On Circulant Weighing Matrices

K. T. Arasu^{*}

Department of Mathematics and Statistics Wright State University, Dayton, Ohio-45435, U.S.A.

Jennifer Seberry[†]

Department of Computer Science University of Wollongong, NSW 2522, Australia

Dedicated to the memory of Derrick Breach, 1933–1996

Abstract

Algebraic techniques are employed to obtain necessary conditions for the existence of certain circulant weighing matrices. As an application we rule out the existence of many circulant weighing matrices. We study orders $n = s^2 + s + 1$, for $10 \le s \le 25$. These orders correspond to the number of points in a projective plane of order s.

1 Introduction

A weighing matrix W(n,k) = W of order n with weight k is a square matrix of order n with entries from $\{0, -1, +1\}$ such that

$$WW^t = k \cdot I_n$$

where I_n is the $n \times n$ identity matrix and W^t is the transpose of W.

A circulant weighing matrix, written as W = WC(n,k), is a weighing matrix in which each row (except the first row) is obtained by its preceding row by a right cyclic shift. We label the columns of W by a cyclic group G of order n, say generated by g.

Define

$$A = \{ g^i \mid W_{1,i} = 1, i = 0, 1, \dots, n-1 \}$$

and
$$B = \{ g^i \mid W_{1,i} = -1, i = 0, 1, \dots, n-1 \}$$
 (1)

Australasian Journal of Combinatorics 17(1998), pp.21-37

^{*}Research partially supported by AFOSR grant F49620-96-1-0328.

[†]Supported by an ARC grant. The author thanks the Department of Mathematics and Statistics and the Department of Computer Science of Wright State University for their hospitality during the time of this research.

It is easy to see that |A| + |B| = k.

It is well known that k must be a perfect square, (see [13], for instance); we write $k = s^2$ for some integer s.

For more on weighing designs, weighing matrices and related topics refer to [8]. It is known [8, 13, 15] that:

Theorem 1 A WC(n, k) can only exist if (i) $k = s^2$, (ii) $|A| = \frac{s^2 + s}{2}$ and $|B| = \frac{s^2 - s}{2}$, (iii) $(n-k)^2 - (n-k) \ge n-1$ and iv) if $(n-k)^2 - (n-k) = n-1$ then A = J - W * W is the incidence matrix of a finite projective plane, (here J is the n × n matrix of all 1's and * denotes the Kronecker product).

For a multiplicatively written group G, we let **ZG** denote the group ring of G over Z. We will consider only abelian (in fact, only cyclic) groups. A character of the group G, is therefore, a homomorphism from G to the multiplicative group of complex numbers. χ_o denotes the principal character of G which sends each element of G to 1. Extending this to the entire group ring **ZG** yields a map from **ZG** to the field C of complex numbers. For $S \subseteq G$, we let S denote the element $\sum_{x \in S} x$ of **ZG**. For $A = \sum_g a_g g$ and $t \in \mathbf{ZG}$, we define $A^{(t)} = \sum_g a_g g^t$.

It is easy to see (see [1] or [16], for details):

Theorem 2 A WC = $W(n, s^2)$ exists if and only if there exist disjoint subsets A and B of Z_n satisfying

$$(A - B)(A - B)^{(-1)} = s^2.$$
⁽²⁾

We exploit (2), in conjunction with a few known results on multipliers in group rings, to obtain necessary conditions on the order n and weight k of a possible circulant W(n, k).

2 Known Results

Theorem 3 (Arasu and Seberry [4]) Suppose that a WC(n, k) exists. Let p be a prime such that $p^{2t} | k$ for some positive integer t. Assume that

- (i) m is a divisor of n. Write $m = m'p^u$, where (p, m') = 1;
- (ii) there exists an $f \in Z$ such that $p^f \equiv -1 \pmod{m'}$.

Then

- (i) $\frac{2n}{m} \ge p^t$ if $p \mid m$;
- (ii) $\frac{n}{m} \ge p^t$ if $p \not\mid m$.

Lemma 1 Let q be a prime and x an integer. If there exists an integer f such that

 $x^f \equiv -1 \pmod{q^i}$

for some positive integer i, then there exist an integer f' such that

 $x^{f'} \equiv -1 \pmod{q^{i+1}}.$

Proof. By hypothesis, $x^f = -1 + \ell q^i$ for some integer ℓ . Consider $x^{fq} = (-1 + \ell q^i)^q$ $= -1 + \ell^q q^{iq} + \sum_{j=1}^{q-1} (\begin{array}{c} q\\ j \end{array}) (-1)^j (\ell q^i)^{q-j}.$

Since q is a prime, each of the (q-1) binomial coefficients $\begin{pmatrix} q \\ j \end{pmatrix}$ in the right hand sum is divisible by q and hence

1

$$\sum_{j=1}^{q-1} (-1)^j (\begin{array}{c} q \\ j \end{array}) (\ell q^i)^{q-j} \equiv 0 \pmod{q^{i+1}}.$$

Also $q^{qi} \equiv 0 \pmod{q^{i+1}}$ since $qi \ge i+1$. Thus $x^{fq} \equiv -1 \pmod{q^{i+1}}$, proving the lemma.

Lemma 2 If m' is a prime power, say $m' = (p')^r$ for some prime p', hypothesis (ii) in Theorem 3 is satisfied whenever the Legendre symbol $\left(\frac{p}{p'}\right) = -1$.

Proof. In view of Lemma 1, it suffices to prove the result for r = 1. (An easy induction is applied afterwards.) We first claim that p has even order, say 2α , modulo p'. For otherwise, $p^{2\beta+1} \equiv 1 \pmod{p'}$ for some integer β , hence $(p^{\beta+1})^2 \equiv p \pmod{p'}$ showing that p is a quadratic residue modulo p'; this contradicts the hypothesis $\left(\frac{p}{p'}\right) = -1$. Thus the order of $p \mod p'$ is 2α for some positive integer α . Thus $p' \mid (p^{2\alpha} - 1)$. So $p' \mid (p^{\alpha} - 1)$ or $p' \mid (p^{\alpha} + 1)$. But p' cannot divide $p^{\alpha} - 1$, since the order of $p \mod p'$ is 2α . Thus $p' \mid (p^{\alpha} + 1)$, proving the result for r = 1. \Box

Theorem 4 ((Seberry) Wallis and Whiteman [15]) If q is a prime power, then there exists $WC(q^2 + q + 1, q^2)$.

Theorem 5 (Eades [6]) If q is a prime power, q odd and i even, then there exists $WC(\frac{q^{i+1}-1}{q-1}, q^i)$.

