BULL. AUSTRAL. MATH. SOC. VOL. 16 (1977), 361-369.

On circulant codes with prescribed distances

M. Deza and Peter Eades

Necessary and sufficient conditions are given for a square matrix to be the matrix of distances of a circulant code. These conditions are used to obtain some inequalities for cyclic difference sets, and a necessary condition for the existence of circulant weighing matrices.

1. Preliminaries

Throughout this paper, a *circulant code* C of length m shall mean a set of m (0, 1) codewords of length m, with the property that successive codewords differ by a cyclic shift. Thus if (x_1, x_2, \ldots, x_m) is the first codeword, then $(x_{m-j+2}, x_{m-j+3}, \ldots, x_{m-j+1})$ is the *j*th codeword, for $2 \leq j \leq m$. We can write these codewords as the rows of a circulant (0, 1) matrix X. The matrix $2(J-X)X^t$ is called the *matrix of distances* of the code C. (J is the $m \times m$ matrix with every entry 1.) Clearly the (i, j)th entry of $2(J-X)X^t$ is the (Hamming) distance between the *i*th and *j*th codewords. A matrix of the form $2(J-X)X^t$, where X is a (0, 1) circulant matrix, is called *realizable*, and the circulant code whose codewords are the rows of X is called the *realization* of $2(J-X)X^t$.

The problem of finding a code with prescribed distances has received attention from both coding theorists and combinatorialists. In Section 2, the realizability of an $m \times m$ matrix is shown to be equivalent to the

Received 5 January 1977. Communicated by Jennifer R. Seberry.

existence of a partition of m with appropriate properties. Firstly, however, we require some definitions.

Let $x = (x_1, x_2, \ldots, x_m)$ be a (0, 1) codeword. For Sections 1 and 2, we will use the convention that $x_1 = 1$ and $x_m = 0$. If $x_{i-1} \neq x_i = x_{i+1} = \ldots = x_j \neq x_{j+1}$, we call $B = (i, i+1, \ldots, j)$ a block of x. The blocks of x are numbered B_1, B_2, \ldots, B_t from left to right as they appear in x. Note that since $x_1 \neq x_m$, t is even. Let X denote the circulant with first row x, and let b_i denote $|B_i|$, the length of the *i*th block. We say that the sequence (b_1, b_2, \ldots, b_t) describes X.

Note that $m = b_1 + b_2 + \ldots + b_t$ is an ordered partition of m. Consider all the series $b_j + b_{j+1} + \ldots + b_k$. (If j > k, the sum is defined cyclically, that is,

 $b_j + b_{j+1} + \dots + b_k = b_j + b_{j+1} + \dots + b_t + b_1 + \dots + b_k$.)

For each $1 \le i \le [m/2]$, let f_i be the number of such series that have sum *i* and an odd number of terms, less the number of series that have sum *i* and an even number of terms. Let f_0 be *t*; then the sequence $(f_i : 0 \le i \le [m/2])$ is called the *structure* of the ordered partition $m = b_1 + b_2 + \ldots + b_t$.

For example, (2, 3, 5, 2, 1, 4) describes a circulant code with first codeword (1100011111 and blocks $B_1 = (1, 2)$, $B_2 = (3, 4, 5)$, $B_3 = (6, 7, 8, 9, 10)$, $B_4 = (11, 12)$, $B_5 = (13)$, and $B_6 = (14, 15, 16, 17)$. The structure of 17 = 2 + 3 + 5 + 2 + 1 + 4 is (6, 1, 2, 0, 1, -1, -1, 1, 0).

2. The structure theorem

THEOREM 1 (Structure Theorem). An $m \times m$ matrix H with first row (h_1, h_2, \ldots, h_m) is realizable if and only if

- (i) H is a symmetric circulant matrix with zero diagonal;
- (ii) the entries of H are even, non-negative integers; and
- (iii) there is an ordered partition $m = b_1 + b_2 + \ldots + b_t$ with structure (f_i) satisfying $f_0 = h_2$ and $f_i = \frac{1}{2}(2h_{i+1}-h_i-h_{i+2})$ for $1 \le i \le \lfloor m/2 \rfloor$.

