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Abstract 

Algebraic techniques are employed to obtain necessary conditions for 

the existence of certain circulant weighing matrices. As an application 

we rule out the existence of many circulant weighing matrices. 

We study orders n = 82 +8+1, for 10 ~ 8 ~ 25. These orders correspond 

to the number of points in a projective plane of order 8. 

1 Introduction 

A weighing matrix W (n, k) = W of order n with weight k is a square matrix of 

order n with entries from {O, -1, +1} such that 

WW
t 

= k· In 

where In is the n x n identity matrix and W t is the transpose of W. 

A circulant weighing matrix, written as W = WC(n, k), is a weighing matrix 

in which each row (except the first row) is obtained by its preceding row by a right 

cyclic shift. We label the columns of W by a cyclic group G of order n, say generated 

by g. 

Define 
A = {gi I W1,i = 1, i = 0,1, ... , n - I} 

and B = {gi I W1,i = -1, i = 0,1, ... , n - I} 
(1) 
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It is easy to see that 1 A 1 + 1 B 1= k. 
It is well known that k must be a perfect square, (see [13], for instance); we write 

k = S2 for some integer s. 

For more on weighing designs, weighing matrices and related topics refer to [8]. 
It is known [8, 13, 15] that: 

Theorem 1 A WC(n, k) can only exist if (i) k = S2, (ii) 1 A 1 = 8

2 i sand 

IBI=~, (iii) (n-k)2 - (n-k)~n-landiv)if(n-k)2 - (n-k)=n-l 

then A J W * W is the incidence matrix of a finite projective plane, (here J 

is the n x n matrix of all 1 's and * denotes the Kronecker product). 

For a multiplicatively written group G, we let ZG denote the group ring of G 

over Z. We will consider only abelian (in fact, only cyclic) groups. A character of 

the group G, is therefore, a homomorphism from G to the multiplicative group of 

complex numbers. XO denotes the principal character of G which sends each element 

of G to 1. Extending this to the entire group ring ZG yields a map from ZG to the 

field C of complex numbers. For S ~ G, we let S denote the element :EXES x of ZG. 

For A = 2:g agg and t E ZG, we define A(t) = 2:g aggt
. 

It is easy to see (see [1] or [16], for details): 

Theorem 2 A WC = Wen, S2) exists if and only if there exist disjoint subsets A 

and B of Zn satisfying 

(A - B)(A - B)(-l) = S2. (2) 

We exploit (2), in conjunction with a few known results on multipliers in group 

rings, to obtain necessary conditions on the order n and weight k of a possible 

circulant W(n, k). 

2 Known Results 

Theorem 3 (Arasu and Seberry [4]) Suppose that a WC(n, k) exists. Let p be a 

prime such that p2t I k for some positive integer t. Assume that 

(i) m is a divisor of n. Write m = m'pu, where (p, m') 1; 

(ii) there exists an fEZ such that pi == -1 (mod m'). 

Then 

(i) ~ ~ pt if p 1 m; 

(ii) f:i '2 pt if pi m. 

Lemma 1 Let q be a prime and x an integer. If there exists an integer f such that 

xl == -1 (mod qi) 

for some positive integer i, then there exist an integer f' such that 

xl' == -1 (mod qi+1). 
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Proof. By hypothesis, xl = -1 + lqi for some integer i. Consider 
xlq = (-1 + lqi)q 

= -1 + lqqiq + L:j:i( ~ )( -1)j(lqi)q-j. 

Since q is a prime, each of the (q - 1) binomial coefficients ( ~ ) in the right hand 
J 

sum is divisible by q and hence 

Also qqi == 0 (mod qi+l) since qi ~ i + 1. Thus xlq == -1 

the lemma. 

(mod qi+l), proving 

o 

Lemma 2 If m' is a prime power, say m' = (p'y for some prime p', hypothesis (ii) 

in Theorem 3 is satisfied whenever the Legendre symbol ( P,) = -1. 0 
. p 

Proof. In view of Lemma 1, it suffices to prove the result for r = 1. (An easy 

induction is applied afterwards.) We first claim that p has even order, say 2a, 

modulo p'. For otherwise, p2(3+1 == 1 (mod p') for some integer (3, hence (p.B+l)2 == 
P (mod p') showing that p is a quadratic residue modulo p'; this contradicts the 

hypothesis (;,.) = -1. Thus the order of p modulo p' is 2a for some positive integer 

a. Thus p' I (p2Ot - 1). So p' I (pOt - 1) or p' I (pOt + 1). But p' cannot divide pOt - 1, 

since the order of p modulo p' is 2a. Thus p' I (pOt + 1), proving the result for r = 1. 

D 

Theorem 4 «(Seberry) Wallis and Whiteman [15]) If q is a prime power, then there 

exists WC(q2 + q + l,q2). 