Theorem 6 (Arasu, Dillon, Jungnickel and Pott [1]) If $q = 2^t$ and i even, then there exists $WC(\frac{q^{i+1}-1}{q-1}, q^i)$.

Theorem 7 (Eades and Hain [7]) A WC(n, 4) exists if and only if $2 \mid n \text{ or } 7 \mid n$.

Theorem 8 (Arasu and Seberry [4]) If there exist $WC(n_1, k)$ and $WC(n_2, k)$ with $gcd(n_1, n_2) = 1$ then there exist

- (i) a $WC(mn_1, k)$ for all positive integers m;
- (ii) two inequivalent $WC(n_1n_2, k)$;
- (iii) a $WC(n_1n_2, k^2)$.

Theorem 9 (Strassler [18]) A WC(n, 9) exists if and only if $13 \mid n$ or $24 \mid n$.

Theorem 10 (Arasu and Seberry [4]) For a given integer k and prime p, $WC(p, k^2)$ exists for only a finite number of p.

Remark 1 It is shown in [4] that a WC(p,9) exists for a prime p if and only if p = 13.

Theorem 11 is given by Seberry [14] but we give a proof here for completeness. In Theorem 11 we use the following notation. If $G = H \times N$ is a group and $A \subseteq H$ and $B \subseteq N$, then $(A, B) = \{(a, b) \in G; a \in A \text{ and } b \in B\}$. Similarly, if S and T are group ring elements of **ZH** and **ZN**, the element (S, T) is the product of S' and T' in **ZG**, where S' and T' are the images of S and T under the canonical embedding of **ZH** and **ZN** into **ZG**.

Theorem 11 (Circulant Kronecker Product Theorem) If there exist $WC(n_1, k_1^2)$ and $WC(n_2, k_2^2)$ with $gcd(n_1, n_2) = 1$ then there exists $WC(n_1n_2, k_1^2k_2^2)$.

Proof. Since there exist $WC(n_i, k_i^2)$ for i = 1, 2, by Theorem 2, there exist subsets A_i , B_i of $\mathbf{Z}_{\mathbf{n}_i}$, $A_i \cap B_i = \phi$, $|A_i| = \frac{1}{2}(k_i^2 + k_i)$ and $|B_i| = \frac{1}{2}(k_i^2 - k_i)$, satisfying $(A_i - B_i)(A_i - B_i)^{(-1)} = k_i^2$ in $\mathbf{Z}_{\mathbf{n}_i}$, for i = 1, 2.

Define $X = A_1A_2 + B_1B_2$ and $Y = A_1B_2 + A_2B_1$. Then $X, Y \in \mathbb{Z}\mathbb{G}$ and the coefficients of X and Y are 0 and 1.

Consider

$$(X-Y)(X-Y)^{(-1)} = (A_1 - B_1)(A_1 - B_1)^{(-1)}(A_2 - B_2)(A_2 - B_2)^{(-1)}$$

= $k_1^2 k_2^2$.

An easy computation shows that $|X| = \frac{1}{2}(k_1^2k_2^2 + k_1k_2)$ and $|Y| = \frac{1}{2}(k_1^2k_2^2 - k_1k_2)$. This X - Y defines the first row of $WC(n_1n_2, k_1^2k_2^2)$.

Corollary 1 There exist:

 $WC(91, 6^2), WC(217, 8^2), WC(217, 10^2), WC(273, 4^2), WC(273, 9^2), WC(273, 6^2), WC(273, 12^2), WC(381, 8^2), WC(399, 14^2), WC(651, 8^2), WC(651, 10^2), WC(651, 16^2) and WC(651, 20^2).$

Proof.

WC(7,4) and $WC(13,9)$	⇒	$WC(91, 6^2)$
		$WC(273, 6^2)$
WC(7, 4) and $WC(31, 16)$		$WC(217, 8^2)$
	\Rightarrow	$WC(651, 8^2)$
WC(21, 16)	\Rightarrow	$WC(273, 4^2)$
WC(91, 81)	\Rightarrow	$WC(273, 9^2)$
WC(13, 9) and $WC(21, 16)$	\Rightarrow	$WC(273, 12^2)$
WC(7, 4) and $WC(31, 25)$	\Rightarrow	$WC(217, 10^2)$
	\Rightarrow	$WC(651, 10^2)$
WC(127, 64)	\Rightarrow	$WC(381, 8^2)$
WC(7, 4) and $WC(57, 49)$	\Rightarrow	$WC(399, 14^2)$
WC(21, 16) and $WC(31, 16)$	\Rightarrow	$WC(651, 16^2)$
WC(21, 16) and $WC(31, 25)$	\Rightarrow	$WC(651, 20^2)$

Remark 2 A WC(13,9) exists and hence a $W(509,81) = WC(13,9) \times WC(13,9) \times I_3$ exists. However the existence of the WC(507,81) remains open.

Applications

- (I) $WC(n, 2^2)$ exist for n = 133, 273, 343, 553 and 651. $WC(n, 2^2)$ do not exist for n = 111, 157, 183, 211, 241, 307, 381, 421, 463, 507 or 601.
- (II) $WC(n, 3^2)$ do not exist for n = 111, 133, 157, 183, 211, 241, 307, 343, 381, 421, 463, 553, 601 or 651.
- (III) A $WC(111, 10^2)$ does not exist as its existence would imply the existence of a projective plane of order 10 which does not exist.

3 Further Results using Multipliers

Notation 1 For each positive integer n, M(n) is defined as follows: M(1) = 1, $M(2) = 2 \cdot 7$, $M(3) = 2 \cdot 3 \cdot 11 \cdot 13$, $M(4) = 2 \cdot 3 \cdot 7 \cdot 31$, and recursively, M(z) for $z \ge 5$ is the product of the distinct prime factors of the numbers z, $M(\frac{z^2}{p^{2c}})$, p-1, p^2-1 , $\cdots p^{u(z)} - 1$, where p is any prime dividing m with $p^e \parallel m$ and $u(z) = \frac{1}{2}(z^2 - z)$.

Theorem 12 (Multiplier Theorem, Arasu and Xiang [5]) Let R be an arbitrary group ring element in **ZG** that satisfies $RR^{(-1)} = a$ for some integer $a, a \neq 0$, where G is an abelian group of order v and exponent v^* . Let t be a positive integer relatively prime to $v, k_1 \mid a, k_1 = p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}, a_1 = (v, k_1), k_2 = \frac{k_1}{a_1}$.

