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On circulant codes with

prescribed distances

M. Deza and Peter Eades

Necessary and sufficient conditions are given for a square matrix

to be the matrix of distances of a circulant code. These

conditions are used to obtain some inequalities for cyclic

difference sets, and a necessary condition for the existence of

circulant weighing matrices.

1 . Preliminaries

Throughout this paper, a circulant code C of length m shall mean a

set of m (0, 1) codewords of length m , with the property that

successive codewords differ by a cyclic shift. Thus if [x~, X-, ••., x)

is the first codeword, then [x^ . , x .+_, — , x^ . ) is the jth

codeword, for 2 £ j £ m . We can write these codewords as the rows of a

circulant (0, 1) matrix X . The matrix 2{J-X)X is called the matrix

of distances of the code C . (J is the m x m matrix with every entry

1 .) Clearly the (i, j)th entry of 2{J-X)X is the (Hamming) distance

between the ith and jth codewords. A matrix of the form 2(J-X)X ,

where X is a (0, 1) circulant matrix, is called realisable, and the

circulant code whose codewords are the rows of X is called the

realization of 2{J-X)X .

The problem of finding a code with prescribed distances has received

attention from both coding theorists and combinatorialists. In -Section 2,

the realizability of an m x m matrix is shown to be equivalent to the
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existence of a partition of m with appropriate properties. Firstly,

however, we require some definitions.

Let x = [x^, x , ... , x } be a (0, 1) codeword. For Sections 1

and 2, we will use the convention that x. = 1 and x = 0 . If
l m

Xi-X * xi = xi+l = ••" = xj * xj+l ' w e c a l 1 s = (̂ » i + 1» •••» J) a block

of x . The blocks of x are numbered B^ , Bo, , B, from left to

right as they appear in x . Note that since x, t x , t is even. Let
-L m

X denote the circulant with first row x , and let b. denote |B.| , the

length of the ith block. We say that the sequence (£>., £>„, — , fc.)

describes X .

Note that m = b^ + i>2 + ... + b. is an ordered partition of m .

Consider all the series b . + b . . + — + b. . (if j > k , the sum is

3 3+i *

defined cyclically, that is,

b. * b.+± * ... + bk = b.

For each 1 5 i £ [m/2] , let /. be the number of such series that have

sum i and an odd number of terms, less the number of series that have

sum i and an even number of terms. Let / " b e t ; then the sequence

(/. : 0 £ i £ [m/2]) is called the structure of the ordered partition

m = b + bo + ... + b. .

For example, (2, 3, 5, 2, 1, It) describes a circulant code with

first codeword (1100011111 and blocks B = (1, 2) ,

B2 = ( 3 , I t , 5) , B3 = ( 6 , T , 8 , 9 , 10) , Bh = ( 1 1 , 12) , B^ = (13) , and

Bg = ( l U , 1 5 , 1 6 , 17 ) • The s t r u c t u r e o f 1 7 = 2 + 3 + 5 + 2 + l + U i s

( 6 , 1 , 2 , 0 , 1 , - 1 , - 1 , 1 , 0) .

2. The structure theorem

THEOREM 1 (Structure Theorem). An m * m matrix H with first row

(h^, h^t ••••> ft) is realizable if and only if
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(i) H is a symmetric circulant matrix with zero diagonal;

(ii) the entries of H are even, non-negative integers; and

(Hi) there is an ordered •partition m = b~ + b~ + . . . + b.

with structure (/^) satisfying f. = 7i_ and

h = *(2hi+rhi-hiJ f°r 1-i- [m/2] •

Proof. Suppose H is realized by a circulant code whose codewords

are the rows of a circulant (0, l) matrix X . Let (b , b , , b.)

denote the sequence that describes the first row of X , and let (/.) be

the structure of m = i> +brt+ — + b. . Clearly (i) and (ii) follow,
1 <- *

and h2 = fQ • Now

and we can deduce

where t. = [x -x A [x <. -x .) .t,q v q q-lJ v q-H-1 q\v>

But t. is non-zero only when x £ x n and x ? x . • In
iq q q-\ q+i-1 qH.

