
time is NP-hard.

In applying the results in Sections 3 and 4 to the resource allocation problem, we model a
distributed network as a communication graph G where each vertex represents a processor and
there is a bidirectional communication link connecting every pair of adjacent processors. We assume
a synchronous system which operates in rounds. Thus, a message sent at round k from processor
pi to a neighboring processor pj arrives to pj at round k + 1. Messages may be of arbitrary length
and local computation is instantaneous and unlimited. We assume that processors have unique
numerical id’s.
Some resource allocation algorithms [12] use a preprocessing which results in a legal coloring of
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the communication graph. The color of a processor indicates the maximal length of a waiting
chain for this processor. Achieving small number of colors in the preprocessing guarantees small
maximal response time. The same holds when minimizing the average response time, if we replace
the original preprocessing with a preprocessing that minimizes the color sum of the graph. That
is, during the preprocessing each processor picks a label for itself. The entire labeling of G is a
legal coloring that approximates the chromatic sum of G. As stated above, a compact coloring of
G provides a ∆+2

3 -approximation to MCS(G).

Theorem 5.3 [4] For any graph G, a compact coloring of G can be found distributively within
O(log2 n) communication rounds.

Hence, for the one shot resource allocation problem we have

Corollary 5.4 If the execution time of any job is µ then a schedule which approximates the minimal
average response time within a factor of ∆+2

3 can be found distributively in O(log2 n) communication
rounds.

For the subclass of conflict graphs for which a maximum independent set can be found in polynomial
time, the minimum average response time can be approximated to within a factor of 4 using the
MaxIS algorithm.

Some known resource allocation algorithms [27, 34] conduct a preprocessing in which an edge
coloring of the communication graph is found. In these algorithms, the response time for a pro-
cessor depends on the colors of its neighboring edges. A preprocessing that finds a coloring that
minimizes the edge color sum, would yield a resource allocation algorithm that achieves small av-
erage response time. Using iteratively a randomized distributed algorithm for finding a maximum
matching in the conflict graph G (see in [21]), the MaxIS algorithm can be implemented to yield
a 4-approximation within O(∆ · log2 n) communication rounds. By a reduction from compact col-
oring, the algorithm presented in [4] can be used to obtain distributively a 2-approximation to
MECS(G) within O(log2 n) communication rounds.
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