For each p_i , we define

$$q_i = \begin{cases} p_i & \text{if } p_i \neq 0 \\ \ell_i & \text{if } v^* = p_i^r u, \ (p_i, u) = 1, \ r \ge 1, \ \ell_i \text{ is any integer such that} \\ (\ell_i, p_i) = 1 \text{ and } \ell_i \equiv p_i^f \pmod{u}. \end{cases}$$

Suppose that for each i, there exists an integer f_i such that either

(1)
$$q_i^{f_i} \equiv t \pmod{v^*}$$
 or

(2) $q_i^{f_i} \equiv -1 \pmod{v^*}$.

If $\left(v, M(\frac{a}{k_2})\right) = 1$, where M(m) is as defined earlier, then t is a multiplier of R.

The following corollary is proved in Arasu, Dillon, Jungnickel and Pott [1]

Corollary 2 (Multiplier Theorem) Let R be an arbitrary group ring element in **ZG** that satisfies $RR^{(-1)} = p^n$ where p is a prime with (p, |G|) = 1 and where G is an abelian group. Then $R^{(p)} = Rg$ for some $g \in G$.

Remark 3 Let $R = \sum_{g} a_{g}g \in \mathbb{Z}G$. By a result in Arasu and Ray-Chaudhuri [3] if $(\sum_{g} a_{g}, |G|) = 1$, we can replace R by a suitable translate of it, if necessary, in Theorem 12 and Corollary 2 and conclude $R^{(t)} = R$, i.e. the multiplier t actually fixes R.

Let t be a multiplier of R = A - B. Then by the above remark we obtain $(A - B)^{(t)} = A - B$ or $A^{(t)} - B^{(t)} = A - B$. But A and B have coefficients 0 or 1, hence it follows that $A^{(t)} = A$ and $B^{(t)} = B$. Thus A and B are unions of some of the orbits of G under the action $x \mapsto tx$.

Theorem 13 A WC(7, 4) exists and hence a W(49, 16) exists. However no WC(49, 16) exists.

Remark 4 The non-existence of a WC(49, 16) follows from Corollary 2 using the multiplier 2.

Most of the above results suffice to settle the cases in the following tables except for the cases $WC(133, 10^2)$ and $WC(133, 5^2)$ which require ad hoc methods which we now prove.

Proposition 1 There does not exist any $WC(133, 10^2)$.

Proof. Assume the contrary. Write $G = \mathbf{Z}_{133} = \mathbf{Z}_7 \times \mathbf{Z}_{19}$. Then there exists $D \in \mathbf{ZG}$, whose coefficients are $0, \pm 1$, such that

$$DD^{(-1)} = 10^2. (3)$$

Let $\sigma: \mathbf{Z_7} \times \mathbf{Z_{19}} \to \mathbf{Z_{19}}$ be the canonical homomorphism. Extend σ linearly from

$$Z[Z_7 \times Z_{19}] \rightarrow Z[Z_{19}].$$

Apply σ to (3), setting $E = D^{\sigma}$, to obtain

$$EE^{(-1)} = 10^2 \tag{4}$$

in $\mathbb{Z}[\mathbb{Z}_{19}]$. Note that the coefficients of E lie in [-7, 7]. Since $2^{16} \equiv 5 \pmod{19}$, by Theorem 12, 5 is a multiplier of E. We may, without lost of generality, assume that $E^{(5)} = E$. The orbits of \mathbb{Z}_{19} under $x \to 5x$ are of sizes 1^{19^2} . Hence from (4) (after applying the principal character first to E and then to both sides of (4)), we can find three integers a, b, c such that

a + 9b + 9c = 10 (5)

$$a^2 + 9b^2 + 9c^2 = 100. (6)$$

These integers a, b, c are merely the coefficients of E. By (5) $a \equiv 1 \pmod{9}$. But $a \in [-7, 7]$. Therefore a = 1. But then (6) gives

 $b^2 + c^2 = 11,$

a contradiction, which proves the Proposition.

Proposition 2 There does not exist any $WC(133, 5^2)$.

Proof. Assume to the contrary that there exists a $WC(133, 5^2)$. Write $G = \mathbb{Z}_{133} =$ $\mathbb{Z}_7 \times \mathbb{Z}_{19}$. By Theorem 2, there exist A and $B \subseteq \mathbb{Z}_{133}$, $A \cap B = \phi$, |A| = 15 and |B| = 10 such that

$$(A - B)(A - B)^{(-1)} = 5^2.$$
(7)

By theorem 12, 5 is a multiplier of A - B; hence $A^{(5)} = A$ and $B^{(5)} = B$. The orbits of \mathbb{Z}_7 under $x \to 5x$ are $\{0\}$ and $\{1, 2, 3, 4, 5, 6\}$. The orbits of \mathbb{Z}_{19} under $x \to 5x$ are $\{0\}, C_0$ and C_1 where C_0 is the set of all non-zero quadratic residues of $\mathbf{Z_{19}}$ and $C_1 = \mathbf{Z_{19}} - (C_0 \cup \{0\}).$

Then, without loss of generality, we can assume that

 $A = \{1, 2, 3, 4, 5, 6\} \times \{0\} \cup \{0\} \times C_0, \text{ and } B = \{(0, 0)\} \cup \{0\} \times C_1.$

Let χ be any nonprincipal character of G such that $\chi \mid \mathbf{Z_{19}} = \chi_0$. Then $\chi(A) =$ -1+9=8 and $\chi(B)=1+9=10$. Therefore $\chi(A-B)=8-10=-2$. But by (7), $|\chi(A-B)|^2 = 5^2$, a contradiction. Thus there cannot exist $WC(133, 5^2)$.

The Projective Plane Orders 4

In this section we consider $WC(m^2 + m + 1, k^2)$ for $k \in \{2, \dots, m\}$.

Case	$n = 10^2 + 10^2$)+	1										
k	Theorem	р	t	m	n	$p^f \equiv -1 \pmod{m'}$							
10			Does not exist as there is no projective plane of order 10										
9	Theorem 3					$3^9 \equiv -1 \pmod{37}$							
8	Theorem 3					$2^{18} \equiv -1 \pmod{37}$							
7	7 is a multip	7 is a multiplier; orbit sizes $1^{3}9^{12}$, $ A = 28$, $ B = 21$; impossible											
6	Theorem 3	3				$3^9 \equiv -1 \pmod{37}$							
5	Theorem 3	5	1			$5^{18} \equiv -1 \pmod{37}$							
4	Theorem 3	2	2	37	111	$2^{18} \equiv -1 \pmod{37}$							
3	Theorem 9	Do	Does not exist										
2	Theorem 7	Do	oes 1	not ex	ist.								

102 1 10 1 1

 $WC(10^2 + 10 + 1, k^2)$ does not exist for any k.