this case, q must be the first element of some block B, , and q + i

must be the last element of some block S7 . Hence if t. ± 0 , then
L "vq

b-, + b-. + ... + b- = i . But t. = 1 if I - k +'1 is odd, and

t.=-\ if I - k + 1 is even. So /. = ̂ {^^-^^^ » for i > 1

Conversely, suppose that H is a symmetric circulant of even non-

negative integers, and suppose the partition m = b + b^ + ... + b. has

structure ()\) satisfying fQ = & 2 and /\ = *(2?»i+1-'
I£-'li+2) >

 f o r

t i l . We claim that ff is the matrix of distances of a circulant code

with first codeword described by (b , b , ..., 2>t) . Let X be the

(0, 1) circulant with first row described by [b , b^, ..., fc^) . If
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{h'x, h'2, . . . , hjj i s the f i r s t row of 2(J-X)Xt , then by the argument

above,

and

" h ~ hU2

Since hi = h = 0 , these equations suffice to ensure that h. - h\ for

1 5 i 5 m .

3 . A p p l i c a t i o n s

From the structure theorem, a cyclic difference set (see [7]) with

parameters (v, k, X) exists if and only if there is an ordered partition

of v with structure (/.) satisfying / = 2(k-\) , f' = k - X , and

/. = 0 for 2 5 i 5 [v/2] . We can prove some inequalities for partitions

with these properties.

PROPOSITION 2. Suppose there is an ordered partition

v = b + b• + + b. with structure [f.) satisfying f' = 2n }

/, = n j and / . = / _ = 0 . Let p. fee the number of times that i

occurs in [b , b-, , Z>.) . ITzew, whenever v > lln/3 and n > It ,

(1) px= hit = n ,

(2) max(0, Un+l-u, n-[(y-n)/U]) £ p 2 < [3n/h] ,

and

(3) max(0, 5n-v-2p2) < p 3 < min(n-p2-l, 2p2, 3n-l+p2) .

Proof. By definition, f.=2n=t ; and f^ is the number of ones

in {£> , 2>2, ..., b.} , hence we have (1).

A one-run A in the sequence b = (i>. , b~, •••> bA is a subsequence

A = (b., i>. , .... b .) where £>. = 1 = b. , = — = b . . Of course, we

define one-runs cyclically: if j < i , then
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A = ( V W •••' W •••>bJ •

Let u be the number of one-runs of b , and let w be the number of one-

runs with precisely one entry. Then the number of times (l, l) occurs in

b is Y, (jJ4| —1) , where the sum runs over all the one-runs A of b .

But

= (l Ml) ~u

= n - u .

Thus, since /„ = 0 , we obtain

CO p2 = n - u .

Now the number of times that (l, 1, 1) occurs in i is Y, (Ml-2) ,

where the sum runs over all one-runs of b with more than one entry. But

(5) I (Ml-2) = («-") - 2(u-u)

= 2p2 + w - n .

Hence

(6) w > max{0, n-2p } .

Now let x. and Xp be the number of times (1, 2) and (2, 1)

occur in b respectively. Then, for i = 1, 2 , x. 2 u and x. 5 p o .

Hence

(7) xx + x2 < 2 min{w, p2}

= 2

Using /. = 0 and (5), we obtain

P3
 + (22

This, together with (6) implies
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(8) P 3 - 2 min{n-p2, pg} + n - 2p2 - max{o, n-2p2}

= min{ 3n-hp2, 2p2) .

Let C = {b. : b. t 1 , 2 or 3} . Since p., = n = %t ,

I C| = n - p 2 - p_ . We show that | C| > 0 . For i f | C\ = 0 , then

« - P2 = P3 ' so by (8) , n - p 2 < 2p2 , so p 2 > nil . But

v = p1 + 2p2 + 3?^ = kn - p 2 ; hence p = kn - v . But th is implies

kn - V 2: n/3 , and thus i> S l ln /3 , contrary to our assumptions.

Hence |C| = n - p g - p , > 1 . So

(9) p 3 £ n - p 2 - 1 .

Also, Y, c - b\c\ , since a > 1* for a l l e € C . This gives

V - P-,+2p2+3p~ > ^ n~P2~P-3 ' a n d ^ (-1-) w e have

(10) p 3 2 5w - 2p2 - y .

Now (8), (9), and (10) together give (3). From (3) we obtain

max(0, hn+l-v, (5n-v)/h) S p 5 [3n/k] . But since n i h , this is the

same as (2). This completes the proof of Proposition 2.

Using Baumert's list of known difference sets ['], one can check that

the inequalities (2) and (3) are sharp; that is, for each inequality in

(2) and (3)> there is a difference set for which equality holds.

