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1 Introduction

The property of integrability is extremely scarce among two-dimensional σ-models. And

yet when present it provides a powerful tool in the study of various exact properties of these

models. There is, however, no systematic way of proving whether or not a two-dimensional

σ-model is integrable. In light of this, an interesting question to consider is the following:

given an integrable σ-model, is it possible to construct a deformation of this model which

is itself integrable?
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In the case of the SU(2) principal chiral model, an example of such a deformation is

given by the diagonal anisotropic SU(2) principal chiral model introduced by Cherednik

in [1]. The action for the SU(2)-valued field g of this model may be written as

SC[g] = −
1

2

∫
dτdσ tr

(
ad(∂+g g

−1) J ad(∂−g g
−1)
)
,

where J = diag(J1, J2, J3) is a diagonal matrix, the effect of which is to deform the metric

away from the Killing form of su(2). This model is known to be integrable [1] and provides

a two-parameter deformation of the principal chiral model.

In the special case J1 = J2 6= J3 it reduces to the squashed sphere σ-model, where

the parameter C = J3/J1 describes the squashing of the 3-sphere. As a result of this

squashing when C 6= 1, the global SU(2)L × SU(2)R symmetry of the principal chiral

model is broken down to SU(2)L × U(1)R. However, it was recently argued in [2, 3] that

a certain deformation of the SU(2)R symmetry is still realised in the squashed sphere σ-

model. Specifically, as the deformation is turned on, the SU(2)R symmetry gets replaced

by a classical q-deformed UP
q (sl2) symmetry, where the algebraic deformation parameter

q = q(C) is a function of the geometric squashing parameter C.

A generalisation of the above one-parameter deformation for the principal chiral model

on any compact Lie group F is the so called Yang-Baxter σ-model introduced by Klimč́ık

in [4]. In a subsequent paper it was then proved that this deformation is in fact also

integrable [5]. Using the conventions of the present paper, the action of this model reads

SK[g] = −
1

2

∫
dτdσ κ

(
∂+g g

−1,
(1 + η2)2

1− ηR ∂−g g
−1

)
,

where κ is the Killing form of the Lie algebra f = Lie(F ) and η ≥ 0 is the deformation

parameter. Here R is a certain solution of the modified classical Yang-Baxter equation on

f. In the limit η → 0 this action reduces to that of the principal chiral model. Furthermore,

in the case F = SU(2) it reduces to the action of the diagonal anisotropic SU(2) principal

chiral model with J1 = J2 6= J3.

The first objective of this paper is to put forward a procedure for deforming integrable

σ-models in a way which manifestly preserves their integrability. The cases that we shall

consider here are the principal chiral model on any compact Lie group F and the coset

σ-model on a symmetric space F/G. The second objective is to show that the models so

obtained admit a classical q-deformed symmetry.

In the case of the principal chiral model, we shall in fact recover in this way the

Yang-Baxter σ-model. Its integrability will, however, be automatic from our construction.

Furthermore, working in the Hamiltonian formalism will also enable us to show that the

Yang-Baxter σ-model admits a classical q-deformed UP
q (f)×FR symmetry, where q = q(η)

is a certain function of the deformation parameter η. In the limit η → 0 this reduces to

the global FL × FR symmetry of the principal chiral model. This feature of the Yang-

Baxter σ-model therefore generalises the analogous q-deformation exhibited in [2, 3] for

the symmetries of the squashed sphere σ-model.

Most importantly, our procedure admits a straightforward generalisation to coset σ-

models. We shall indeed construct a new one-parameter deformation of the coset σ-model

– 2 –
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on F/G where F is a compact Lie group and G = exp g is the Lie group associated with

the subalgebra g of f fixed by an order 2 automorphism σ : f → f. The resulting action

takes the form

S[g] = −1

2

∫
dτdσ κ

(
(g−1∂+g)

(1),
1 + η2

1− ηRg ◦ P1
(g−1∂−g)

(1)

)
,

where Rg = Ad g−1 ◦ R ◦ Ad g and P1M = M (1) is the projection of M ∈ f onto the

subspace of f on which the automorphism σ has eigenvalue −1. Just as in the case of

the Yang-Baxter σ-model, we will show that this model also admits a q-deformed UP
q (f)

symmetry where q = q(η) is again a function of the real deformation parameter η.

Our strategy for deforming the principal chiral model and coset σ-models crucially

exploits the existence of a second Poisson bracket compatible with the original one. Such

a compatible bracket was introduced in [6] for the SU(2) principal chiral model and this

was subsequently generalised to all other principal chiral models and coset σ-models in [7].

Recall that the integrability of these models at the Hamiltonian level follows from the

Poisson bracket of their Lax matrix taking the specific form in [8, 9]. In order to construct

an integrable deformation we should therefore ensure that this latter property is preserved.

Now in both models, the Lax matrix depends on the canonical fields only indirectly through

certain currents. We shall not modify this dependence of the Lax matrix on these currents.

Instead, what we shall deform is the way these currents depend on the underlying canonical

fields. This will be achieved by deforming the Poisson bracket of the currents, which we do

by adding a multiple of the compatible Poisson bracket. As a result, the Hamilton dynamics

of the canonical fields will be deformed. After taking the inverse Legendre transform this

procedure leads to the above Lagrangians for the deformed models.

This article is organised as follows. The procedure is first presented in the case of the

principal chiral model in section 2. After recalling some well known properties relating

to the integrability and symmetries of this model, we introduce the deformed Poisson

bracket in subsection 2.2. The resulting deformation of the relation between the Lax

matrix and canonical variables is worked out in subsections 2.3 and 2.4. The deformation

of the global FL × FR symmetry is studied in the next subsection. We end this section

by deriving the action describing our deformed model, thereby showing that it coincides

with the Yang-Baxter σ-model. Section 3 is devoted to the deformation of symmetric

space σ-models. We follow exactly the same steps as for the principal chiral model. The

corresponding action is computed in subsection 3.5. In section 4 we study the simplest

example of the deformed SU(2)/U(1) coset σ-model. It provides an interesting interpolation

between coset σ-models on the compact and non-compact symmetric spaces SU(2)/U(1)

and SU(1, 1)/U(1), respectively. This article includes four appendices. Some notations

on compact real Lie algebras and a reminder on the Iwasawa decomposition are found in

appendix A. Details for the proof of the q-Poisson-Serre relations are given in appendix B.

Finally, the last two appendices are respectively devoted to a discussion of the modified

classical Yang-Baxter equation and the deformed Poisson bracket used in the case of the

coset σ-models.

– 3 –



J
H
E
P
1
1
(
2
0
1
3
)
1
9
2

2 Deforming the principal chiral model

2.1 Principal chiral model

We begin this section by reviewing aspects of the principal chiral model on a compact Lie

group F which will be relevant for our purposes. Although these are standard properties,

it is important to recall them in order to emphasise those features of the model which we

shall deform later.

Hamiltonian, equations of motion and Lax matrix. The principal chiral model

may be described by a pair of fields j0(σ) and j1(σ) each of which takes values in the

compact Lie algebra f = Lie(F ). We shall consider the case where the underlying space,

parameterised by σ, is the entire real line. In particular, the fields j0(σ) and j1(σ) will be

assumed to decay sufficiently rapidly at infinity. Their Poisson brackets are given by

{j01(σ), j02(σ′)} = −[C12, j02(σ)]δσσ′ (2.1a)

{j01(σ), j12(σ′)} = −[C12, j12(σ)]δσσ′ + C12δ
′
σσ′ (2.1b)

{j11(σ), j12(σ′)} = 0. (2.1c)

We denote by C12 = κabT
a⊗T b the tensor Casimir with κab the components of the inverse

of the Killing form κ on f in any basis T a (see appendix A for notations).

The Hamiltonian of the model reads

HPCM = −1

2

∫ +∞

−∞
dσ
(
κ(j0, j0) + κ(j1, j1)

)
. (2.2)

The resulting equations of motion, with ∂τ = {HPCM, ·}, take the form of the conservation

equation and the zero curvature equation

−∂τ j0 + ∂σj1 = 0, (2.3a)

∂τ j1 − ∂σj0 − [j0, j1] = 0. (2.3b)

The integrability of these equations of motion is encoded in the usual Lax matrix

L(λ) = 1

1− λ2 (j1 + λ j0) , (2.4)

which takes values in the loop algebra f̂ = f⊗ C((λ)).

Symmetry algebra and group valued field. It is instructive to recall some properties

of the global FL × FR symmetry of the principal chiral model. Indeed, part of these

symmetries will turn out to be deformed in the model we shall construct.