Case	$n = 11^2 + 1$	1+	1							
k	Theorem	р	t	m	n	$p^f \equiv -1$	$\pmod{m'}$			
11	Theorem 4	Ex	ists							
10	Proposition									
9	Theorem 3	3	2	19	133	$3^9 \equiv -1$	(mod 19)			
8	Theorem 3 Theorem 3	2	3	19	133	$2^9 \equiv -1$	(mod 19)			
7	Open			,			. ,			
6	Theorem 3	3	1	133	133	$3^9 \equiv -1$	(mod 133)			
5	Proposition 2									
4	2 is a multiplier; orbit sizes $1^{1}3^{2}18^{7}$, $ A = 10$, $ B = 6$; impossible									
3	Theorem 9	Do	es n	ot exi	\mathbf{st}					
2	Theorem 7	$\mathbf{E}\mathbf{x}$	ists.							

 $WC(11^2 + 11 + 1, k^2)$ exists only for k = 2,11 and possibly for 7.

Case | $n = 12^2 + 12 + 1$

k	Theorem $p \mid t \mid m \mid n \mid p^f \equiv -1 \pmod{m'}$
12	$3^f \equiv 4 \pmod{n} \Rightarrow 4$ is a multiplier; orbit sizes $1^1 26^6$, $ A = 78$, $ B = 66$;
	impossible
11	11 is a multiplier; orbit sizes $1^1 39^4$, $ A = 66$, $ B = 55$; impossible
10	Theorem 3 2 1 157 157 $2^{26} \equiv -1 \pmod{157}$
9	3 is a multiplier; orbit sizes $1^{1}78^{2}$, $ A = 45$, $ B = 36$; impossible
8	Theorem 3 2 3 157 157 $2^{26} \equiv -1 \pmod{157}$
7	7 is a multiplier; orbit sizes $1^{1}52^{3}$, $ A = 28$, $ B = 21$; impossible
6	Theorem 3 2 1 157 157 $2^{26} \equiv -1 \pmod{157}$
5	5 is a multiplier; orbit sizes $1^{1}156^{1}$, $ A = 15$, $ B = 10$; impossible
4	Theorem 3 2 2 157 157 $2^{26} \equiv -1 \pmod{157}$
3	Theorem 9 Does not exist
2	Theorem 7 Does not exist.

 $WC(12^2 + 12 + 1, k^2)$ does not exist for any k.

Case	$n = 13^2 + 13^2$	3 + 1							
k	Theorem	р	t	m	n	$p^f \equiv -1 \pmod{m'}$			
13	Theorem 4	Exi	sts	******	**************************************				
12	Theorem 3	2	2	61	183	$2^f \equiv -1 \pmod{61}$			
11	Theorem 3	11	1	61	183	$11^f \equiv -1 \pmod{61}$			
10	Theorem 3	5	1	61	183	$5^{15} \equiv -1 \pmod{61}$			
9	Theorem 3	3	2	183	183	$3^5 \equiv -1 \pmod{61}$			
8	Theorem 3	2	3	61	183	$2^f \equiv -1 \pmod{61}$			
7	Theorem 3	7	1	61	183	$7^f \equiv -1 \pmod{61}$			
6	Theorem 3	3	1	183	183	$3^5 \equiv -1 \pmod{61}$			
5	Theorem 3	5	1	61	183	$5^{15} \equiv -1 \pmod{61}$			
4	Theorem 3	2	2	61	183	$2^f \equiv -1 \pmod{61}$			
3	Theorem 9	Does not exist							
2	Theorem 7	Doe	es n	ot exis	st.				

 $WC(13^2 + 13 + 1, k^2)$ exists only for k = 13.

Case	$n = 14^2 + 14^2$	4+	1								
k	Theorem	р	t	m	n	$p^f \equiv -1$	$\pmod{m'}$				
14							of two squares				
13							91, $ B = 78$; impossible				
12	Theorem 3										
11	11 is a mult	iplie	er; o	rbit si	$zes 1^1$	$35^6, A =$	66, $ B = 55$; impossible				
10	Theorem 3	2	1	211	211	$2^f \equiv -1$	$\pmod{211}$				
9	Theorem 3	3	2	211	211	$3^f \equiv -1$	$(mod \ 211)$				
8	Theorem 3	2	3	211	211	$2^f \equiv -1$	$\pmod{211}$				
7	Theorem 3	7	1	211	211	$7^f \equiv -1$	$\pmod{211}$				
6	Theorem 3	2	1	211	211	$2^f \equiv -1$	$(mod \ 211)$				
5	5 is a multip	is a multiplier; orbit sizes 1^135^6 , $ A = 15$, $ B = 10$; impossible									
4	Theorem 3	2	2	211	211	$2^f \equiv -1$	$\pmod{211}$				
3	Theorem 9	Do	es 1	not ex	ist						
2	Theorem 7	Do	es 1	not ex	ist.						

 $WC(14^2 + 14 + 1, k^2)$ does not exist for any k.

Case $ n = 15^2 + 15 -$

Case	n - 10 + 10	1 1 1									
k	Theorem	p	t	m	n	$p^f \equiv -1 \pmod{m'}$					
15	$3^{39} \equiv 5 \pmod{241}$, so 5 is a multiplier; orbit sizes $1^1 40^6$,										
	A = 120, B = 105; impossible										
14	Theorem 3	7	1	241	241	$\mid 7^f \equiv -1 \pmod{241}$					
13	Theorem 3	13	1	241	241	$13^f \equiv -1 \pmod{241}$					
12	Theorem 3	2	2	241	241	$2^{12} \equiv -1 \pmod{241}$					
11	Theorem 3	11	1	241	241	$11^f \equiv -1 \pmod{241}$					
10	Theorem 3	2	1	241	241	$2^{12} \equiv -1 \pmod{241}$					
9	Theorem 3	3	2	241	241	$3^{60} \equiv -1 \pmod{241}$					
8	Theorem 3	2	3	241	241	$2^{12} \equiv -1 \pmod{241}$					
7	Theorem 3	7	1	241	241	$7^f \equiv -1 \pmod{241}$					
6	Theorem 3	2	1	241	241 ·	$2^{12} \equiv -1 \pmod{241}$					
5	Theorem 3	5	1	241	241	$5^{20} \equiv -1 \pmod{241}$					
4	Theorem 3	2	2	241	241	$2^{12} \equiv -1 \pmod{241}$					
3	Theorem 9	Doe	es no	ot exis	st	•					
2	Theorem 7	Doe	es n	ot exis	st.						

 $WC(15^2 + 15 + 1, k^2)$ does not exist for any k.