A oiraulant Hadamard matrix is a circulant (l, -1) matrix whose rows

are mutually orthogonal. Konvalina and Kosloski [3] have defined a

circulant quasi-Hadamard matrix to be a circulant (-1, l) matrix whose

first row is orthogonal to all but possibly one of the succeeding rows.

Let p . be the number of blocks of length i in the first row of a

circulant quasi-Hadamard matrix of order kn 5 16 . Konvalina and Kosloski

noted that p, = n ; from Proposition 2 we can also deduce

n/h £ p 2 < 3n/k ,

and
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max{0, n-2p2] 5 p S min{n-p2-l, 2p2> 3n-hp } .

Since a circulant Hadamard matrix is a circulant quasi-Hadamard matrix,

this gives bounds on the length of blocks in the first row of a circulant

Hadamard matrix.

We can also calculate p. for partitions with more general structure.
If

PROPOSITION 3. Let p. be the number of times that i occurs in
If

t h e o r d e r e d p a r t i t i o n m = 2 > _ + 2 ? o + . . . + 2 > , . F o r i > 2 , l e t
A. c. V

i-l
_ y

and

i-l

Then m.-tit., and

(i) if m. = it. , then p. = t . ; and
If If If Tf

Hi) if m. > it. , then p. 5 t.-l .

Proof. Note that t. i s the number of summands b . which are
i 3

greater than or equal to i ; m. is their sum. Thus m . > it . is
If If If

immediate, and if m. = it. , then each b . which is greater than i-l

must be i ; thus p . = t. . And if m . > it. , then p . < t. ; that is,
If If If is (f if

p. < t.-l .

Finally, the structure theorem gives a necessary condition for the

existence of circulant weighing matrices. An m * m (0, ±l) matrix

satisfying WW = kl is called a weighing matrix of weight k and order
m

m . The problem of determining for which k and m a circulant weighing

matrix of weight k and order m exists is discussed in [2].

Suppose X and Y are (0, 1) circulants described by

b = (&., £>„, , b ) and c = [c , c2, ..., c ) respectively. Let

https://doi.org/10.1017/S0004972700023467 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023467


368 M. Deza and Peter Eades

x = [xx, x2, ... , xm) and y = [y^ y2, •.., yj be the first rows of x

and y respectively. We will assume that x. = 1 and a; = 0 , but we

will allow y-,=y • It X and Y are disjoint, that is, x. = 1

implies y. + 1 , then we say the sum of b and c is the sequence which

describes X + Y .

COROLLARY 4. Suppose there is a circulant weighing matrix W of

weight k and order m . Then there are partitions

m = b. + bp + ... + b and m = c. + <32 + + e witfce

= d + <2 + + d w£t/z the following properties:

(i) bx + b3 + . . . + i ^ = (fe+V )̂/2 ;

a + a + . . . + a = (k-Vk)/2 ;

d^ + d2 + . . . + dy = k ;

i / (/•)> fe-)-» aM<^ (^0 a r e *^e structures of the partitions

m = b

m = d

+ 2?_

+ d2

(iv)

+ ...

+ . . .

2 / Q +

+ bn

+ dv>

2 * 0 "

, m = e + c 2

respectively,

h = 2fe ;

+ . . .

then

+ °u>, and

(v) 2f± + 2gx - h± = k ;

(vi) 2f. + 2g. - h. = 0 , for i > 2 .
If If %r

Proof. Write W as X - Y , where Z and Y are (0 , 1)

c i r cu l an t s . Since WWt = 2XXt + 2YY* - U+Y)(#+Y)* , the corollary follows

from the s t ruc ture theorem.

References

[7] Leonard D. Baumert, Cyclic difference sets (Lecture Hotes in

Mathematics, 182. Springer-Verlag, Berlin, Heidelberg, New York,

1971).

https://doi.org/10.1017/S0004972700023467 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023467


Circulant codes 369

[2] Peter Eades and Richard M. Hain, "On circulant weighing matrices",

Are Combinatoria (to appear).

[3] John Konvalina and Rodney H. Kosloski, "Cyclic quasi-Hadamard

matrices", Utilitas Math, (to appear).

Centre National des Recherches Scientifiques,

Universite de Paris VII,

Paris,

France;

Department of Pure Mathematics,

School of General Studies,

Australian National University,

Canberra, ACT.

https://doi.org/10.1017/S0004972700023467 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023467