It is immediate from equation (2.3a) that QR =
∫
dσj0 is a conserved quantity. By

introducing the group valued principal chiral field g ∈ F through the relation j1 = −g−1∂σg,

this charge is seen to generate the FR symmetry of the model acting as g 7→ gUR. Indeed,

the Poisson brackets (2.1b) and (2.1c) lifted to the field g read

{j01(σ), g2(σ′)} = g2(σ)C12δσσ′ , (2.5a)

{g1(σ), g2(σ′)} = 0. (2.5b)
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Furthermore, this charge QR appears at order λ−1 in the expansion of the monodromy

matrix at λ =∞ since the expansion of the Lax matrix (2.4) there begins with

L(λ) = −λ−1j0 +O(λ−2). (2.6)

It turns out that both the field g and the FL symmetry, acting as g 7→ ULg, may be

conveniently described in terms of the leading behaviour of the Lax matrix at the point

λ = 0. By virtue of the definition of j1 in terms of g, the value of the Lax matrix at λ = 0

is L(0) = −g−1∂σg. This shows that the field g ∈ F may be characterised rather abstractly

as the gauge transformation parameter which sends L(0) to zero. The generator of the

FL symmetry can then be extracted from the next order in the expansion of the gauge

transformed Lax matrix at λ = 0. Indeed, if we define l0 = gj0g
−1 we have

Lg(λ) := ∂σgg
−1 + gL(λ)g−1 = λl0 +O(λ2). (2.7)

Furthermore, the definition of l0 and the Poisson brackets (2.1a) and (2.5) lead to

{l01(σ), l02(σ′)} =
[
C12, l02(σ)

]
δσσ′ , (2.8a)

{l01(σ), g2(σ′)} = C12 g2(σ)δσσ′ . (2.8b)

It therefore follows that the generator of the FL symmetry is QL =
∫
dσl0 and moreover

it appears as the coefficient of λ in the expansion at λ = 0 of the gauge transformed

monodromy matrix.

Let us briefly summarise the above by remarking that the pair of fields g and l0 may

roughly speaking be regarded as canonical fields for the principal chiral model with Poisson

brackets given in (2.5b) and (2.8). The pair (g, l0) takes values in the canonical right

trivialisation of the cotangent bundle of F . Moreover, both these fields may be extracted

from the Lax matrix using the following scheme:

• The field g is characterised by the condition Lg(0) = 0 which fixes j1 = −g−1∂σg.

• The field l0 is obtained as ∂Lg

∂λ (0) = l0, implying the relation j0 = g−1l0g.

2.2 Setting up the deformation

Deformed Poisson bracket. Our starting point for constructing a deformation of the

principal chiral model in the Hamiltonian formalism will be to deform its Poisson bracket.

A natural way to do this is to combine the original Poisson bracket {·, ·} of the current

in (2.1) with a compatible Poisson bracket, say {·, ·}′. In the case at hand there is a natural

candidate for {·, ·}′, namely the Poisson bracket associated with the Faddeev-Reshetikhin

model [6]. Indeed, its compatibility with (2.1) was shown in [7]. We therefore consider the

following linear combination of Poisson brackets

{·, ·}ǫ := {·, ·}+ ǫ2{·, ·}′, (2.9)

where the parameter ǫ is taken to be real and positive. When ǫ = 0 this bracket corresponds

to the original undeformed Poisson bracket {·, ·}0 = {·, ·} whereas when ǫ tends to infinity

– 5 –
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it becomes proportional to the Faddeev-Reshetikhin bracket {·, ·}′. For any other value

ǫ > 0 it reads

{j01(σ), j02(σ′)}ǫ = −(1− ǫ2)[C12, j02(σ)]δσσ′ , (2.10a)

{j01(σ), j12(σ′)}ǫ = −(1− ǫ2)[C12, j12(σ)]δσσ′ + C12δ
′
σσ′ , (2.10b)

{j11(σ), j12(σ′)}ǫ = ǫ2[C12, j02(σ)]δσσ′ . (2.10c)

Lax matrix and Hamiltonian. In order to ensure that the deformed model remains

integrable as we vary the deformation parameter ǫ, we shall do two things.

On the one hand, and in the spirit of [7], we shall require that the Lax matrix of the

deformed model be the same function of j0 and j1, independent of ǫ. In other words, we

will take the same Lax matrix (2.4) for every value of the parameter ǫ.

On the other hand, we shall also insist that the dynamics of the fields (j0, j1) remain

the same as we vary ǫ. Nevertheless, since the Poisson brackets of (j0, j1) do depend

on ǫ, this implies that the dependence of (j0, j1) on the canonical fields will vary with ǫ.

Consequently, the dynamics of these canonical fields will be deformed. When ǫ vanishes, the

principal chiral field g itself together with the field j0, or equivalently l0, may be regarded

as canonical fields in view of (2.5b) and (2.8). The possibility to deform the principal

chiral model will therefore come from the freedom in defining the field g at non-zero values

of the deformation parameter ǫ. We shall come back in detail to this important point in

section 2.3 below.

The Lax matrix (2.4) depends linearly on the fields (j0, j1). Therefore, in order to find

the Hamiltonian Hǫ which generates the same dynamics on these fields as the principal

chiral model but with respect to the deformed Poisson bracket (2.10), we should solve the

following equation

{Hǫ,L}ǫ = {HPCM,L}. (2.11)

By using the fact that the Hamiltonian HPCM has vanishing Faddeev-Reshetikhin Pois-

son bracket with any function of (j0, j1), it is easy to see that Hǫ = HPCM is also the

Hamiltonian with respect to the deformed bracket.

Deformed twist function. In view of deforming the definition of the principal chiral

field g as given in section 2.1, we first need to understand the distinguishing characteristic

of the special point λ = 0 entering this definition.

In the Hamiltonian formalism, the algebraic ingredients underpinning the integrability

of non-ultralocal models of interest in this paper were emphasised in [7], to which the reader

is referred. Aside from the loop algebra f̂ and the Lax matrix L(λ) valued in f̂, an essential

role is played by the standard split R-matrix R, which is a solution of the modified classical

Yang-Baxter equation on f̂ (see appendix C). An equally important ingredient in this setup

is the twist function ϕ(λ). As explained in [7], in this language the Poisson bracket of any

two functions of the Lax matrix may be expressed in terms of the rational inner product on

f̂ and the twisted R-matrix R ◦ ϕ̃−1, where ϕ̃ denotes multiplication by the twist function

ϕ(λ). The twist functions of the principal chiral model and the Faddeev-Reshetikhin model

– 6 –
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are given respectively by

ϕPCM(λ) = −1 + 1

λ2
, ϕFR(λ) = 1. (2.12)

Note that in this formalism, the compatibility between the Poisson brackets of these two

models may be inferred from [10].

The Poisson bracket {f1, f2}ǫ(L) of any two functions f1 and f2 can be computed in

two ways. By definition, it is given by the linear combination of the brackets {f1, f2}(L)
and {f1, f2}′(L) which are respectively linear in R ◦ ϕ̃−1

PCM and R ◦ ϕ̃−1
FR. Alternatively,

one can determine the twist function ϕǫ for the deformed Poisson bracket (2.9) and then

compute {f1, f2}ǫ(L) directly in terms of Rǫ := R◦ ϕ̃−1
ǫ . Restricting to linear functions f1

and f2 of L, one has

{L1(σ),L2(σ′)}ǫ = [Rǫ12,L1(σ)]δσσ′ − [R∗
ǫ12,L2(σ)]δσσ′ + (Rǫ12 +R∗

ǫ12)δ
′
σσ′

where Rǫ12 and R∗
ǫ12 are respectively the kernels of Rǫ and its adjoint with respect to the

rational inner product on f̂. The reader is referred to [7] for details.

Putting all this together we obtain a simple expression for the inverse of the twist

function of the deformed Poisson bracket

ϕǫ(λ)
−1 = ϕPCM(λ)−1 + ǫ2ϕFR(λ)

−1.

Substituting the definitions (2.12) we find the deformed twist function to be

ϕǫ(λ) =
1− λ2

(1− ǫ2)λ2 + ǫ2
. (2.13)

Poles of the deformed twist function. It is clear from (2.12) that the point λ = 0,

from which the principal chiral field g may be extracted, corresponds in fact to the pole of

the twist function ϕPCM(λ). It is therefore natural to expect that the poles of the deformed

twist function (2.13) will be of particular importance in defining the group valued field

corresponding to the deformed theory. Moreover, the symmetry generators of the deformed

model will be obtained by expanding the monodromy matrix around these points. They

are located at

λ± = ± iǫ√
1− ǫ2

(2.14)

and have the property λ− = λ+ which we will make use of later. Hence, the double pole at

λ = 0 of the twist function ϕPCM(λ) is seen to split into a pair of single poles as we turn on

the deformation parameter ǫ. Another interesting feature of (2.14) is that the poles move

off to infinity as ǫ→ 1.