Case	$n = 16^2 + 16^2$	3 + 1					
k	Theorem	p	t	m	n	$p^f \equiv -1$	$\pmod{m'}$
16	Theorem 4	Exi	sts.			L	
15	Open	,					
14	Theorem 3	7	1	91	273	$7^6 \equiv -1$	(mod 13)
13	Theorem 3 Theorem 3	13	1	91	273	$13^1 \equiv -1$	$\pmod{7}$
12	Corollary 1	Exi	sts	'			(
11	Open						
10	Open						
9	Corollary 1	Exis	sts				
8	Open						
7	Theorem 3	7	$1 \mid$	91	273	$7^6 \equiv -1$	(mod 13)
6	Corollary 1	Exis	sts	1	. 1		(1104 10)
5	Open						
4	Corollary 1	Exis	sts				
3	Theorem 9	Exis	sts				
2	Theorem 7	Exis	sts.				

$$WC(16^2 + 16 + 1, k^2)$$
 exists for $k = 2, 3, 4, 6, 9, 12, 16$
and possibly for $k = 5, 8, 10, 11, 15$.

Case	$n = 17^2 + 17 + 1$					
k	Theorem	p	t	m	n	$p^f \equiv -1 \pmod{m'}$
17	Theorem 4	Exi	sts			
16	Theorem 3 and Lemma 2	2	4	307	307	$\left(\frac{2}{207}\right) = -1$
15	Theorem 3 and Lemma 2	-5	1	307	307	$\left(\frac{5}{207}\right) = -1$
14	Theorem 3 and Lemma 2	2	1	307	307	$\left(\frac{2}{207}\right) = -1$
13	Theorem 3 and Lemma 2	13	1	307	307	$\begin{vmatrix} \left(\frac{2}{307}\right) = -1\\ \left(\frac{5}{307}\right) = -1\\ \left(\frac{3}{307}\right) = -1\\ \left(\frac{1}{307}\right) = -1 \end{vmatrix}$
12	Theorem 3 and Lemma 2	2	2	307	307	$\left(\frac{2}{26\pi}\right) = -1$
11	11 is a multiplier; orbit siz	es 1^1	153^{-1}	$^{2}, A $	= 66.	B = 55: impossible
10	Theorem 3 and Lemma 2	2	1	307	307	$\left(\frac{2}{207}\right) = -1$
9	3 is a multiplier; orbit size	$1^{1}3$	$4^{9},$	A = A	45, B	= 36; impossible
8	Theorem 3 and Lemma 2	2	3	307	307	$\left(\frac{2}{207}\right) = -1$
7	7 is a multiplier; orbit size	$1^{1}1$	$53^{2},$	A =	28.	$B_{l} = 21$: impossible
6	Theorem 3 and Lemma 2	2	1	307	307	$\left(\frac{2}{207}\right) = -1$
5	Theorem 3 and Lemma 2	5	1	307	307	$\left(\frac{5}{307}\right) = -1$
4	Theorem 3 and Lemma 2		2	307	307	
3	Theorem 9			t exis		3077 -
2	Theorem 7	Doe	s no	ot exis	t.	

 $WC(17^2 + 17 + 1, k^2)$ exists only for k = 17.

Case | $n = 18^2 + 18 + 1$

k	Theorem	р	t	m	n	$p^f \equiv -1 \pmod{m'}$
18	Theorem 3, Lemma 1	3	2	343	343	$3^3 \equiv -1 \pmod{7} \Rightarrow 3^f \equiv -1 \pmod{7^3}$
17	Theorem 3, Lemma 1	17	1	343	343	$17 \equiv 3 \pmod{7} \Rightarrow 3^f \equiv -1 \pmod{7^3}$
16	2 is a multiplier; orbit	sizes	$1^{1}3^{2}$	$221^{2}14$	$7^2, A $	= 136, B = 120; impossible
15	Theorem 3, Lemma 1	3	1	343	343	$3^3 \equiv -1 \pmod{7} \Rightarrow 3^f \equiv -1 \pmod{7^3}$
14	Theorem 3	7	1	343	343	$7 \equiv -1 \pmod{1}$
13	Theorem 3, Lemma 1			343		$13 \equiv -1 \pmod{7} \Rightarrow 13^f \equiv -1 \pmod{7^3}$
12	Theorem 3, Lemma 1	3	1	343	343	$3^3 \equiv -1 \pmod{7} \Rightarrow 3^f \equiv -1 \pmod{7^3}$
11						A = 66, B = 55; impossible
10	Theorem 3, Lemma 1					$5^3 \equiv -1 \pmod{7} \Rightarrow 5^f \equiv -1 \pmod{7^3}$
9	Theorem 3, Lemma 1	3	2	343	343	$3^3 \equiv -1 \pmod{7} \Rightarrow 3^f \equiv -1 \pmod{7^3}$
8	2 is a multiplier; orbit	sizes	$1^{1}3^{2}$	$221^{2}14$	$7^2, A $	=36, B =28; impossible
7	Theorem 3	7	1	343		$7 \equiv -1 \pmod{1}$
6	Theorem 3, Lemma 1	3				$3^3 \equiv -1 \pmod{7} \Rightarrow 3^f \equiv -1 \pmod{7^3}$
5	Theorem 3, Lemma 1	5	1	343	343	$5^3 \equiv -1 \pmod{7} \Rightarrow 5^f \equiv -1 \pmod{7^3}$
4	2 is a multiplier; orbit	sizes	$1^{1}3^{2}$	$221^{2}14$	$7^2, A $	=10, B =6; impossible
3	Theorem 9	Doe	es no	ot exis	t	
2	Theorem 7	Exi	sts.			· · · · · · · · · · · · · · · · · · ·

	$WC(18^{2} +$	$18+1, k^2$	exists only	for k	= 2.
--	---------------	-------------	-------------	---------	------