Theorem 5 (Eades [6]) If q is a prime power, q odd and i even, then there exists 

WC( qi+ 1
_ 1 i). 

q-l ,q 

Theorem 6 (Arasu, Dillon, Jungnickel and Pott [1]) If q 

there exists WC(qi;~~l, qi). 

2t and i even, then 

Theorem 7 (Eades and Hain [7]) A WC(n,4) exists if and only if 2 I n or 7 I n. 

Theorem 8 (Arasu and Seberry [4]) If there exist WC(nl' k) and WC(n2' k) with 

gcd (nl , n2) = 1 then there exist 

(i) a WC(mnl' k) for all positive integers m; 

(ii) two inequivalent WC(nln2, k); 

(iii) a WC(nln2, k2). 
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Theorem 9 (Strassler [18]) A WC(n, 9) exists if and only if 13 I n or 24 I n. 

Theorem 10 (Arasu and Seberry [4]) For a given integer k and prime p, WC(p, k2) 

exists for only a finite number of p. 

Remark 1 It is shown in [4] that a WC(p,9) exists for a prime p if and only if 

p = 13. 

Theorem 11 is given by Seberry [14] but we give a proof here for completeness. 

In Theorem 11 we use the following notation. If G H x N is a group and A ~ H 

and B ~ N, then (A,B) = {(a, b) E G;a E A and b E B}. Similarly, if 8 and Tare 

group ring elements of ZH and ZN, the element (8, T) is the product of S' and T' 

in ZG, where S' and T' are the images of Sand T under the canonical embedding 

of ZH and ZN into ZG. 

Theorem 11 (Circulant Kronecker Product Theorem) If there exist WC(nl' kD 

and WC(n2' k~) with gcd(nl' n2) := 1 then there exists WC(nln2' kik~). 

Proof. Since there exist WC(ni' kl) for i = 1,2, by Theorem 2, there exist subsets 

Ai, Bi of Zni' Ai n Bi = ¢> , IAil = Hk; + ki) and IBil = ~(k; - ki), satisfying 

(Ai - Bi)(Ai - Bi)(-l) = k; in Zn., for i = 1,2. 
1 

Define X AIA2 + BIB2 and Y = AIB2 + A2B1. Then X, Y E ZG and the 

coefficients of X and Yare 0 and 1. 

Consider 
(X Y)(X - y)(-l) = (AI - Bl)(Al - Bd(-1)(A2 - B2)(A2 - B2)(-1) 

= kik~. 

An easy computation shows that IXI = Hkik~ + k1k2) and IYI = Hkik~ - klk2)' 
This X Y defines the first row of WC(nln2, krk~). 0 

Corollary 1 There exist: 

WC(91,62), WC(217,82), WC(217, 102
), WC(273,42

), WG(273,92
), WC(273, 62

), 

WC(273,12 2
), WC(381,82

), WC(399,142), WC(651,82), WC(651, 102
), 

WC(651, 162
) and WC(651, 202

). 

Proof. 
WC(7,4) and WC(13, 9) =} WC(91, 62) 

=} WC(273, 62) 

WC(7, 4) and WC(31, 16) =} WC(217, 82
) 

=} WC(651, 82
) 

WC(21, 16) =} WC(273, 42
) 

WC(91, 81) =} WC(273, 92) 

WC(13,9) and WC(21, 16) =} WC(273, 122) 

WC(7, 4) and WC(31, 25) =} WC(217, 102) 

=} WC(651, 102) 

WC(127, 64) =} WC(381, 82) 

WC(7, 4) and WC(57, 49) =} WC(399, 142) 

WC(21, 16) and WC(31, 16) =} WC(651, 162) 

WC(21, 16) and WC(31, 25) =} WC(651, 202) 
0 
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Remark 2 A WC(13, 9) exists and hence a W(509, 81) = WG(13, 9) x WC(13, 9) x 
13 exists. However the existence of the WG(507, 81) remains open. 

Applications 

(I) WC(n, 22) exist for n =133,273, 343, 553 and 651. WC(n, 22) do not exist for 

n =111, 157, 183, 211, 241, 307, 381, 421, 463, 507 or 601. 

(II) WC(n, 32) do not exist for n = 111, 133, 157, 183, 211, 241, 307, 343, 381, 421, 

463, 553, 601 or 651. 

(III) A WC(111, 102
) does not exist as its existence would imply the existence of a 

projective plane of order 10 which does not exist. 

3 FUrther Results using Multipliers 

Notation 1 For each positive integer n, M(n) is defined as follows: M(I) = 1, 

M(2) = 2·7, M(3) = 2·3 ·11·13, M(4) = 2·3·7·31, and recursively, M(z) for z 2 5 

is the product of the distinct prime factors of the numbers z, M(;2:), p - 1, p2 - 1, 

... pu(z) - 1, where p is any prime dividing m with pe II m and u(z) = HZ2 - z). 