2.3 Defining the group valued field

Definition of g. Mimicking the interpretation of the principal chiral field as the param-

eter of a gauge transformation sending the Lax matrix L(0) to zero, we would like to define

the field g for ǫ 6= 0 as the parameter of a gauge transformation of some sort. However,

– 7 –
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since for ǫ 6= 0 there are now two poles at λ±, we should consider both Lax matrices L(λ+)
and L(λ−).

Consider first L(λ+). Since we want the field g to belong to the compact Lie group F

for any ǫ, i.e. g† = g−1, we should ensure that ∂σgg
−1 takes values in f. We therefore define

g so that ∂σgg
−1 coincides with the component along f in the Iwasawa decomposition (A.7)

of −gL(λ+)g−1. In other words, we define the field g ∈ F as the parameter of a gauge

transformation such that

Lg(λ+) = ∂σgg
−1 + gL(λ+)g−1 (2.15a)

belongs to h0 ⊕ n+ ⊂ b+, where h0, n
+ and b+ are defined in appendix A. Consider now

the effect of this gauge transformation at the other point λ = λ−, namely

Lg(λ−) = ∂σgg
−1 + gL(λ−)g−1. (2.15b)

Since the fields j0 and j1 both take values in f we have j†a = −ja for a = 0, 1, from which

the reality condition on the Lax matrix follows

L(λ)† = −L(λ). (2.16)

In particular this means that L(λ+)† = −L(λ−) which combined with (2.15) yields

Lg(λ−) = −Lg(λ+)†. (2.17)

This implies, firstly, that Lg(λ−) belongs to the lower Borel subalgebra b− of fC, or more

precisely to h0 ⊕ n−. Secondly, since the restriction of Lg(λ+) to the Cartan subalgebra h

of fC is actually contained in h0, we have Lg(λ−)
∣∣
h
= −Lg(λ+)

∣∣
h
.

Therefore, by a single gauge transformation with parameter g we can ensure that the

gauge transformed Lax matrix defined as Lg(λ) = ∂σgg
−1+gL(λ)g−1 has the property that

(i) Lg(λ±) ∈ b±,

(ii) Lg(λ−)
∣∣
h
= −Lg(λ+)

∣∣
h
.

(2.18)

To see why this definition of g is a deformation of the principal chiral field, consider

the limit when ǫ → 0. In this limit, the pair of points λ± in (2.14) degenerate to a single

point at λ = 0. Property (i) then requires that Lg(0) be in both b+ and b− and hence

Lg(0) ∈ h. But then property (ii) implies that Lg(0) = 0, which is exactly the defining

property of the principal chiral field.

Singularity at ǫ = 1. When the deformation parameter lies in the range 0 < ǫ < 1,

the points λ± defined in (2.14) are distinct and the above procedure can be used to define

the field g. As explained above, when ǫ = 0 the pair of points λ± merge at λ = 0 and g

becomes identified with the principal chiral field. Likewise, as ǫ→ 1 the pair of points λ±
both move off towards infinity. However, the difference here is that in the limit λ→∞ the

Lax matrix vanishes identically and the above procedure for defining g no longer makes

sense. As we shall see later, this is a symptom of the fact that the deformed theory is only

defined for 0 ≤ ǫ < 1.

– 8 –
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Definition of the conjugate momentum. So far we have defined a field g for any

value of the deformation parameter ǫ in the range 0 ≤ ǫ < 1, which identifies in the limit

ǫ → 0 with the principal chiral field. In order to describe the dynamics of this new field

g we shall need to relate it to the components (j0, j1) of the current whose dynamics is

known, and in fact independent of ǫ. In analogy with the Hamiltonian analysis of the

principal chiral model, this requires introducing another field X which will essentially turn

out to be the conjugate momentum of g. We will then be able to express (j0, j1) in terms

of the pair of Hamiltonian fields (g,X).

We therefore define

X =
i

2γ

(
Lg(λ+)− Lg(λ−)

)
, (2.19)

where the parameter γ is a normalisation to be fixed later. In the limit ǫ → 0, this

expression has to identify with the derivative of Lg(λ) in λ evaluated at λ = 0. In view

of (2.14) this fixes the leading behaviour of γ to be γ ∼ −ǫ as ǫ→ 0. Furthermore, due to

the property (2.17), we have X† = −X and therefore X takes values in f provided γ is real.

2.4 The deformed model

Non-split R-matrix. Equation (2.19) expresses X as a difference of the quantities

Lg(λ±) taking values in the Borel subalgebras b± of fC. It turns out to be possible to

invert this relation so as to express both Lg(λ±) in terms of X by introducing a certain

R-linear operator on f.

To define this operator we begin by expressing the quantities Lg(λ±) satisfying the

properties (2.18) in terms of basis elements, namely

Lg(λ±) = ±γ
(

n∑

i=1

hiH
i +
∑

α>0

e±αE
±α

)
. (2.20)

We may then write X as defined by (2.19) more explicitly in terms of the basis (A.4) of f as

X =
n∑

i=1

hiT
i +

1

2
√
2

∑

α>0

(
(eα + e−α)B

α + i(eα − e−α)Cα
)
. (2.21)

Using the reality condition (A.3) we find e−α = eα so that all the above components of

X in this basis are indeed real. If we now introduce an R-linear operator R : f → f as

follows [5]

R(T i) = 0, R(Bα) = Cα, R(Cα) = −Bα, (2.22)

then the sum of the quantities Lg(λ±) is given simply by

RX =
1

2γ

(
Lg(λ+) + Lg(λ−)

)
. (2.23)

The R-linear map defined in (2.22) is an R-matrix of the so called ‘non-split’ type since it

satisfies the following variant of the modified classical Yang-Baxter equation

[RM,RN ]−R
(
[RM,N ] + [M,RN ]

)
= [M,N ]. (2.24)
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We refer to appendix C for a brief comparison of the properties of the R-matrix introduced

here with the R-matrix of the ‘split’ type used, for instance, in [7]. Finally, combining

equations (2.19) and (2.23) we may solve the pair of conditions (2.18) and write

Lg(λ±) = γ(R∓ i)X. (2.25)

Lifting to (g,X). It is now possible to explicitly relate the fields (g,X) introduced

previously to the fields (j0, j1) used thus far. Doing so will, in particular, enable us to

describe the Hamiltonian dynamics of (g,X). Substituting the relation (2.25) into the

expressions (2.15) for the gauge transformed Lax matrix at the points λ± we obtain

L(λ±) = −g−1∂σg + γ g−1
(
(R∓ i)X

)
g. (2.26)

On the other hand, the Lax matrix at these points can certainly be obtained directly in

terms of the fields (j0, j1) since

L(λ±) =
1

1− λ2±
(j1 + λ± j0) = (1− ǫ2) j1 ± iǫ

√
1− ǫ2 j0.

Comparing the above two expressions for L(λ±) immediately yields the desired expressions

for (j0, j1) in terms of (g,X), namely

j1 =
1

1− ǫ2
(
− g−1∂σg + γ g−1(RX)g

)
,

j0 = −
γ

ǫ
√
1− ǫ2

g−1Xg.

If we fix γ = −ǫ(1 − ǫ2)3/2 then one can show that the full list of deformed Poisson

brackets (2.10) for the components of the current (j0, j1) follows from the above relations

and the following Poisson brackets for g and X,

{g1(σ), g2(σ′)}ǫ = 0, (2.27a)

{X1(σ), X2(σ
′)}ǫ =

[
C12, X2(σ)

]
δσσ′ , (2.27b)

{X1(σ), g2(σ
′)}ǫ = C12 g2(σ)δσσ′ . (2.27c)

To establish this result, one needs to use the fact that R is a non-split anti-symmetric

R-matrix. This enables in particular to derive the following useful intermediate results,

{(g−1RXg)1(σ), (g
−1RXg)2(σ

′)}ǫ = [C12, (g
−1Xg)2]δσσ′ ,

{(g−1∂σg)1(σ), (g
−1RXg)2(σ

′)}ǫ = −{(g−1RXg)1(σ), (g
−1∂σ′g)2(σ

′)}ǫ.

The final expressions for the components (j0, j1) in the deformed theory read

j1 = −
1

1− ǫ2 g
−1∂σg − ǫ

√
1− ǫ2 g−1(RX)g, (2.29a)

j0 = (1− ǫ2) g−1Xg. (2.29b)

– 10 –



J
H
E
P
1
1
(
2
0
1
3
)
1
9
2

We clearly see from these expressions that when ǫ→ 0 we obtain the relation j1 = −g−1∂σg

of the principal chiral model. On the other hand we also obtain j0 = g−1Xg which identifies

X with the component l0 = gj0g
−1 of the right invariant current in this limit. In particular,

we see that the Poisson algebra (2.8) remains undeformed when ǫ 6= 0 since (2.27) is exactly

of the same form. Note by contrast that we no longer have {j1(σ), g(σ′)}ǫ = 0 when ǫ 6= 0.