Case $| n = 19^2 + 19 + 1$

k	Theorem	р	t	m	n	$p^f \equiv -1 \pmod{m'}$			
19	Theorem 4	Ēx	ists			L-222			
18	Theorem 3	3	2	381	381	$3^{63} \equiv -1 \pmod{127}$			
17	17 is a multiplier; orbit siz	es $1^{1}2^{1}63^{2}126^{2}$, $ A = 153$, $ B = 136$; imposs							
16	2 is a multiplier; orbit size	$s 1^{1}$	$ A ^{1}2^{1}7^{18}14^{18}$, $ A = 136$, $ B = 120$; impossible						
15	Theorem 3 Theorem 3 and Lemma 2	3	1	381	381	$3^{63} \equiv -1 \pmod{127}$			
14	Theorem 3 and Lemma 2	7	1	127	381	$\left(\frac{7}{127}\right) = -1$			
13	13 is a multiplier; orbit siz	es 1	³ 63 ⁶	$^{5}, A =$	= 91,	B = 78; impossible			
12	Theorem 3	3	1	381	381	$3^{63} \equiv -1 \pmod{127}$			
11	11 is a multiplier; orbit siz	es $1^{1}2^{1}63^{2}126^{2}$, $ A = 66$, $ B = 55$; impossible							
10	Theorem 3 and Lemma 2 Theorem 3	5	1	127	381	$\left(\frac{5}{127}\right) = -1$			
9	Theorem 3	3	2	381	381	$3^{\overline{63}} \equiv -1 \pmod{127}$			
8	Corollary 1		ists						
7	Theorem 3 and Lemma 2	7	1	127	381	$\left \left(\frac{7}{127} \right) = -1 \right $			
6	Theorem 3 and Lemma 2 Theorem 3	3	1	381	381	$3^{\hat{63}} \equiv -1 \pmod{127}$			
5	Theorem 3 and Lemma 2	5	1	127	381	$\left(\frac{5}{127}\right) = -1$			
4	2 is a multiplier; orbit size	s $1^{1}2^{1}7^{18}14^{18}$, $ A = 10$, $ B = 6$; impossible							
3	Theorem 9	Does not exist							
2	Theorem 7	Do	oes 1	not ex	ist.				

 $WC(19^2 + 19 + 1, k^2)$ exists only for k = 8 and 19.

Case | $n = 20^2 + 20 + 1$

Oubo	10-20 120 11							
k	Theorem	p	t	m	n	$p^f \equiv -1 \pmod{m'}$		
20	Theorem 3 and Lemma 2	2	2	421	421	$\left(\frac{2}{421}\right) = -1$		
19	Theorem 3 and Lemma 2	19	1	421	421	$\left(\frac{19}{421}\right) = -1$		
18	Theorem 3 and Lemma 2	2	1	421	421	$ \begin{array}{c} \left(\frac{2}{421}\right) = -1 \\ \left(\frac{19}{421}\right) = -1 \\ \left(\frac{2}{421}\right) = -1 \end{array} $		
17	Theorem 3	17	1	421	421	$17^{105} \equiv -1 \pmod{421}$		
16	Theorem 3 and Lemma 2	2	4	421	421	$\left(\frac{2}{421}\right) = -1$		
15	Theorem 3	5	1	421	421	$5^{105} \equiv -1 \pmod{421}$		
14	Theorem 3 and Lemma 2	2	1	421				
13	Theorem 3 and Lemma 2	13	1	421	421	$ \begin{pmatrix} \frac{2}{421} \end{pmatrix} = -1 \begin{pmatrix} \frac{1}{421} \end{pmatrix} = -1 $		
12	Theorem 3 and Lemma 2	2	2	421	421	$\left(\frac{421}{421}\right) = -1$		
11	11 is a multiplier; orbit sizes $1^{1}105^{4}$, $ A = 66$, $ B = 55$; impossible							
10	Theorem 3 and Lemma 2							
9	3 is a multiplier; orbit size	s $1^{1}105^{4}$, $ A = 45$, $ B = 36$; impossible						
8	Theorem 3 and Lemma 2	2	1	421	421	$\left(\frac{2}{421}\right) = -1$		
7	7 is a multiplier; orbit size	$1^{1}7$	$0^{6},$	A = 1	28, B	=21; impossible		
6	Theorem 3 and Lemma 2 Theorem 3 and Lemma 2	2	1	421	421	$\left(\frac{2}{421}\right) = -1$		
5	Theorem 3 and Lemma 2	5	1	421	421	$5^{105} \equiv -1 \pmod{421}$		
4	Theorem 3 and Lemma 2	2	2	421	421	$\left(\frac{2}{421}\right) = -1$		
3	Theorem 9			ot exis		\421/		
2	Theorem 7	Does not exist.						

 $WC(20^2 + 20 + 1, k^2)$ does not exist for any k.

Case $n = 21^2 + 21 + 1$

k	Theorem	p	t	m	n	$p^f \equiv -1 \pmod{m'}$	
21	Theorem 3, Lemma 2	3	1	463	463	3 is a primitive root mod 463 so $\left(\frac{3}{2}\right) = -1$	
20	Theorem 3, Lemma 2	5	1	463	463	$\begin{array}{l} (\frac{5}{463}) = -1 \\ (\frac{19}{463}) = -1 \\ (\frac{19}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \end{array}$	
19	Theorem 3, Lemma 2	19	1	463	463	$\left(\frac{19}{162}\right) = -1$	
18	Theorem 3, Lemma 2	3	2	463	463	3 is a primitive root mod 463, so $\left(\frac{3}{100}\right) = -1$	
17	17 is a multiplier; or bit	; sizes	5 1 - 2	231~, [A = 1	[53, B = 136; impossible	
16	2 is a multiplier orbit	eizoe	1199	212 14	= 12	P = 100; imm = 100;	
15	Theorem 3, Lemma 2	3	1	463	463	$\begin{array}{l} 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ (\frac{7}{463}) = -1 \\ (\frac{13}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ (\frac{11}{463}) = -1 \\ (\frac{11}{463}) = -1 \\ (\frac{11}{463}) = -1 \\ (\frac{11}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 \text{ is a primitive root mod 463, so } (\frac{3}{463}) = -1 \\ 3 i$	
14	Theorem 3, Lemma 2	7	1	463	463	$\left(\frac{7}{463}\right) = -1$	
13	Theorem 3, Lemma 2	13	1	463	463	$\left(\frac{13}{463}\right) = -1$	
12	Theorem 3, Lemma 2	3	1	463	463	3 is a primitive root mod 463, so $\left(\frac{3}{462}\right) = -1$	
11	Theorem 3, Lemma 2	11	1	463	463	$\left(\frac{11}{463}\right) = -1$	
10	Theorem 3, Lemma 2	5	1	463	463	$\left(\frac{40}{463}\right) = -1$	
9	Theorem 3, Lemma 2	3	2	463	463	3 is a primitive root mod 463, so $\left(\frac{3}{400}\right) = -1$	
7	Theorem 3, Lemma 2	7	1	463	463	$(\frac{7}{463}) = -1$ 3 is a primitive root mod 463, so $(\frac{3}{463}) = -1$ $(\frac{5}{463}) = -1$	
6	Theorem 3, Lemma 2	3	1	463	463	3 is a primitive root mod 463, so $\left(\frac{3}{462}\right) = -1$	
5	Theorem 3, Lemma 2	5	1	463	463	$\left(\frac{5}{463}\right) = -1$	
4	2 is a multiplier; orbit	t sizes $1^{1}231^{2}$, $ A = 10$, $ B = 6$; impossible					
3	Theorem 9			t exist		•••	
2	Theorem 7	Doe	s no	ot exist	t.		