Theorem 12 (Multiplier Theorem, Arasu and Xiang [5]) Let R be an arbitrary 

group ring element in ZG that satisfies RR(-l) = a for some integer a, a # 0, 

where G is an abelian group of order v and exponent v*. Let t be a positive integer 

relatively prime to v, kll a, kl =prlp~2 ... p~s, al = (v,k 1), k2 =~. 

For each Pi, we define 

{

Pi ifpdv* 

qi = fi if v* = piu , (Pi, u) = 1, r 2 1, fi is any integer such that 

(fi,Pi) = 1 and fi == p{ (mod u). 

Suppose that for each i, there exists an integer fi such that either 

(1) q{i == t (mod v*) or 

(2) q{i == -1 (mod v*). 

If ( v, M (f;)) = 1, where M (m) is as defined earlier, then t is a multiplier of R. 

The following corollary is proved in Arasu, Dillon, Jungnickel and Pott [1] 

Corollary 2 (Multiplier Theorem) Let R be an arbitary group ring element in ZG 

that satisfies RR(-l) = pn where p is a prime with (p,IGI) = 1 and where G is an 

abelian group. Then R(p) = Rg for some g E G. 
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Remark 3 Let R = 2:g agg E ZG. By a result in Arasu and Ray-Chaudhuri [3] 

if (2:g ag , IGI) 1, we can replace R by a suitable translate of it, if necessary, in 

Theorem 12 and Corollary 2 and conclude R(t) R, Le. the multiplier tactually 

fixes R. 

Let t be a multiplier of R = A-B. Then by the above remark we obtain 

(A B)(t) A - B or A(t) - B(t) = A-B. But A and B have coefficients 0 or 1, 

hence it follows that A(t) = A and B(t) = B. Thus A and B are unions of some of 

the orbits of G under the action x f-t tx. 

Theorem 13 A WG(7, 4) exists and hence a W(49, 16) exists. However no 

WC( 49,16) exists. 

Remark 4 The non-existence of a WG(49, 16) follows from Corollary 2 using the 

multiplier 2. 

Most of the above results suffice tb settle the cases in the following tables except for 

the cases WG(133, 102) and WG(133, 52) which require ad hoc methods which we 

now prove. 

Proposition 1 There does not exist any WC(133, 102
). 

Proof. Assume the contrary. Write G = ZI33 = Z7 X Z19. Then there exists 

D E ZG, whose coefficients are 0, ±1, such that 

(3) 

Let (J : Z7 x ZI9 -+ ZI9 be the canonical homomorphism. Extend (J linearly 

from 

Z[Z7 x ZI9] -+ Z[ZI9]. 

Apply (J to (3), setting E = DU, to obtain 

(4) 

in Z[ZI9]. Note that the coefficients of E lie in [-7,7]. Since 216 == 5 (mod 19), by 

Theorem 12, 5 is a multiplier of E. We may, without lost of generality, assume that 

E(5) = E. The orbits of ZI9 under x -+ 5x are of sizes 1192
. Hence from (4) (after 

applying the principal character first to E and then to both sides of (4)), we can find 

three integers a, b, c such that 

a + 9b + 9c = 10 (5) 

a2 + 9b2 + 9c2 = 100. (6) 

These integers a, b, c are merely the coefficients of E. By (5) a == 1 (mod 9). 

But a E [-7,7]. Therefore a = 1. But then (6) gives 

b
2 + c2 = 11, 

a contradiction, which proves the Proposition. o 
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Proposition 2 There does not exist any WC(133, 52). 

Proof. Assume to the contrary that there exists a WC(133, 52). Write G = ZI33 = 

Zr x Z19. By Theorem 2, there exist A and B ~ Z133, An B = <p, IAI = 15 and 

IBI = 10 such that 

(7) 

By theorem 12, 5 is a multiplier of A - B; hence A(5) = A and B(5) = B. The orbits 

of Zr under x -+ 5x are {O} and {I, 2, 3, 4, 5, 6}. The orbits of ZI9 under x -+ 5x 

are {O}, Co and C1 where Co is the set of all non-zero quadratic residues of ZI9 and 

C1 = ZI9 - (Co U {O}). 
Then, without loss of generality, we can assume that 

A = {I, 2,3,4,5, 6} x {O} U {O} x Co, and B = {(O, O)} U {O} XCI, 

Let X be any nonprincipal character of G such that X I ZI9 = Xo. Then X(A) = 

-1 + 9 = 8 and X(B) = 1 + 9 =·10. Therefore X(A - B) = 8 10 = -2. But by (7), 

Ix(A - B)1 2 = 52, a contradiction. Thus there cannot exist WC(133, 52). 0 

4 The Projective Plane Orders 

In this section we consider WC(m2 + m + 1, k2
) for k E {2,"', m}. 