Proof. Suppose H is realized by a circulant code whose codewords are the rows of a circulant (0, 1) matrix X. Let (b_1, b_2, \ldots, b_t) denote the sequence that describes the first row of X, and let (f_i) be the structure of $m = b_1 + b_2 + \ldots + b_t$. Clearly (i) and (ii) follow, and $h_2 = f_0$. Now

$$h_{i} = 2 \sum_{q=1}^{m} (x_{q} - x_{q} x_{q+i-1})$$
,

and we can deduce

$$\frac{1}{2}(2h_{i+1}-h_i-h_{i+2}) = \sum_{q=1}^{m} t_{iq}$$

where $t_{iq} = (x_q - x_{q-1}) (x_{q+i-1} - x_{q+i})$.

But t_{iq} is non-zero only when $x_q \neq x_{q-1}$ and $x_{q+i-1} \neq x_{q+i}$. In this case, q must be the first element of some block B_k , and q+imust be the last element of some block B_l . Hence if $t_{iq} \neq 0$, then $b_k + b_{k+1} + \ldots + b_l = i$. But $t_{iq} = 1$ if l - k + 1 is odd, and $t_{iq} = -1$ if l - k + 1 is even. So $f_i = \frac{1}{2}(2h_{i+1}-h_i-h_{i+2})$, for $i \ge 1$.

Conversely, suppose that H is a symmetric circulant of even nonnegative integers, and suppose the partition $m = b_1 + b_2 + \ldots + b_t$ has structure (f_i) satisfying $f_0 = h_2$ and $f_i = \frac{1}{2}(2h_{i+1}-h_i-h_{i+2})$, for $i \ge 1$. We claim that H is the matrix of distances of a circulant code with first codeword described by (b_1, b_2, \ldots, b_t) . Let X be the (0, 1) circulant with first row described by (b_1, b_2, \ldots, b_t) . If $(h'_1, h'_2, \ldots, h'_m)$ is the first row of $2(J-X)X^t$, then by the argument above,

$$h_2 = h_2' = f_0$$

and

$$2h_{i+1} - h_i - h_{i+2} = 2f_i = 2h_{i+1} - h_i - h_{i+2}$$
 for $i \ge 1$

Since $h'_1 = h_1 = 0$, these equations suffice to ensure that $h_i = h'_i$ for $1 \le i \le m$.

3. Applications

From the structure theorem, a cyclic difference set (see [1]) with parameters (v, k, λ) exists if and only if there is an ordered partition of v with structure $\{f_i\}$ satisfying $f_0 = 2(k-\lambda)$, $f_1 = k - \lambda$, and $f_i = 0$ for $2 \le i \le \lfloor v/2 \rfloor$. We can prove some inequalities for partitions with these properties.

PROPOSITION 2. Suppose there is an ordered partition $v = b_1 + b_2 + \ldots + b_t$ with structure (f_i) satisfying $f_0 = 2n$, $f_1 = n$, and $f_2 = f_3 = 0$. Let p_i be the number of times that i occurs in (b_1, b_2, \ldots, b_t) . Then, whenever v > 11n/3 and $n \ge 4$,

(1)
$$p_1 = \frac{1}{2}t = n$$

(2)
$$\max(0, 4n+1-v, n-[(v-n)/4]) \le p_2 \le [3n/4]$$

and

(3)
$$\max(0, 5n-v-2p_2) \le p_3 \le \min(n-p_2-1, 2p_2, 3n-4p_2)$$

Proof. By definition, $f_0 = 2n = t$; and f_1 is the number of ones in $\{b_1, b_2, \dots, b_t\}$, hence we have (1).