As previously anticipated, we explicitly observe the presence in (2.29) of a singularity

at ǫ = 1. In particular, if we insert the relations (2.29) into the Hamiltonian HPCM of

the principal chiral model we find that the resulting Hamiltonian of the deformed model is

singular at ǫ = 1.

Finally, the equations of motion for g and X are obtained by computing their Poisson

brackets with the Hamiltonian Hǫ. One finds

∂τgg
−1 = −(1− ǫ2)2

(
1− ǫ2

1− ǫ2R
2
)
X +

ǫ√
1− ǫ2

R(∂σgg
−1), (2.30a)

∂τX =
1

1− ǫ2∂σ(gj1g
−1)− ǫ

√
1− ǫ2

(
[R(gj1g

−1), X] + [gj1g
−1, RX]

)
. (2.30b)

2.5 Symmetry algebra

Having completely defined the deformed model in the Hamiltonian formalism, we now turn

to the description of its symmetries. In the principal chiral model, the generators of the

global FL×FR symmetry can be conveniently extracted from the leading expansion of the

monodromy at λ = 0 and λ = ∞, respectively. We will show that the symmetries of the

deformed model with ǫ 6= 0 can be similarly obtained by expanding the monodromy but at

the points λ = λ± and λ =∞.

Undeformed FR symmetry. To begin with, consider the expansion of the Lax matrix

at the point λ =∞. At leading order it is given simply by (2.6), namely

L(λ) = −λ−1j0 +O(λ−2).

Thus the expansion of the monodromy at λ = ∞ will start with the same local charges∫
dσj0 as in the undeformed theory. However, referring back to the deformed Poisson

algebra (2.10a) we see that it is natural to scale these charges for ǫ 6= 0 by defining

QR =
1

1− ǫ2
∫
dσj0. (2.31)

The charges (2.31) so defined then satisfy the same Poisson algebra at all values of the

deformation parameter ǫ. Moreover, these charges generate the same FR symmetry on the

group element g.

Deformed FL symmetry: charges. Next, we consider how the FL symmetry of the

principal chiral model is affected by the deformation. We shall do this in two steps. We

start by identifying the relevant conserved charges and subsequently proceed to determine

their Poisson algebra.

A convenient way of extracting these charges in the principal chiral model is to first

perform a gauge transformation by the principal chiral field and then read off the charges
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from the expansion of the gauge transformed monodromy at λ = 0. As explained above,

the double pole of the twist function at λ = 0 gets replaced in the deformed theory by the

two single poles at λ = λ± of the deformed twist function. In light of all this, a natural

prescription for extracting the corresponding charges in the deformed theory is to first

perform a gauge transformation by the group valued field g and consider the expansion of

the gauge transformed monodromy at the points λ = λ±.

We shall therefore consider the expansions of the gauge transformed Lax matrix Lg(λ)
around λ±. The first thing to note is that since the leading terms of these expansions are

non-zero, the extraction of the corresponding charges is far more involved. This is to be

contrasted with the situation in the principal chiral model where the expansion of the gauge

transformed Lax matrix at λ = 0 starts with Lg(λ) = −λl0+O(λ2). However, the important

point is that although Lg(λ±) are both non-zero, they each live in a Borel subalgebra of fC.

This will enable us to extract individual charges directly from the path ordered exponential

entering the definition of the gauge transformed monodromy at these points.

Specifically, if T (λ) is the monodromy, then the gauge transformed monodromy at

λ± reads

T g(λ±) = g(∞)T (λ±)g(−∞)−1 = P←−exp
[∫ ∞

−∞
dσLg(λ±)

]
.

Recalling the expressions (2.20) for the gauge transformed Lax matrix, namely

Lg(λ±) = ±γ
( n∑

i=1

hiH
i +
∑

α>0

e±αE
±α

)
,

we will show that the Cartan components of Lg(λ±) can be factored out of the above path

ordered exponential. For this, we will use the following identity, valid for any functions φi
and L±α of σ,

P ←−exp
[∫ σ2

σ1

dσ

( n∑

i=1

(∂σφi)H
i +
∑

α>0

L±αE
±α

)]
= exp

( n∑

i=1

φi(σ2)H
i

)

× P ←−exp
[∫ σ2

σ1

dσ
∑

α>0

e∓
∑n

i=1 α(H
i)φi(σ)L±αE

±α

]
exp

(
−

n∑

i=1

φi(σ1)H
i

)
. (2.32)

To apply this identity to the path ordered exponential of Lg(λ+) we let φi(σ) =∫ σ
−∞ dσ′γhi(σ

′) and Lα(σ) = γeα(σ). Then taking σ1 = −∞ and σ2 =∞ in (2.32) gives

T g(λ+) = exp

(
γ

∫ ∞

−∞
dσ

n∑

i=1

hi(σ)H
i

)
P←−exp

[
γ
∑

α>0

∫ ∞

−∞
dσ JEα (σ)E

α

]
, (2.33a)

where the quantity JEα (σ) is defined below. Similarly, to describe the path ordered ex-

ponential of Lg(λ−) we choose φi(σ) =
∫∞
σ dσ′γhi(σ

′) and L−α(σ) = −γe−α(σ). Letting

σ1 = −∞ and σ2 =∞ in (2.32) we obtain

T g(λ−) = P←−exp
[
−γ

∑

α>0

∫ ∞

−∞
dσ JE−α(σ)E

−α

]
exp

(
−γ
∫ ∞

−∞
dσ

n∑

i=1

hi(σ)H
i

)
, (2.33b)
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where the notation is as follows. For any positive root α > 0 we let

JHα (σ) =
n∑

i=1

α(H i)hi(σ), JE±α(σ) = e±α(σ) e
−γχα(σ)eγχα(∓∞). (2.34)

The function χα has the property that ∂σχα(σ) = JHα (σ) and is defined explicitly by

χα(σ) =
1

2

∫ ∞

−∞
dσ′ǫσσ′JHα (σ

′) =

∫ σ

−∞
dσ′JHα (σ

′)− 1

2

∫ ∞

−∞
dσ′JHα (σ

′).

Here we use the notation ǫσσ′ = ǫ(σ − σ′) which satisfies ∂σǫσσ′ = 2δσσ′ . The boundary

values of the function χα at ±∞ are

χα(±∞) = ±1

2

∫ ∞

−∞
dσ′JHα (σ

′). (2.35)

Note that the transformation hi(σ) → JHαi
(σ) is invertible since the symmetrized Cartan

matrix Bij is invertible, namely we can write hi(σ) =
∑n

j=1B
−1
ij JHαj

(σ) (see appendix A

for notations).

The advantage of the factorized form (2.33) is that the argument in the remaining

path ordered exponential on the right hand side is nilpotent. Therefore, this path ordered

exponential can now be evaluated explicitly in terms of exponentials of ordinary integrals.

In particular, this allows one to define charges QEα corresponding to each root α ∈ Φ,

the conservation of which then follows from the conservation of T g(λ±). Details of the

procedure for defining these charges can be found in appendix B. In the remainder of this

section, however, we will only be needing the conserved charges associated with the Cartan

generators and the simple roots. These are given by

∫ ∞

−∞
dσJHαi

(σ) and

∫ ∞

−∞
dσJE±αi

(σ)

where the αi, i = 1, . . . , n are the simple roots of fC.

Let us remark that the conservation of the quantities
∫∞
−∞ dσhi(σ) could also be shown

relatively straightforwardly from their definitions. Indeed, one can check that the projection

of both sides of the equation of motion (2.30b) for X onto h together with (2.21) and (2.22)

lead to the desired conservation property.

Deformed FL symmetry: algebra. In the remainder of this section we determine the

Poisson algebra of the charges identified above.

The Lax matrix Lg(λ±) as given in (2.25) only depends on the field X, whose expres-

sion (2.21) can be rewritten as

X =
n∑

j=1

ihjH
j +

i

2

∑

α>0

(eαE
+α + e−αE

−α). (2.36)

It is apparent from this that the Poisson bracket relations of the corresponding charges will

follow solely from the Kostant-Kirillov Poisson bracket (2.27b). Using equation (A.1), this
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Poisson bracket takes the following form

{X1(σ), X2(σ
′)}ǫ =

(
n∑

i,j=1

B−1
ij H

i ⊗
[
Hj , X(σ)

]

+
∑

α>0

(
Eα ⊗

[
E−α, X(σ)

]
+ E−α ⊗

[
Eα, X(σ)

])
)
δσσ′ .