 $WC(21^2 + 21 + 1, k^2)$ does not exist for any k.

Case $| n = 22^2 + 22 + 1$

Case	n = 22 + 22 + 1							
k	Theorem	t m n p	$p^f \equiv -1 \pmod{m'}$					
22			\neq sum of two squares					
21	Theorem 3 and Lemma 2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$(\frac{7}{13}) = -1$					
20	Theorem 3 and Lemma 2	2 169 507 ($(\frac{2}{13}) = -1$					
19	Theorem 3 and Lemma 2	1 169 507 ($\frac{19}{13}) = -1$					
18	Open							
17	17 is a multiplier; orbit siz	$ ^{1}2^{1}6^{6}78^{6}, A = 153$	B, B = 136; impossible					
16	Theorem 3 and Lemma 2 Theorem 3 and Lemma 2 Theorem 3 and Lemma 2	4 169 507 ($\frac{2}{13}) = -1$					
15	Theorem 3 and Lemma 2	1 169 507 ($(\frac{5}{13}) = -1$					
14	Theorem 3 and Lemma 2	1 169 507 ($(\frac{7}{13}) = -1$					
13	Theorem 3	1 169 507 1	$3^1 \equiv -1 \pmod{1}$					
12	Theorem 3 and Lemma 2	2 169 507 ($\left(\frac{2}{13}\right) = -1$					
11	Theorem 3 and Lemma 2	1 169 507 ($\frac{11}{13} = -1$					
10	Theorem 3 and Lemma 2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$(\frac{5}{13}) = -1$					
9	Open							
8	Theorem 3 and Lemma 2 Theorem 3 and Lemma 2	3 169 507 ($\frac{2}{13}) = -1$					
7	Theorem 3 and Lemma 2	1 169 507 ($(\frac{7}{13}) = -1$					
6	Open							
5	Theorem 3 and Lemma 2 Theorem 3 and Lemma 2	1 169 507 ($(\frac{5}{13}) = -1$					
4	Theorem 3 and Lemma 2	2 169 507 ($(\frac{2}{13}) = -1$					
3	Theorem 9	cists						
2	Theorem 7	oes not exist.						

 $WC(22^2+22+1, k^2)$ exists for k = 3 and possibly for k = 6, 9 and 18.

Case $| n = 23^2 + 23 + 1$

Case	$n = 23^2 + 23 + 1$								
k	Theorem	р	t	m	n	$p^f \equiv -1 \pmod{m'}$			
23	Theorem 4	Ex	ists						
22	$11^7 \equiv 4 \pmod{553} \Rightarrow 4$ is a multiplier; orbit sizes $1^1 3^2 3 9^{14}$, $ A = 253$,								
	B = 231; impossible								
21	Theorem 3 and Lemma 2 7 1 553 553 $(\frac{7}{79}) = -1$								
20	$5^f \equiv 8 \pmod{553} \Rightarrow 8$ is a multiplier; orbit sizes $1^7 13^{42}$, $ A = 210$,								
	B = 190; impossible								
19	19 is a multiplier; orbit size	es 1	$16^{1}3$	9^278^6	, <i>A</i> =	= 190, $ B = 171$; impossible			
18	$3^f \equiv 8 \pmod{553} \Rightarrow 8$ is	a m	ulti	plier;	orbit s	sizes $1^7 13^{42}$, $ A = 171$,			
	B = 153; impossible								
17						= 153, B = 136; impossible			
16	2 is a multiplier; orbit sizes								
15		is a	mu	ltiplie	r; orbi	t sizes $1^{1}3^{2}39^{14}$, $ A = 120$,			
	B = 105; impossible								
14	Theorem 3 and Lemma 2 $ 7 1 553 553 (\frac{7}{79}) = -1$								
13	13 is a multiplier; orbit sizes $1^1 2^3 39^2 78^6$, $ A = 91$, $ B = 78$; impossible								
12	Open								
11	11 is a multiplier; orbit size								
10	$5^f \equiv 8 \pmod{553} \Rightarrow 8$ is a multiplier; orbit sizes $1^7 13^{42}$, $ A = 55$,								
	B = 45; impossible								
9	3 is a multiplier; orbit sizes	$1^{1}($	$5^{1}78$	$^{7}, A $	= 45,	B = 36; impossible			
8	2 is a multiplier; orbit sizes $1^1 3^2 39^{14}$, $ A = 36$, $ B = 28$; impossible								
7	Theorem 3 and Lemma 2								
6	$3^f \equiv 8 \pmod{553} \Rightarrow 8$ is	a m	ultij	plier;	orbit s	fizes $1^7 13^{42}$, $ A = 21$,			
	B = 15; impossible								
5	5 is a multiplier; orbit sizes								
4	2 is a multiplier; orbit sizes					B = 6; impossible			
3	Theorem 9			ot exi	ist				
2	Theorem 7	Ex	ists.						

 $WC(23^2+23+1,k^2)$ exists only for k=2, 23 and possibly k=12.