Case 

k 

10 
9 

8 

7 

6 

5 

4 

3 

n = 102 + 10 + 1 
Theorem p t m n pI -1 (mod m') 

Does not exist as there is no projective plane of order 10 

Theorem 3 3121111 1111 I. 3
9 

== -1 (mod 37) 
Theorem 3 2 3 37 111 218 == -1 (mod 37) 

7 is a multiplier; orbit sizes 13912
, IAI = 28, IBI = 21; impossible 

Theorem 3 3 1 111 111 39 == -1 (mod 37) 

Theorem 3 5 1 37 111 518 ~ -1 (mod 37) 

Theorem 3 2 2 37 111 218 == -1 (mod 37) 

Theorem 9 Does not exist 

2 Theorem 7 Does not exist. 

WG(102 + 10 + 1, k 2
) does not exist for any k. 

27 



Case 

k Theorem p == -1 (mod m') 

11 

10 

9 

Proposition 1 

Theorem 31312119 1133139 == -1 (mod 19) 
Theorem 3 2 3 19 133 29 == -1 (mod 19) 

Open 

Theorem 3 I 3 11 1133 1133 I 39 == -1 (mod 133) 

Proposition 2 

8 

7 

6 

5 

4 

3 

2 

2 is a multiplier; orbit sizes 1132187
, IAI = 10, lEI = 6; impossible 

Theorem 9 Does not exist 

Theorem 7 Exists. 

WC(112 + 11 + 1, k2) exists only for k = 2,11 and possibly for 7. 

Case n = 122 + 12 + 1 

k Theorem pit I min I pI == -1 (mod m') 

12 31 = 4 (mod n) ::::}4 is a multiplier; orbit sizes 11261>, IAI = 78, lEI = 66; 

impossible 

11 11 is a multiplier; orbit sizes 1139\ IAI = 66, lEI = 55; impossible 

10 Theorem 3 I 2 I 1 I 157 I 157 I 226 == -1 (mod 157) 

9 3 is a multiplier; orbit sizes 11782, IAI = 45, IBI = 36; impossible 

8 Theorem 3 I 2 I 3 1157 1157 1 226 == -1 (mod 157) 

7 7 is a multiplier; orbit sizes 11523
, IAI = 28, lEI = 21; impossible 

6 Theorem 3 I 2 1 1 1157 1157 1 226 == -1 (mod 157) 

5 5 is a multiplier; orbit sizes 111561, IAI = 15, lEI = 10; impossible 

4 Theorem 3 2 I 2 1 157 I 157 1 226 == -1 (mod 157) 

3 Theorem 9 Does not exist 

2 Theorem 7 Does not exist. 

WC(122 + 12 + 1, k2) does not exist for any k. 

Case n = 132 + 13 + 1 

k Theorem p t m n pI =-1 (mod m') 

13 Theorem 4 Exists 

12 Theorem 3 2 2 61 183 2' =-1 (mod 61) 

11 Theorem 3 11 1 61 183 11' == -1 (mod 61) 

10 Theorem 3 5 1 61 183 515 =-1 (mod 61) 

9 Theorem 3 3 2 183 183 35 ==-1 (mod 61) 

8 Theorem 3 2 3 61 183 2' ==-1 (mod 61) 

7 Theorem 3 7 1 61 183 7' ==-1 (mod 61) 

6 Theorem 3 3 1 183 183 35 =-1 (mod 61) 

5 Theorem 3 5 1 61 183 515 = -1 (mod 61) 

4 Theorem 3 2 2 61 183 2' ==-1 (mod 61) 

3 Theorem 9 Does not exist 

2 Theorem 7 Does not exist. 

WC(13 2 + 13 + 1, k 2
) exists only for k = 13. 
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Case 

k Theorem m n p = -1 (mod m') 

14 Does not exist as 14 oj:. sum of two squares 

13 13 is a multiplier; orbit sizes 11356, IAI = 91, IBI = 78; impossible 

12 Theorem 3 I 2 I 2 I 211 I 211 I 21 = -1 (mod 211) 

11 11 is a multiplier; orbit sizes 11356, IAI = 66, IBI = 55; impossible 

10 Theorem 3 2 1 211 211 21 = -1 (mod 211) 

9 Theorem 3 3 2 211 211 31 = -1 (mod 211) 

8 Theorem 3 2 3 211 211 21 = -1 (mod 211) 

7 Theorem 3 7 1 211 211 71 = -1 (mod 211) 

6 Theorem 3 2 1 211 211 21 = -1 (mod 211) 

5 5 is a multiplier; orbit sizes 11356, IAI = 15, IBI = 10; impossible 

4 Theorem 3 2 I 2 I 211 I 211 I 21 = -1 (mod 211) 

3 Theorem 9 Does not exist 

2 Theorem 7 Does not exist. 

WC(142 + 14 + 1, k2) does not exist for any k. 