Comparing coefficients on both sides for the different basis elements of fC in the first tensor

factor then gives

{hi(σ), X(σ′)}ǫ = −i
n∑

j=1

B−1
ij [Hj , X(σ)]δσσ′ , {e±α(σ), X(σ′)}ǫ = −2i[E∓α, X(σ)]δσσ′ .

(2.37)

Consider the first of these two relations. Using again (2.36) the comparison of the coeffi-

cients of Hj and E±αj on both sides leads respectively to

{hi(σ), hj(σ′)}ǫ = 0, {hi(σ), e±αj
(σ′)}ǫ = ∓ie±αj

(σ)δijδσσ′ .

The second of these relations then implies

{e−γχα(σ), e±αj
(σ′)}ǫ = ±

i

2
γ e±αj

(σ′)α(Hj)e−γχα(σ)ǫσσ′ .

Likewise, specialising the second relation in (2.37) to the simple root αi and comparing

coefficients of E−αj on both sides gives

{eαi
(σ), e−αj

(σ′)}ǫ = −4i ∂σχαi
(σ)δijδσσ′ .

This allows us to compute commutation relations between the charge densities JE±αi
(σ) and

JHαi
(σ), yielding

{
JEαi

(σ), JE−αj
(σ′)

}
ǫ
= −4i ∂σχαi

(σ)e−2γχαi
(σ)δijδσσ′

= 2i γ−1∂σ

(
e−2γχαi

(σ)
)
δijδσσ′ , (2.38a)

{JHαi
(σ), JE±αj

(σ′)}ǫ = ∓iBijJE±αj
(σ′)δσσ′ . (2.38b)

We now define the integrated charges from the above densities, namely

QHαi
= d−1

i

∫ ∞

−∞
dσJHαi

(σ), QE±αi
= Di

∫ ∞

−∞
dσJE±αi

(σ), (2.39)

where we define the notational shorthand

Di =

(
γ

4 sinh(diγ)

) 1
2

. (2.40)
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These normalisations in the charges QE±αi
have been introduced for convenience (c.f. [2]).

The Poisson brackets (2.38) for the densities then lead to

i{QHαi
, QHαj

}ǫ = 0, (2.41a)

i
{
QE+αi

, QE−αj

}
ǫ
= δij

qdiQ
H
αi − q−diQH

αi

qdi − q−di , (2.41b)

i{QHαi
, QE±αj

}ǫ = ±AijQE±αj
. (2.41c)

Here we have made use of the values (2.35) and introduced the new parameter

q = eγ = exp
(
−ǫ(1− ǫ2) 3

2

)
.

Furthermore, the charges QEαi
also satisfy certain q-Poisson-Serre relations. To write these

down we introduce a q-analogue of the deformed Poisson bracket as follows. We say that

QEαi
defined in (2.39) is associated with the simple root αi. Let Aα and Aβ denote charges

associated with any pair of positive roots α, β > 0 and define their q-Poisson bracket as

(
ad{·,·}q ǫ

Aα
)
(Aβ) := {Aα, Aβ}q ǫ := {Aα, Aβ}ǫ + iγ (α, β)AαAβ . (2.42)

If α + β is a root then we regard the resulting quantity {Aα, Aβ}q ǫ as being associated

with this root. The operator
(
ad{·,·}q ǫ

Aα
)n

may then be defined recursively for any n ≥ 1.

Using this notation, the q-Poisson-Serre relations can be written succinctly as follows

(
ad{·,·}q ǫ

QEαi

)1−Aij (QEαj
) = 0. (2.43)

This identity is proved for all classical Lie algebras f in appendix B.

Finally, the charges (2.39) have the following behaviour under complex conjugation

Q
H
αi

= QHαi
, Q

E
αi

= q−diQ
H
αiQE−αi

, (2.44)

which is easily seen to preserve the relations (2.41). The q-Poisson-Serre relations (2.43)

are also mapped to the corresponding relations for negative roots. These take the form

(
ad{·,·}

q−1 ǫ
QE−αi

)1−Aij (QE−αj
) = 0,

where similarly to (2.42) we define the q-Poisson bracket of any two charges A−α and A−β

associated with the negative roots −α,−β < 0 as

(
ad{·,·}

q−1 ǫ
A−α

)
(A−β) := {A−α, A−β}q−1 ǫ := {A−α, A−β}ǫ − iγ (α, β)A−αA−β .

Interpretation as semiclassical limit of Uq̂(f). The algebra of the deformed FL
symmetry just obtained bears a strikingly resemblance with the relations of the quantum

group Uq(f), but where the commutators are replaced by Poisson brackets. To close the

discussion on symmetries, we will show that the Poisson algebra generated by the charges

QHαi
and QE±αi

, subject to the relations (2.41), (2.43) and (2.44), coincides exactly with the

semiclassical limit ~→ 0 of the compact real form Uq̂(f) of the quantum group Uq̂(f
C) where
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q̂ = q~. The resulting Poisson algebra, which we shall denote UP
q (f), gives a one-parameter

deformation of the Poisson algebra corresponding to the Lie algebra f. Similar semiclassical

limits of finite dimensional quantum groups were considered in [11–13] and the case of the

quantum affine algebra Uq̂( ŝl2) in [14].

Recall that Uq̂(f
C) is generated by Ĥi, Êi, F̂i for i = 1, . . . , n = rk fC subject to

the relations

[Êi, F̂j ] = δij
K̂i − K̂−1

i

q̂di − q̂−di , [Ĥi, Ĥj ] = 0, (2.45a)

[Ĥi, Êj ] = AijÊj , [Ĥi, F̂j ] = −AijF̂j , (2.45b)

where K̂i = q̂diĤi , together with the q̂-Serre relations which may be written as [15]

(
ad[·,·]q̂ Êi

)1−Aij (Êj) = 0,
(
ad[·,·]

q̂−1
F̂i
)1−Aij (F̂j) = 0. (2.46)

Here we have introduced the q̂-analog of the commutator along with the corresponding

q̂-analog of the adjoint action as

(
ad[·,·]

q̂±1
Âα
)
(Âβ) := [Âα, Âβ ]q̂±1 := ÂαÂβ − q̂±(α,β)ÂβÂα, (2.47)

where the + (respectively −) sign is used if the roots α, β are positive (respectively

negative).

There are many possible Hopf algebra structures on Uq(f
C) corresponding to different

choices of coproducts. The real structures on Uq(f
C) have been classified in [16] with respect

to the standard coproduct [17], but other choices of coproducts lead to alternative reality

conditions [18]. For our purposes we shall consider the coproduct defined on the generators

as [15, 19]

∆Êi = Êi⊗1+ K̂−1
i ⊗ Êi, ∆F̂i = F̂i⊗ K̂i+1⊗ F̂i, ∆Ĥi = Ĥi⊗1+1⊗ Ĥi. (2.48)

The compact real form Uq̂(f) of Uq̂(f
C) then corresponds to the condition q̂ ∈ R and the

following choice of ∗-involution on Uq̂(f
C) [19]

K̂∗
i = K̂i, Ê∗

i = K̂−1
i F̂i, F̂ ∗

i = ÊiK̂i. (2.49)

To take the semiclassical limit ~→ 0 of the above relations we suppose the generators

Ĥi, Êi and F̂i have the following leading order behaviour in this limit

~Ĥi −→ QHαi
, ~Êi −→

(
sinh(diγ)

diγ

) 1
2

QEαi
, ~F̂i −→

(
sinh(diγ)

diγ

) 1
2

QE−αi
.

Moreover, we also assume the leading behaviour of the commutator to correspond to the

deformed Poisson bracket (2.9), namely

1

~
[·, ·] −→ i{·, ·}ǫ.
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It is now easy to see that the relations (2.45b) reproduce (2.41c) in the limit ~ → 0.

Furthermore, owing to the normalisations of the generators Êi and F̂i in this limit we

recover also (2.41b) from the first relation in (2.45a).

Using the relation q̂ = q~, we find that the leading behaviour of the q̂-

commutator (2.47) is given by the q-Poisson bracket (2.42), that is

1

~
[·, ·]q̂±1 −→ i{·, ·}q±1 ǫ.

It directly follows from this that the semiclassical limit of the q̂-Serre relations (2.46) is

exactly the q-Poisson-Serre relations (2.43). The reality conditions (2.49) also lead to (2.44)

in this limit.