A one-run A in the sequence $b = (b_1, b_2, \dots, b_t)$ is a subsequence $A = (b_i, b_{i+1}, \dots, b_j)$ where $b_i = 1 = b_{i+1} = \dots = b_j$. Of course, we define one-runs cyclically: if j < i, then

$$A = (b_i, b_{i+1}, \dots, b_t, b_1, \dots, b_j)$$

Let u be the number of one-runs of b, and let w be the number of oneruns with precisely one entry. Then the number of times (1, 1) occurs in b is $\sum (|A|-1)$, where the sum runs over all the one-runs A of b. But

$$\sum (|A|-1) = \left(\sum |A|\right) - u$$
$$= p_1 - u$$
$$= n - u$$

Thus, since $f_2 = 0$, we obtain

$$(4) p_2 = n - u ext{ .}$$

Now the number of times that (1, 1, 1) occurs in b is $\sum (|A|-2)$, where the sum runs over all one-runs of b with more than one entry. But

(5)
$$\sum (|A|-2) = (n-\omega) - 2(u-\omega)$$
$$= 2p_2 + \omega - n .$$

Hence

(6)
$$w \ge \max\{0, n-2p_2\}.$$

Now let x_1 and x_2 be the number of times (1, 2) and (2, 1) occur in b respectively. Then, for i = 1, 2, $x_i \le u$ and $x_i \le p_2$. Hence

(7)
$$x_1 + x_2 \le 2 \min\{u, p_2\}$$

= $2 \min\{n - p_2, p_2\}$.

Using $f_3 = 0$ and (5), we obtain

$$p_3 + (2p_2 - n + \omega) \le 2 \min\{n - p_2, p_2\}$$

This, together with (6) implies

M. Deza and Peter Eades

(8)
$$p_3 \leq 2 \min\{n-p_2, p_2\} + n - 2p_2 - \max\{0, n-2p_2\}$$

= $\min\{3n-4p_2, 2p_2\}$.

Let $C = \{b_i : b_i \neq 1, 2, \text{ or } 3\}$. Since $p_1 = n = \frac{1}{2}t$, $|C| = n - p_2 - p_3$. We show that |C| > 0. For if |C| = 0, then $n - p_2 = p_3$; so by (8), $n - p_2 \leq 2p_2$, so $p_2 \geq n/3$. But $v = p_1 + 2p_2 + 3p_3 = 4n - p_2$; hence $p_2 = 4n - v$. But this implies $4n - v \geq n/3$, and thus $v \leq 11n/3$, contrary to our assumptions.

(9)
$$p_3 \le n - p_2 - 1$$
.

Hence $|C| = n - p_2 - p_3 \ge 1$. So

Also, $\sum_{c \in C} c \ge 4|c|$, since $c \ge 4$ for all $c \in C$. This gives $v - p_1 + 2p_2 + 3p_3 \ge 4 n - p_2 - p_3$, and by (1) we have (10) $p_3 \ge 5n - 2p_2 - v$.

Now (8), (9), and (10) together give (3). From (3) we obtain $\max(0, 4n+1-v, (5n-v)/4) \le p_2 \le [3n/4]$. But since $n \ge 4$, this is the same as (2). This completes the proof of Proposition 2.

Using Baumert's list of known difference sets [1], one can check that the inequalities (2) and (3) are sharp; that is, for each inequality in (2) and (3), there is a difference set for which equality holds.

A circulant Hadamard matrix is a circulant (1, -1) matrix whose rows are mutually orthogonal. Konvalina and Kosloski [3] have defined a circulant quasi-Hadamard matrix to be a circulant (-1, 1) matrix whose first row is orthogonal to all but possibly one of the succeeding rows. Let p_i be the number of blocks of length i in the first row of a circulant quasi-Hadamard matrix of order $4n \ge 16$. Konvalina and Kosloski noted that $p_1 = n$; from Proposition 2 we can also deduce

$$n/4 \leq p_2 \leq 3n/4$$

and

$$\max\{0, n-2p_2\} \le p_3 \le \min\{n-p_2-1, 2p_2, 3n-4p_2\}$$
.