Case n = 152 + 15 + 1 

k Theorem p m n p = -1 (mod m') 

15 3 =5 (mod 241), so 5 is a multiplier; orbit sizes 1 40 , 

IAI = 120, IBI = 105; impossible 

14 Theorem 3 7 1 241 241 71 =-1 (mod 241) 

13 Theorem 3 13 1 241 241 131 = -1 (mod 241) 

12 Theorem 3 2 2 241 241 212 = -1 (mod 241) 

11 Theorem 3 11 1 241 241 111 = -1 (mod 241) 

10 Theorem 3 2 1 241 241 212 = -1 (mod 241) 

9 Theorem 3 3 2 241 241 360 = -1 (mod 241) 

8 Theorem 3 2 3 241 241 212 = -1 (mod 241) 

7 Theorem 3 7 1 241 241 71 =-1 (mod 241) 

6 Theorem 3 2 1 241 241 - 212 = -1 (mod 241) 

5 Theorem 3 5 1 241 241 520 = -1 (mod 241) 

4 Theorem 3 2 2 241 241 212 = -1 (mod 241) 

3 Theorem 9 Does not exist 

2 Theorem 7 Does not exist. 

WC(152 + 15 + 1, k2) does not exist for any k. 
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Case 

k 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

Case n = 162 + 16 + 1 

k Theorem p p ==-1 (mod m') 

16 Theorem 4 

15 Open 

14 Theorem 3 7 11 1 91 1273176 == -1 (mod 13) 
13 Theorem 3 13 1 91 273 131 == -1 (mod 7) 

12 Corollary 1 Exists 

11 Open 

10 Open 

9 Corollary 1 I Exists 

8 Open 

7 Theorem 3 I 7 I 1 I 91 I 273 I 76 
== -1 (mod 13) 

6 Corollary 1 Exists 

5 Open 

4 Corollary 1 Exists 

3 Theorem 9 Exists 

2 Theorem 7 Exists. 

WC(162 + 16 + 1, k2
) exists for k = 2, 3, 4, 6, 9, 12, 16 

and possibly for k = 5, 8, 10, 11, 15. 

n = 172 + 17 + 1 

Theorem p m n pJ == -1 (mod m') 

Theorem 4 Exists 

Theorem 3 and Lemma 2 2 4 307 307 (3g7) = -1 

Theorem 3 and Lemma 2 5 307 307 ( 3~7) = -1 

Theorem 3 and Lemma 2 2 1 307 307 (307) = -1 

Theorem 3 and Lemma 2 13 1 307 307 (N7) = -1 

Theorem 3 and Lemma 2 2 2 307 307 (307) = -1 

11 is a multiplier; orbit sizes 11153 , IAI = 66, IBI = 55; impossible 

Theorem 3 and Lemma 2 I 2 11 I 307 I 307 I (3~7) = -1 

3 is a multiplier; orbit sizes 11349
, IAI = 45, IBI = 36; impossible 

Theorem 3 and Lemma 2 I 2 I 3 I 307 I 307 I (3~7) = -1 

7 is a multiplier; orbit sizes 111532, IAI = 28, IBI = 21; impossible 

Theorem 3 and Lemma 2 2 1 307 307 (3g7) = -1 

Theorem 3 and Lemma 2 5 1 307 307 (3~7) = -1 

Theorem 3 and Lemma 2 2 2 307 307 ( 307) = -1 

Theorem 9 

Theorem 7 

Does not exist 

Does not exist. 

WC(172 + 17 + 1, k2) exists only for k = 17. 
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Case n = 182 + 18 + 1 

k Theorem p t m n pI ==-1 (mod m') 

18 Theorem 3, Lemma 1 3 2 343 343 33 ==-1 (mod 7) :::} 31 == -1 (mod 'fJ) 

17 Theorem 3, Lemma 1 17 1 343 343 17 == 3 (mod 7) :::} 31 == -1 (mod 73) 

16 2 is a multiplier; orbit sizes 113 2121472, IAI = 136, lEI = 120; impossible 

15 Theorem 3, Lemma 1 3 1 343 343 33 ==-1 (mod 7) :::} 31 == -1 (mod 73
) 

14 Theorem 3 7 1 343 343 7 ==-1 (mod 1) 

13 Theorem 3, Lemma 1 13 1 343 343 13 ==-1 (mod 7) :::} 131 == -1 (mod 73
) 

12 Theorem 3, Lemma 1 3 1 343 343 33 ==-1 (mod 7) :::} 31 == -1 (mod 73
) 

11 11 is a multiplier; orbit sizes 11322121472, IAI = 66, lEI = 55; impossible 

10 Theorem 3, Lemma 1 I 5 11 [3431343153" -1 (mod 7) =} 5f 
" -1 (mod 73

) 