Finally, taking the semiclassical limit of the coproduct (2.48) we obtain

∆QEαi
= QEαi

⊗ 1 + q−diQ
H
αi ⊗QEαi

, (2.50a)

∆QE−αi
= QE−αi

⊗ qdiQH
αi + 1⊗QE−αi

, (2.50b)

∆QHαi
= QHαi

⊗ 1 + 1⊗QHαi
. (2.50c)

Equipped with this choice of coproduct, the real Poisson algebra UP
q (f), defined by the

relations (2.41), (2.43) and the real structure (2.44) on the charges QHαi
and QE±αi

, acquires

the structure of a real Poisson-Hopf algebra.

2.6 Yang-Baxter σ-model

In this subsection, we will show that the deformed model coincides with the Yang-Baxter

σ-model introduced by Klimč́ık in [4, 5]. For this we need to perform the inverse Legendre

transform from the Hamiltonian formalism to the Lagrangian formalism.

Lagrangian. The inverse Legendre transform is given by

L = κ(∂τgg
−1, X)− hǫ (2.51)

where the Hamiltonian density hǫ = hPCM , defined by equation (2.2), can be re-expressed

in terms of the light-cone components j± = j0 ± j1 of the current as

hǫ = −1

4
κ(j+, j+)−

1

4
κ(j−, j−). (2.52)

As usual, to rewrite (2.51) in terms of Lagrangian fields we begin by expressing X in terms

of g and its time derivative. This can be done using the equation of motion (2.30a). It

turns out to be convenient to express everything in terms of the following variable

η =
ǫ√

1− ǫ2
. (2.53)

Noting that 1 ± ηR is invertible since R is a real skew-symmetric operator and therefore

has only imaginary eigenvalues, one obtains

X = −1

2
(1 + η2)2

(
1

1− ηR∂−gg
−1 +

1

1 + ηR
∂+gg

−1

)
(2.54)
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with ∂± = ∂τ ± ∂σ. Using this result we may also express j± in terms of Lagrangian fields.

Starting from equations (2.29) we have

j± = ∓ 1

1− ǫ2 g
−1∂σg + (1− ǫ2)g−1(1∓ ηR)Xg. (2.55)

Then combining equations (2.55) and (2.54) we find

gj±g
−1 = − 1

1− ǫ2
1

1± ηR∂±gg
−1. (2.56)

The last step consists in substituting (2.54) and (2.56) into the expression (2.51) for the

Lagrangian. This yields the Lagrangian of the deformed model,

L = −1

2
κ

(
∂+gg

−1,
(1 + η2)2

1− ηR ∂−gg
−1

)
(2.57)

where the operator R is the non-split R-matrix defined by equation (2.22) and η is ex-

pressed in terms of the deformation parameter ǫ as (2.53). This corresponds to the Yang-

Baxter σ-model defined by Klimč́ık in [4, 5]. Finally, note that when ǫ tends to zero the

Lagrangian (2.57) reduces to that of the principal chiral model.

Comments. To close our discussion on the deformation of the principal chiral model,

we compare our definition of the field g given in section 2.3 with the corresponding defini-

tion in [5].

Consider the extended solution Ψ(λ, σ) of the principal chiral model, which by defini-

tion solves the auxiliary linear problem

∂σΨ(λ)Ψ(λ)−1 = L(λ), Ψ(λ, 0) = 1.

Since the Lax matrix (2.4) has the property that L(0) = j1 = −g−1∂σg, it follows that the

principal chiral field g (or rather its inverse) can be recovered from the extended solution

evaluated at λ = 0, namely g−1 = Ψ(0). Similarly, it was shown in [5] that the field g of the

Yang-Baxter σ-model can also be retrieved from the same extended solution Ψ(λ) of the

principal chiral model, but evaluated instead at the special point λ = iη. More precisely,

g−1 coincides with the element of the compact subgroup F in the Iwasawa decomposition

of Ψ(iη) ∈ FC. To see why this definition agrees with ours, note first that iη corresponds

to the pole λ+. Letting Ψ(iη) = g−1an be the Iwasawa decomposition, where g and an

respectively take values in F and the Borel subgroup B+ = exp b+ ⊂ FC, we may then write

L(iη) = ∂σΨ(iη)Ψ(iη)−1 = ∂σ(g
−1)g + g−1

(
∂σ(an)(an)

−1
)
g.

But this agrees precisely with (2.26) which can be rewritten as

L(iη) = ∂σ(g
−1)g + g−1

(
γ(R− i)X

)
g.

In particular, we have the identification ∂σ(an)(an)
−1 = γ(R− i)X as elements in b+.

It is now apparent that one of the virtues of our approach lies in the identification of

the special points ±iη with the poles of the twist function. This will be fully exploited in

the next section to extend the above analysis and construct an integrable deformation of

coset σ-models.
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3 Deforming symmetric space σ-models

In this section we discuss the deformation of symmetric space σ-models, following a very

similar approach to the one developed in the previous section for deforming the principal

chiral model. For this reason, we insist more on the new aspects related to the case at

hand and omit details which are similar to the previous case. We use the conventions and

notations of [7].

3.1 Symmetric space σ-models

Hamiltonian and Lax matrix. Let F be a compact Lie group with Lie algebra f. We

equip f with a Z2-automorphism σ so that σ2 = id. This induces the usual decomposition

f = f(0)⊕f(1) into the eigenspaces of σ where f(0) = g is a Lie subalgebra with corresponding

Lie group G = exp g. Let P0 and P1 denote the projection operators onto the respective

subspaces f(0) and f(1) relative to this decomposition.

We consider the coset σ-model on the symmetric space F/G. It is described by a pair

of fields A and Π valued in f. The Poisson structure on the graded components A(0), A(1)

and Π(0),Π(1) of these fields reads

{A(i)
1
(σ), A

(j)
2

(σ′)} = 0, (3.1a)

{A(i)
1
(σ),Π

(j)
2

(σ′)} =
[
C

(ii)
12
, A

(i+j)
2

(σ)
]
δσσ′ − C(ii)

12
δijδ

′
σσ′ , (3.1b)

{Π(i)
1
(σ),Π

(j)
2

(σ′)} =
[
C

(ii)
12
,Π

(i+j)
2

(σ)
]
δσσ′ . (3.1c)

Here C
(ii)
12

are the graded components of the Casimir (A.1) with respect to the automor-

phism σ.

The Hamiltonian of the coset σ-model is

Hcoset =

∫ ∞

−∞
dσ
[
T++ + T−− + κ(A(0),Π(0)) + κ(ℓ,Π(0))

]
(3.2)

where T±± = −1
4κ(A

(1)
± , A

(1)
± ) and A

(1)
± = Π(1) ∓ A(1). The field ℓ is a Lagrange multiplier

associated with the constraint Π(0) corresponding to the coset gauge invariance.

The integrability of this model is encoded at the Hamiltonian level in the Lax ma-

trix [20]

L(λ) = A(0) +
1

2
(λ−1 + λ)A(1) +

1

2
(1− λ2)Π(0) +

1

2
(λ−1 − λ)Π(1). (3.3)

It has the following property with respect to the automorphism

L(−λ) = σ
(
L(λ)

)
, (3.4)

which amounts to saying that L(λ) takes values in the twisted loop algebra f̂σ.
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Symmetry algebra. The coset σ-model on F/G is invariant under a global FL symme-

try. The corresponding conserved charges may be extracted from the leading behaviour of

the monodromy matrix at the point λ = 1. Indeed, the expansion of the Lax matrix at

this point reads

L(λ) = A− (λ− 1)Π +O
(
(λ− 1)2

)
. (3.5)

If we introduce the group valued field g through the relation A = −g−1∂σg, and on which

the FL symmetry acts as g 7→ ULg, then the gauged transformed Lax matrix Lg(λ) previ-
ously defined in (2.7) satisfies

Lg(λ) = (λ− 1)X +O
(
(λ− 1)2

)
(3.6)

with X = −gΠg−1. The coefficient of λ − 1 in the expansion of the gauge transformed

monodromy matrix then yields the generator of the FL symmetry, namely QL =
∫
dσX.

3.2 Setting up the deformation

Poisson bracket. Following the same strategy as for the principal chiral model, we will

deform the Poisson bracket {·, ·} of (A,Π) in (3.1) by adding to it the generalized Faddeev-

Reshetikhin Poisson bracket {·, ·}′ introduced recently in [7]. Since these two brackets are

compatible, any linear combination still defines a Poisson bracket. We therefore set

{·, ·}ǫ := {·, ·}+ ǫ2{·, ·}′ (3.7)

where ǫ is a positive real deformation parameter. The explicit form of this Poisson bracket

on the fields A and Π is given in appendix D.