Since a circulant Hadamard matrix is a circulant quasi-Hadamard matrix, this gives bounds on the length of blocks in the first row of a circulant Hadamard matrix.

We can also calculate p. for partitions with more general structure.

PROPOSITION 3. Let p_i be the number of times that *i* occurs in the ordered partition $m = b_1 + b_2 + \dots + b_t$. For $i \ge 2$, let

$$m_i = m - \sum_{j=1}^{i-1} jp_j$$

and

$$t_i = t - \sum_{j=1}^{i-1} p_j$$

Then $m_i \geq it_i$, and

(i) if $m_i = it_i$, then $p_i = t_i$; and (ii) if $m_i > it_i$, then $p_i \le t_i - 1$.

Proof. Note that t_i is the number of summands b_j which are greater than or equal to i; m_i is their sum. Thus $m_i \ge it_i$ is immediate, and if $m_i = it_i$, then each b_j which is greater than i - 1must be i; thus $p_i = t_i$. And if $m_i > it_i$, then $p_i < t_i$; that is, $p_i \le t_i - 1$.

Finally, the structure theorem gives a necessary condition for the existence of circulant weighing matrices. An $m \times m$ (0, ±1) matrix satisfying $WW^{t} = kI_{m}$ is called a weighing matrix of weight k and order m. The problem of determining for which k and m a circulant weighing matrix of weight k and order m exists is discussed in [2].

Suppose X and Y are (0, 1) circulants described by $b = (b_1, b_2, \dots, b_n)$ and $c = (c_1, c_2, \dots, c_u)$ respectively. Let

 $x = (x_1, x_2, \dots, x_m)$ and $y = (y_1, y_2, \dots, y_m)$ be the first rows of xand y respectively. We will assume that $x_1 = 1$ and $x_m = 0$, but we will allow $y_1 = y_m$. If X and Y are disjoint, that is, $x_i = 1$ implies $y_i \neq 1$, then we say the *sum* of b and c is the sequence which describes X + Y.

COROLLARY 4. Suppose there is a circulant weighing matrix W of weight k and order m. Then there are partitions $m = b_1 + b_2 + \ldots + b_n$ and $m = c_1 + c_2 + \ldots + c_u$ with sum $m = d_1 + d_2 + \ldots + d_v$ with the following properties:

(i) $b_1 + b_3 + \dots + b_{n-1} = (k+\sqrt{k})/2$; (ii) $c_2 + c_4 + \dots + c_u = (k-\sqrt{k})/2$; (iii) $d_1 + d_3 + \dots + d_v = k$;

and if (f_i) , (g_i) , and (h_i) are the structures of the partitions $m = b_1 + b_2 + \dots + b_n$, $m = c_1 + c_2 + \dots + c_u$, and $m = d_1 + d_2 + \dots + d_v$, respectively, then (iv) $2f_0 + 2g_0 - h_0 = 2k$;

(v)
$$2f_1 + 2g_1 - h_1 = k$$
;
(vi) $2f_i + 2g_i - h_i = 0$, for $i \ge 2$.

Proof. Write W as X - Y, where X and Y are (0, 1) circulants. Since $WW^{t} = 2XX^{t} + 2YY^{t} - (X+Y)(X+Y)^{t}$, the corollary follows from the structure theorem.

References

 [1] Leonard D. Baumert, Cyclic difference sets (Lecture Notes in Mathematics, 182. Springer-Verlag, Berlin, Heidelberg, New York, 1971).

- [2] Peter Eades and Richard M. Hain, "On circulant weighing matrices", Ars Combinatoria (to appear).
- [3] John Konvalina and Rodney H. Kosloski, "Cyclic quasi-Hadamard matrices", Utilitas Math. (to appear).

Centre National des Recherches Scientifiques, Université de Paris VII, Paris, France; Department of Pure Mathematics, School of General Studies, Australian National University, Canberra, ACT.