Case | $n = 24^2 + 24 + 1$

Case	$n = 24^{-} + 24 + 1$							
k	Theorem	р	t	m	n	$p^f \equiv -1 \pmod{m'}$		
24	Open							
23	Theorem 3	23	1	601	601	$23^{150} \equiv -1 \pmod{601}$		
22	Theorem 3 and Lemma 2	11	1	601	601	$\left(\frac{11}{601}\right) = -1$		
21	Theorem 3 and Lemma 2	7	1	601	601	$\left \left(\frac{7}{601} \right) = -1 \right $		
20	Theorem 3	5	1	601	601	$\binom{601}{601} = -1$ $5^6 \equiv -1 \pmod{601}$		
19	Theorem 3 and Lemma 2	1	1	601	601	$\left(\frac{19}{601}\right) = -1$		
18	$2^{16} \equiv 27 \pmod{601}$; 27 is	s a m	ulti	plier;	orbit s	sizes $1^1 25^{24}$, $ A = 171$,		
	B = 153; impossible							
17	Theorem 3 and Lemma 2	17	1	601	601	$\left \left(\frac{17}{601} \right) = -1 \right $		
16	2 is a multiplier; orbit size	$ m s~1^{1}2$	5^{24} ,	A =	136,	B = 120; impossible		
15	Theorem 3 Theorem 3 and Lemma 2 Theorem 3 and Lemma 2	5	1	601	601	$\mid 5^6 \equiv -1 \pmod{601}$		
14	Theorem 3 and Lemma 2	7	1	601	601	$\left(\frac{7}{601}\right) = -1$		
13	Theorem 3 and Lemma 2	13	1	601	601	$13^{10} \equiv -1 \pmod{601}$		
12	$2^{16} \equiv 27 \pmod{601}$; 27 is	(mod 601); 27 is a multiplier; orbit sizes $1^{1}25^{24}$, $ A = 78$,						
	B = 66; impossible							
11	Theorem 3 and Lemma 2 Theorem 3	11	1	601	601	$\left \left(\frac{11}{601} \right) = -1 \right $		
10	Theorem 3	5	1	601	601	$5^6 \equiv -1 \pmod{601}$		
9	3 is a multiplier; orbit size	$ s \ 1^{1}7 $	$5^{8},$	A =	45, B	=36; impossible		
8	2 is a multiplier; orbit size	$s \ 1^{1}2$	5^{24} ,	A =	36, 1	B = 28; impossible		
7	Theorem 3 and Lemma 2	7	1	601	601	$\left(\frac{7}{601}\right) = -1$		
6	$2^{16} \equiv 27 \pmod{601}$; 27 is	s a m	ulti	plier;	orbit s	sizes $1^1 25^{24}$, $ A = 21$,		
	B = 15; impossible							
5	Theorem 3	5	1	601	601	$5^6 \equiv -1 \pmod{601}$		
4	2 is a multiplier; orbit size	$s 1^{1}2$	5^{24} ,	A =	10, 1	B = 6; impossible		
3	Theorem 9			ot exis				
2	Theorem 7	Doe	es no	ot exis	ıt.			

 $WC(24^2 + 24 + 1, k^2)$ exists only possibly for k = 24.

Case	$n = 25^2 + 25^2$	5 + 1				
k	Theorem	p t	m	n	$p^f \equiv -1$	$\pmod{m'}$
25	Theorem 4	Exists		.	1	
24	Theorem 3	3 1	651	651	$3^{15} \equiv -1$	(mod 217)
23	Theorem 3	23 1	93	651	$23^5 \equiv -1$	(mod 93)
22	Theorem 3	11 1	93	651	$11^{15} \equiv -1$	(mod 93)
21	Theorem 3	3 1	651	651	$3^{15} \equiv -1$	(mod 217)
20	Corollary 1	Exists	5	•		
19	19 is a multi	iplier; o	rbit siz	es $1^{3}6^{3}$	$^{3}15^{6}30^{18}, A $	= 190,
	B = 171; in	npossib	le			. ,
18	Theorem 3	3 2	651	651	$3^{15} \equiv -1$	$(mod \ 217)$
17	Theorem 3	17 1	651	651	$17^{15} \equiv -1$	(mod 651)
16	Corollary 1					. ,
15	Theorem 3	3 1	651	651	$3^{15}\equiv -1$	$(mod \ 217)$
14	Open		•			
13	Theorem 3	13 1	217	651	$13^{15} \equiv -1$	$\pmod{217}$
12	Theorem 3	3 1	651	651	$3^{15} \equiv -1$	(mod 217)
11	Theorem 3	11 1	93	651	$11^{15} \equiv -1$	(mod 93)
10	Corollary 1					· /
9	Theorem 3	3 2	651	651	$3^{15} \equiv -1$	(mod 217)
8	Corollary 1	Exists	• •	'		
7	Open					
6	Theorem 3	3 1	651	651	$3^{15}\equiv -1$	(mod 217)
5	Corollary 1	Exists	• • •	'		, ,
4	Corollary 1	Exists				
3	Theorem 9	Does 1	not exis	t		
2	Theorem 7	Exists				

 $WC(25^2 + 25 + 1, k^2)$ exists for k = 2, 4, 5, 8, 10, 16, 20, 25 and possibly for k = 7, 14.

References

- K. T. Arasu, J. F. Dillon, D. Jungnickel and A. Pott, The solution of the Waterloo problem, J. Comb. Th.(A), 17, (1995), 316-331.
- [2] K. T. Arasu, D. Jungnickel, S. L. Ma, and A. Pott, Relative difference sets with n = 2, Discr. Math., 147, (1995), 1-17.
- [3] K. T. Arasu and D. K. Ray-Chaudhuri, Multiplier theorem for a difference list, Ars Comb., 22 (1986), 119-138.
- [4] K. T. Arasu and Jennifer Seberry, Circulant weighing designs, Journal of Combinatorial Designs, 4 (1996), 439-447.
- [5] K. T. Arasu and Qing Xiang, Multiplier theorems, J. Combinatorial Designs, 3, (1995), 257-268.
- [6] P. Eades, On the Existence of Orthogonal Designs, Ph.D. Thesis, Australian National University, Canberra, (1977).

- [7] P. Eades and R. M. Hain, On circulant weighing matrices, Ars. Combinatoria 2, (1976), 265-284.
- [8] A. V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Marcel Decker, New York-Basel, (1979).
- [9] R. M. Hain, *Circulant Weighing Matrices*, Master of Science Thesis, Australian National University, Canberra, (1977).
- [10] S. L. Ma, Polynomial Addition Sets, Ph.D. Thesis, University of Hong Kong, (1985).
- [11] H. B. Mann, Addition Theorems, Wiley, New York, (1965).
- [12] R. L. McFarland, On Multipliers of Abelian Difference Sets, Ph.D. Thesis, Ohio State University, (1970).
- [13] R. C. Mullin, A note on balanced weighing matrices, Combinatorial Mathematics III: Proceedings of the Third Australian Conference, in Lecture Notes in Mathematics, Vol. 452, Springer-Verlag, Berlin-Heidelberg-New York, 28-41, (1975).
- [14] Jennifer Seberry, Asymptotic existence of some orthogonal designs, J. Combinatorial Theory, Ser A, (submitted).
- [15] J. Seberry Wallis and A. L. Whiteman, Some results on weighing matrices, Bull. Austral. Math. Sec. 12, (1975), 433-447.
- [16] Y. Strassler, "Circulant weighing matrices of prime order and weight 9 having a multiplier", talk presented at *Hadamard Centenary Conference*, Wollongong, Australia, December, 1993.
- [17] Y. Strassler, "New circulant weighing matrices of prime order in CW(31, 16), CW(71, 25), CW(127, 64)", paper presented at the R. C. Bose Memorial Conference on Statistical Design and Related Combinatorics, Colorado State University, 7-11 June, 1995.
- [18] Y. Strassler, personal communication to K.T. Arasu and Jennifer Seberry of results contained in his PhD Thesis which has yet to be published.
- [19] R. J. Turyn, Character sums and difference sets, Pac. J. Math. 15, (1965), 319–346.

(Received 13/12/1996)