Lax matrix and Hamiltonian. We shall suppose, as we did in the principal chiral

model case, that the dependence of the Lax matrix L(λ) on the fields (A,Π) does not

change with ǫ. Moreover, we also impose that the dynamics of the fields (A,Π) remains

the same as we turn on the deformation. These two requirements ensure that the dynamics

of the deformed model remains integrable for ǫ 6= 0.

Therefore, the HamiltonianHǫ, which generates the same dynamics on the fields (A,Π)

as the coset σ-model but with respect to the interpolating bracket {·, ·}ǫ, should satisfy

{Hǫ,L}ǫ = {Hcoset,L}. (3.8)

Postulating a general quadratic ansatz for Hǫ we find the unique solution of this equation

to be

Hǫ = Hcoset + ǫ2
∫
dσ κ

(
Π(0),Π(0)

)
. (3.9)

Plugging (3.9) directly into (3.8) and using the fact that Π(0) has a vanishing generalised

Faddeev-Reshetikhin Poisson bracket with every function of (A,Π), we see that the prop-

erty (3.8) boils down to the following relation

{Hcoset,L}′ =
{
−
∫
dσ κ

(
Π(0),Π(0)

)
,L
}
,
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which can be checked directly. Note that the Hamiltonian (3.9) satisfies the equation (3.8)

strongly. That is to say, the equations of motion generated by the original Hamiltonian

Hcoset with respect to the original Poisson bracket {·, ·} are reproduced exactly, including

terms proportional to the Hamiltonian constraint Π(0).

3.3 Defining the group valued field

So far we have merely discussed the dynamics of the coset σ-model with respect to the

deformed Poisson bracket at the level of the fields (A,Π). Following our procedure in the

case of the principal chiral model, we anticipate the group valued field g in the deformed

theory to correspond to the parameter of a gauge transformation of some sort. In fact, it

is clear from the discussion leading to equation (3.6) that the field g of the coset σ-model

may be described as the parameter of a gauge transformation sending the Lax matrix L(1)
at λ = 1 to zero. To see how such a definition may be deformed when ǫ 6= 0, we turn to

the study of the twist function.

Deformed twist function and its poles. As before, the twist function of the deformed

Poisson bracket can be expressed in terms of the twist functions of the two compatible

Poisson brackets, namely [7]

ϕσ(λ) =
4λ

(1− λ2)2 , ϕgFR(λ) =
1

λ
. (3.10)

The twist of the deformed model is then defined through the relation

ϕ−1
ǫ = ϕ−1

σ + ǫ2ϕ−1
gFR.

Substituting the definitions (3.10) into this relation we find this twist function to be

ϕǫ(λ) =
4λ

λ4 + (4ǫ2 − 2)λ2 + 1
.

As we learned from the principal chiral model case, the poles of ϕǫ will play an important

role in defining the field g in the deformed theory as well as in extracting symmetry gen-

erators of the latter. In the present case we find a bifurcation in the behaviour of these

poles at the special value ǫ = 1. Specifically, for 0 ≤ ǫ < 1, if we define an angle 0 ≤ θ < π
2

by letting

sin θ = ǫ

then the four poles λ± and λ−1
± of the twist function ϕǫ are located on the unit circle, with

λ± := ±eiθ. (3.11)

The two initial double poles of ϕ0 at λ = ±1 (i.e. θ = 0) therefore split into four distinct

simple poles of ϕǫ as we turn on the deformation parameter ǫ in the range 0 < ǫ < 1. But

as ǫ approaches the value 1 (i.e. θ = π
2 ), the four poles degenerate once again into two

points at λ = ±i. The behaviour of these poles is depicted in figure 1. As we increase

ǫ further, for ǫ > 1 we find that these double poles split once more into single poles and

move off along the imaginary axis.
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λ+

λ−

1−1

i

−i

λ−1
+

λ−1
−

Figure 1. The four poles λ±, λ
−1
± of the twist function ϕǫ(λ) for ǫ ∈ [0, 1].

Since we are interested in deforming away from the coset σ-model, we shall focus on

the region 0 ≤ ǫ < 1. We will discuss briefly what happens at the special value ǫ = 1 in

a moment.

Definition of g. We would now like to generalise the procedure used in the case of

the principal chiral model for defining the field g at non-zero values of the deformation

parameter ǫ 6= 0. The novelty here is that the deformed twist function has four simple

poles λ±1
+ and λ±1

− at generic values of ǫ 6= 0, which degenerate in the limit ǫ → 0 to the

pair of double poles at λ = ±1, respectively. However, since the field g of the coset σ-model

is extracted from the point λ = 1 alone, it is natural to focus only on the points λ±1
+ for

the purpose of extracting the field g at ǫ 6= 0.

Owing to the reality conditions A† = −A and Π† = −Π we have for the Lax matrix

L(λ)† = (A(0))†+
1

2
(λ

−1
+λ)(A(1))†+

1

2
(1−λ2)(Π(0))†+

1

2
(λ

−1−λ)(Π(1))† = −L(λ). (3.12)

In particular, this means that L(λ+)† = −L(λ−1
+ ). By the exact same reasoning as in

section 2.3 we may argue here the existence of a field g ∈ F with the property that the

gauge transformation of the Lax matrix Lg(λ) := ∂σgg
−1 + gL(λ)g−1 satisfies

(i) Lg(λ±1
+ ) ∈ b±,

(ii) Lg(λ+)
∣∣
h
= −Lg(λ−1

+ )
∣∣
h
.

(3.13)

The field g so defined has the required property that it reduces to the field of the coset

σ-model in the limit ǫ → 0. Indeed, in this limit the pair of points λ±1
+ degenerate to the

single point λ = 1 so that the properties (i) and (ii) together imply that Lg(1) = 0, which

is the defining condition of the coset σ-model field.

Definition of the conjugate momentum. Next, we define a field X taking values in

f which will play the role of the conjugate momentum of g. In exact analogy with the

– 22 –



J
H
E
P
1
1
(
2
0
1
3
)
1
9
2

principal chiral case, we define this field as

X =
i

2γ

(
Lg(λ+)− Lg(λ−1

+ )
)
, (3.14)

where γ is a real normalisation, the dependence of which on the deformation parameter

ǫ will be fixed later. The reality condition (3.12) on the Lax matrix leads to X† = −X,

therefore ensuring that the field X takes values in f, as desired.

Introducing the same non-split R-matrix as in (2.22) we may then also invert the

relation (3.14) to express the value of the Lax matrix at the points λ±1
+ explicitly as

Lg(λ±1
+ ) = γ(R∓ i)X. (3.15)

Behaviour at ǫ = 1. It turns out that the deformation of the coset σ-model that we

consider here will only be valid in the range 0 ≤ ǫ < 1. To understand what happens

at ǫ = 1, note that the poles of the twist function meet again in pairs λ = ±i. In a

neighbourhood of the point λ = i the Lax matrix (3.3) reads

L(λ) = A(0) +Π(0) − iΠ(1) − i(λ− i)(Π(0) + iA(1)) +O
(
(λ− i)2

)
. (3.16)

Using the deformed Poisson bracket given in appendix D one easily checks that

the quantities

Â = A(0) +Π(0) − iΠ(1), Π̂ = Π(0) + iA(1)

have Poisson brackets at ǫ = 1 which are identical to the undeformed Poisson brackets of

the coset σ-model, namely

{Â1(σ), Â2(σ
′)}1 = 0, {Π̂1(σ), Π̂2(σ

′)}1 =
[
C12, Π̂2(σ)

]
δσσ′ ,

{Π̂1(σ), Â2(σ
′)}1 =

[
C12, Â2(σ)

]
δσσ′ − C12δ

′
σσ′ .

Notice that equation (3.16) is then completely analogous to equation (3.5) which gave

the expansion of the Lax matrix around λ = 1. One can show that the model at ǫ = 1

corresponds again to an undeformed coset σ-model. However, its fields (Â, Π̂) no longer

take values in the compact real form f, but instead satisfy the modified reality condition

Â† = −σ(Â), Π̂† = −σ(Π̂). In this case, the group valued field should no longer be taken

in the compact Lie group F .

3.4 The deformed model

In order to describe the dynamics of the Hamiltonian fields (g,X) we need to relate these

to the fields (A(0,1),Π(0,1)) used up until now. This is done by expressing the Lax matrix

at the points λ±1
+ = e±iθ in two separate ways. On the one hand, the definition of the

fields (g,X) enable us to write the gauge transformation of the Lax matrix with parameter

g ∈ F in terms of the field X ∈ f. Specifically, we have

L(e±iθ) = −g−1∂σg + γ g−1
(
(R∓ i)X

)
g. (3.17)
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On the other hand, the value of the Lax matrix at these points may also be determined

directly from its definition as

L(e±iθ) = A(0) + cos θ A(1) ∓ ie±iθ sin θΠ(0) ∓ i sin θΠ(1). (3.18)

Therefore, equating the two expressions (3.17) and (3.18) we find

A(0) + cos θ A(1) ∓ ie±iθ sin θΠ(0) ∓ i sin θΠ(1) = −g−1∂σg + γ g−1
(
(R∓ i)X

)
g.