9 Theorem 3, Lemma 1 3 2 343 343 33 == -1 (mod 7) :::} 31 == -1 (mod 73
) 

8 2 is a multiplier; orbit sizes 113 2121472, IAI = 36, lEI 28; impossible 

7 
Theorem 3 1711 l343134317" -1 (mod 1) 

6 Theorem 3, Lemma 1 3 1 343 343 33 == -1 (mod 7) :::} 31 == -1 (mod 73
) 

5 Theorem 3, Lemma 1 5 1 343 343 53 == -1 (mod 7) :::} 51 == -1 (mod 73
) 

4 2 is a multiplier; orbit sizes 113 2121472, IAI = 10, lEI = 6; impossible 

3 Theorem 9 I Does not exist 

2 Theorem 7 Exists. 

WC(18 2 + 18 + 1, k2
) exists only for k = 2. 

Case n = 192 + 19 + 1 

k Theorem p tim n pI == -1 (mod m') 

19 Theorem 4 Exists 

18 Theorem 3 3 I 2 I 381 I 381 I 363 
== -1 (mod 127) 

17 17 is a multiplier; orbit sizes 11216321262
, IAI = 153, IBI = 136; impossible 

16 2 is a multiplier; orbit sizes 11217181418, IAI = 136, IBI = 120; impossible 

15 Theorem 3 1311 1381 1381 1363 == -1 (mod 127) 
14 Theorem 3 and Lemma 2 7 1 127 381 (1~7) = -1 

13 13 is a multiplier; orbit sizes 13 63 , IAI = 91, IBI = 78; impossible 

12 Theorem 3 I 3 11 I 381 I 381 I 363 
== -1 (mod 127) 

11 11 is a multiplier; orbit sizes 11216321262
, IAI = 66, IBI = 55; impossible 

10 Theorem 3 and Lemma 2 511 11271381 I (1~7) = -1 
9 Theorem 3 3 2 381 381 363 == -1 (mod 127) 

8 Corollary 1 Exists 

7 Theorem 3 and Lemma 2 7 1 j 127 381 (1~7) = -1 

6 Theorem 3 3 1 381 381 363 == -1 (mod 127) 

5 Theorem 3 and Lemma 2 5 1 127 381 (1~7) = -1 

4 2 is a multiplier; orbit sizes 11217 81418 , IAI = 10, IBI = 6; impossible 

3 Theorem 9 I Does not exist 

2 Theorem 7 Does not exist. 

WC(19 2 + 19 + 1, k2
) exists only for k = 8 and 19. 
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Case n = 202 + 20 + 1 

k Theorem p t m n pJ ==-1 (mod m') 

20 Theorem 3 and Lemma 2 2 2 421 421 (-..L) -1 

19 Theorem 3 and Lemma 2 19 1 421 421 (~) =-1 

18 Theorem 3 and Lemma 2 2 1 421 421 (421) = -1 

17 Theorem 3 17 1 421 421 17
105 == -1 (mod 421) 

16 Theorem 3 and Lemma 2 2 4 421 421 (4~1) = -1 

15 Theorem 3 5 1 421 421 5105 == -1 (mod 421) 

14 Theorem 3 and Lemma 2 2 1 421 421 (41) =-1 

13 Theorem 3 and Lemma 2 13 1 421 421 (4;1) = -1 

12 Theorem 3 and Lemma 2 2 2 421 421 (421) = -1 

11 11 is a multiplier; orbit sizes 111054, IAI = 66, IBI 55; impossible 

10 Theorem 3 and Lemma 2 I 2 11 I 421 I 421 I (4~1) = -1 

9 3 is a multiplier; orbit sizes 111054, IAI = 45, IBI =: 36; impossible 

8 Theorem 3 and Lemma 2 I 2 11 I 421 1421 I (4~1) = -1 

7 7 is a mUltiplier; orbit sizes 11706
, IAI = 28, IBI 21; impossible 

6 Theorem 3 and Lemma 2 2 1 421 421 (4~1) = -1 

5 Theorem 3 and Lemma 2 5 1 421 421 5105 == -1 (mod 421) 

4 Theorem 3 and Lemma 2 2 2 421 421 (4~1) = -1 

3 Theorem 9 Does not exist 

2 Theorem 7 Does not exist. 

WC(202 + 20 + 1, k2
) does not exist for any k. 

Case n =: 212 + 21 + 1 

k Theorem p t m n pI == -1 (mod m') 
21 Theorem 3, Lemma 2 3 1 463 463 3 is a primitive root mod 463, so ('&-3) =: -1 

20 Theorem 3, Lemma 2 5 1 463 463 ( ,\~g3) = -1 

19 Theorem 3, Lemma 2 19 1 463 463 (463) =: -1 

18 Theorem 3, Lemma 2 3 2 463 463 3 is a primitive root mod 463, so (4~3) =: -1 

17 17 is a multiplier; orbit sizes 11 2312, IAI =: 153, lEI =: 136; impossible 
16 2 is a multiplier; orbit sizes 11 2312, IAI =: 136, lEI = 120; impossible 
15 Theorem 3, Lemma 2 3 1 463 463 3 is a primitive root mod 463, so (4~3) = -1 

14 Theorem 3, Lemma 2 7 1 463 463 ('\~;) =: -1 

13 Theorem 3, Lemma 2 13 1 463 463 (463) =: -1 

12 Theorem 3, Lemma 2 3 1 463 463 3 is a primitive root mod 463, so (4~3) =: -1 

11 Theorem 3, Lemma 2 11 1 463 463 (lg13) = -1 

10 Theorem 3, Lemma 2 5 1 463 463 ( 463) = -1 

9 Theorem 3, Lemma 2 3 2 463 463 3 is a primitive root mod 463, so (4~3) = -1 

8 2 is a multiplier; orbit sizes 112312, IAI =: 36, IBI = 28; impossible 

7 Theorem 3, Lemma 21711 146314631 (4!3) = -1 
6 Theorem 3, Lemma 2 3 1 463 463 3 is a primitive root mod 463, so (4~3) = -1 

5 Theorem 3, Lemma 2 5 1 463 463 (4~3) = -1 

4 2 is a multiplier; orbit sizes 112312, IAI = 10, IB I = 6; impossible 

3 Theorem 9 I Does not exist 
2 Theorem 7 Does not exist. 

WC(212 + 21 + 1, k2) does not exist for any k. 
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Case n = 222 + 22 + 1 

k Theorem p m n pI ==-1 (mod m') 

22 Does not exist as 22 =1= sum of two squares 

21 Theorem 3 and Lemma 2 7 1 169 507 (*) = -1 
20 Theorem 3 and Lemma 2 2 2 169 507 (16) = -1 
19 Theorem 3 and Lemma 2 19 1 169 507 (13)=-1 

18 Open 

17 17 is a multiplier; orbit sizes 112166 786
, IAI = 153, IBI = 136; impossible 

16 Theorem 3 and Lemma 2 2 4 169 507 (*) =-1 
15 Theorem 3 and Lemma 2 5 1 169 507 (if) = -1 
14 Theorem 3 and Lemma 2 7 1 169 507 (13)=-1 

13 Theorem 3 13 1 169 507 131 == -1 (mod 1) 

12 Theorem 3 and Lemma 2 2 2 169 507 (*)=-1 
11 Theorem 3 and Lemma 2 11 1 169 507 (-g)=-1 
10 Theorem 3 and Lemma 2 5 1 169 507 (13)=-1 

9 Open 

8 Theorem 3 and Lemma 21 2 13116915071 (.1.) = -1 
7 Theorem 3 and Lemma 2 7 1 169 507 (~)=-1 
6 Open 

5 Theorem 3 and Lemma 2 5 11 116915071 (*) = -1 
4 Theorem 3 and Lemma 2 2 2 169 507 (13) = -1 

3 Theorem 9 Exists 

2 Theorem 7 Does not exist. 

WC(222 + 22 + 1, k2) exists for k = 3 and possibly for k = 6, 9 and 18. 
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Case n = 232 + 23 + 1 

k Theorem p == -1 (mod m') 

23 Theorem 4 Exists 

22 117 == 4 (mod 553) =} 4 is a multiplier; orbit sizes 11323914 , IAI = 253, 

lEI = 231; impossible 

21 Theorem 3 and Lemma 2 I 7 11 I 553 I 553 I (fg-) = -1 

20 5f == 8 (mod 553) =} 8 is a multiplier; orbit sizes 17 1342 , IAI = 210, 

lEI = 190; impossible 

19 19 is a multiplier; orbit sizes 1161392786
, IAI = 190, lEI = 171; impossible 

18 3f == 8 (mod 553) =} 8 is a multiplier; orbit sizes 17 1342 , IAI = 171, 

lEI = 153; impossible 

17 17 is a multiplier; orbit sizes 1161263 786
, IAI = 153, lEI = 136; impossible 

16 2 is a multiplier; orbit sizes 11323914 , IAI = 136, lEI = 120; impossible 

15 3f == 25 (mod 553) =} 25 is a multiplier; orbit sizes 11323914 , IAI = 120, 

lEI = 105; impossible 

14 Theorem 3 and Lemma 2 1-7 11 I 553 I 553 I (fg-) = -1 

13 13 is a multiplier; orbit sizes 1123392786
, IAI = 91, lEI = 78; impossible 

12 Open 

11 11 is a multiplier; orbit sizes 11323914 , IAI = 66, lEI = 55; impossible 

10 5f == 8 (mod 553) =} 8 is a multiplier; orbit sizes 171342 , IAI = 55, 

lEI = 45; impossible 

9 3 is a multiplier; orbit sizes 1161787
, IAI = 45, lEI = 36; impossible 

8 2 is a multiplier; orbit sizes 11323914, IAI 36, lEI = 28; impossible 

7 Theorem 3 and Lemma 2 I 7 11 I 553 I 553 I (fg-) = -1 

6 3f == 8 (mod 553) =} 8 is a multiplier; orbit sizes 17 1342 , IAI = 21, 

lEI = 15; impossible 

5 5 is a multiplier; orbit sizes 1161392786
, IAI = 15, lEI = 10; impossible 

4 2 is a multiplier; orbit sizes 11323914 , IAI = 10, lEI = 6; impossible 

3 Theorem 9 Does not exist 

2 Theorem 7 Exists. 

WC(23 2 + 23 + 1, k 2
) exists only for k = 2, 23 and possibly k = 12. 
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Case 

k 

24 

23 

22 

21 

20 

19 

18 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

n = 242 + 24 + 1 

Theorem p == -1 (mod m') 

Open 

Theorem 3 23 601 601 23150 == -1 (mod 601) 

Theorem 3 and Lemma 2 11 601 601 (l9\) = -1 

Theorem 3 and Lemma 2 7 1 601 601 (601) = -1 

Theorem 3 5 1 601 601 56 == -1 (mod 601) 

Theorem 3 and Lemma 2 1 1 601 601 (6~1) = -1 

216 == 27 (mod 601); 27 is a multiplier; orbit sizes 112524 , IAI = 171, 

IBI = 153; impossible 

Theorem 3 and Lemma 2 117 11 I 601 I 601 I (6~1) = -1 

2 is a multiplier; orbit sizes 112524 , IAI = 136, IBI = 120; impossible 

Theorem 3 5 1 601 601 56 == -1 (mod 601) 

Theorem 3 and Lemma 2 7 1 601 601 (6~) -1 

Theorem 3 and Lemma 2 13 1 601 601 131b == -1 (mod 601) 

216 == 27 (mod 601); 27 is a multiplier; orbit sizes 112524
, IAI = 78, 

IBI = 66; impossible 

Theorem 3 and Lemma 2 "Ill 11 1 601 1 601 I (6~\) -1 
Theorem 3 5 1 601 601 56 -1 (mod 601) 

3 is a multiplier; orbit sizes 11758
, IAI = 45, IBI = 36; impossible 

2 is a multiplier; orbit sizes 112524 , IAI = 36, IBI = 28; impossible 

Theorem 3 and Lemma 2 I 7 11 I 601 I 601 I (6~1) = -1 

216 == 27 (mod 601); 27 is a multiplier; orbit sizes 112524 , IAI = 21, 

IBI = 15; impossible 

Theorem 3 I 5 11 I 601 I 601 I 56 == -1 (mod 601) 

2 is a multiplier; orbit sizes 112524 , IAI = 10, IBI = 6; impossible 

Theorem 9 Does not exist 

Theorem 7 Does not exist. 

WC(242 + 24 + 1, k2) exists only possibly for k = 24. 

35 



Case n = 252 + 25 + 1 

k Theorem p t m n pI ==-1 (mod m') 

25 Theorem 4 Exists 

24 Theorem 3 3 1 651 651 315 = -1 (mod 217) 

23 Theorem 3 23 1 93 651 235 = -1 (mod 93) 

22 Theorem 3 11 1 93 651 1115 = -1 (mod 93) 

21 Theorem 3 3 1 651 651 315 = -1 (mod 217) 

20 Corollary 1 Exists 

19 19 is a multiplier; orbit sizes 13631563018, IAI = 190, 

lEI = 171; impossible 

18 Theorem 3 3 121651 1651 1315 = -1 (mod 217) 

17 Theorem 3 17 1 651 651 1715 =-1 (mod 651) 

16 Corollary 1 Exists 

15 Theorem 3 3 I 1 I 651 I 651 I 315 
= -1 (mod 217) 

14 Open 

13 Theorem 3 13 1 217 651 1315 = -1 (mod 217) 

12 Theorem 3 3 1 651 651 315 =-1 (mod 217) 

11 Theorem 3 11 1 93 651 1115 =-1 (mod 93) 

10 Corollary 1 Exists 

9 Theorem 3 3 I 2 I 651 I 651 I 315 = -1 (mod 217) 

8 Corollary 1 Exists 

7 Open 

6 Theorem 3 3 I 1 I 651 I 651 I 315 
= -1 (mod 217) 

5 Corollary 1 Exists 

4 Corollary 1 Exists 

3 Theorem 9 Does not exist 

2 Theorem 7 Exists. 

WC(252 + 25 + 1, k 2
) exists for k = 2, 4, 5, 8, 10, 16, 20, 25 and possibly for k = 7, 14. 
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