Taking the sum and the difference of both sides then yields

A(0) + cos θ A(1) + sin2 θΠ(0) = −g−1∂σg + γ g−1(RX)g,

sin θΠ(1) + cos θ sin θΠ(0) = γ g−1Xg.

To extract the individual fields A(0,1) and Π(0,1) from these expressions we should project

onto the graded subspaces f(0) and f(1) of the Lie algebra f using the corresponding projec-

tion operators P0 and P1. This gives

A(0) = P0

(
− g−1∂σg + γ g−1

(
(R− η)X

)
g
)
, (3.19a)

A(1) =
√
1 + η2P1

(
− g−1∂σg + γ g−1(RX)g

)
, (3.19b)

Π(0) = γη−1(1 + η2)P0(g
−1Xg), (3.19c)

Π(1) = γη−1
√
1 + η2 P1(g

−1Xg), (3.19d)

where we have defined the variable

η = tan θ =
ǫ√

1− ǫ2
.

Quite remarkably, one can check that these expressions satisfy the deformed Poisson algebra

given in appendix D exactly, if we let

γ = −ǫ
√
1− ǫ2 = − η

1 + η2
(3.20)

and require the fields X and g to satisfy the exact same Poisson bracket relations as in the

principal chiral model, namely (2.27).

3.5 Deformed coset σ-model action

In this section, we perform the inverse Legendre transform to derive the action correspond-

ing to our model.

Lagrangian. The analysis proceeds in exactly the same way as in subsection 2.6, except

for the fact that there is now a constraint. We start with the definition of the inverse

Legendre transform

L = κ(∂τgg
−1, X)− hǫ = κ

(
(g−1∂τg)

(1), (g−1Xg)(1)
)
− T++ − T−−. (3.21)

Here we have used equations (3.9) and (3.2). Furthermore, we have imposed the constraint

Π(0) ≃ 0 and made use of its explicit expression (3.19c).
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In order to relate the field X to (g−1∂τg)
(1), we compute the time evolution of g. First

of all, the fields A
(1)
± entering the expression (3.2) for the Hamiltonian can be written in

terms of X and g using the relations (3.19),

A
(1)
± =

−1√
1 + η2

P1

(
g−1Xg ∓ ηg−1RXg

)
±
√
1 + η2(g−1∂σg)

(1). (3.22)

This allows us to express the Hamiltonian (3.9) in terms of the fields g and X. We may

then compute the time evolution of the field g as g−1∂τg = g−1{Hǫ, g}ǫ. Extracting the

field X from this we find

g−1Xg ≃ (g−1Xg)(1) = −1 + η2

2

(
1

1− ηP1 ◦Rg
(g−1∂−g)

(1) +
1

1 + ηP1 ◦Rg
(g−1∂+g)

(1)

)
.

(3.23)

Here we have made use once again of the constraint Π(0) ≃ 0. We have also introduced

the operator

Rg := Ad g−1 ◦R ◦Ad g,

which, like R itself, is a non-split solution of the mCYBE (2.24). Note that 1± ηP1 ◦Rg is
invertible on f(1) since it is equal to 1± ηP1 ◦Rg ◦ P1 and P1 ◦Rg ◦ P1 is skew-symmetric.

Next, we should also eliminate the field X from T±± in favour of the Lagrangian field

g−1∂τg. For this, we first combine equations (3.22) and (3.23) to get

A
(1)
± =

√
1 + η2

1

1± ηP1 ◦Rg
(g−1∂±g)

(1). (3.24)

Then, plugging equations (3.23) and (3.24) in the inverse Legendre transform (3.21) yields

L = −1

2
κ

(
(g−1∂+g)

(1),
1 + η2

1− ηRg ◦ P1
(g−1∂−g)

(1)

)
. (3.25)

In the limit ǫ→ 0, which corresponds to η → 0, one correctly recovers the usual Lagrangian

of the F/G coset σ-model.

Gauge invariance and field equations. One can check the gauge invariance of the

deformed model directly at Lagrangian level. Indeed, under the transformation

g(τ, σ) 7→ g(τ, σ)h(τ, σ), h(τ, σ) ∈ G. (3.26)

one has the following

(g−1∂±g)
(1) 7→ Ad(h)−1(g−1∂±g)

(1), Rg 7→ Ad(h)−1 ◦Rg ◦Ad(h).

The gauge invariance of the action corresponding to (3.25) under (3.26) immediately follows

from this. In particular, for all values of the deformation parameter η, the physical degrees

of freedom belong to the coset F/G. One may also check that the field equations take the

same form as in the coset σ-model, that is
(
∂+B

(1)
− +

[
B

(0)
+ , B

(1)
−

])
+
(
∂−B

(1)
+ +

[
B

(0)
− , B

(1)
+

])
= 0,
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where the fields B± are deformations of g−1∂±g defined as1

B± =
1

1± ηRg ◦ P1
(g−1∂±g). (3.27)

Moreover, provided the field equations are satisfied, the fields A± = B
(0)
± +

√
1 + η2B

(1)
±

satisfy the zero curvature equation

∂+A− − ∂−A+ + [A+, A−] = 0. (3.28)

The Lax pair associated with the model just defined may therefore be written as

L±(λ) = A
(0)
± + λ±1A

(1)
± .

3.6 Symmetry algebra

To end this section we discuss the effect of the deformation on the global FL symmetry of

the coset σ-model.

Recall that in the case of the principal chiral model, the derivation of the Poisson

algebra (2.41), (2.43) and the reality conditions (2.44) satisfied by the generators of the

deformed FL symmetry relied solely on the Poisson bracket of the field X with itself

in (2.27b), along with the special form (2.25) of the Lax matrix at the pair of poles λ± of

the twist function. The situation in the present case is exactly the same since the Poisson

brackets (2.27) are identical and the Lax matrix at the special points λ±1
+ takes the similar

form (3.15). The analysis therefore goes through unchanged in the case at hand, the only

difference being the dependence of the parameter γ on ǫ, resulting in a different expression

for q. Note also that the corresponding charges are gauge invariant. This is so because

they are built in terms of X, which has vanishing Poisson bracket with Π(0).

The deformed coset σ-model therefore admits a classical UP
q (f) symmetry where the

parameter q is now given by

q = eγ = exp
(
−ǫ
√
1− ǫ2

)
.

4 Deformed SU(2)/U(1) coset σ-model

As recalled in the introduction, the Lagrangian of the Yang-Baxter σ-model (2.57) on a

compact Lie group F reduces in the special case of F = SU(2) to that of the squashed

sphere σ-model. As its name suggests, the target space of the latter is a certain deformation

of the 3-sphere SU(2) ≃ S3. More generally, however, the deformation is not purely metric

since the presence of the R-matrix in the Lagrangian gives rise to a torsion term as well [5].

For similar reasons, the Lagrangian (3.25) of the deformed coset σ-model will corre-

spond not only to a deformation of the metric of the coset F/G, but also to the intro-

duction of torsion in the deformed geometry. In the present section we consider the La-

grangian (3.25) in the simplest case, which corresponds to the symmetric space SU(2)/U(1).

In this example, since the coset is two dimensional there is no torsion.

1Using the fact that 1 ± ηP1 ◦ Rg is invertible on f(1) it follows that 1 ± ηRg ◦ P1 is invertible on f.

Explicitly we have 1
1±ηRg◦P1

= P0 + (1∓ ηP0 ◦Rg)
1

1±ηP1◦Rg

P1.
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Gauge fixed action and equations of motion. To begin with we set up some notation.

We write the field g ∈ SU(2) explicitly as

g =

(
z1 −z̄2
z2 z̄1

)
, |z1|2 + |z2|2 = 1.

Correspondingly, we write a generic element M in the Lie algebra su(2) as

M =

(
α −β̄
β −α

)
, ᾱ = −α. (4.1)

The anti-linear anti-involutionM 7→M † is defined here in terms of conjugation and matrix

transposition as M † = M̄⊤. The basis generators (A.4) are proportional to the Pauli

matrices, explicitly T = iσ3, B = iσ1/
√
2 and C = iσ2/

√
2. The Z2-automorphism σ of

su(2) is taken to be σ(M) = −σ1M⊤σ1, so that the projectors onto the grade 0 and grade

1 parts of M are respectively given by

P0M =

(
α 0

0 −α

)
, P1M =

(
0 −β̄
β 0

)
.

Finally, the action of the R-matrix defined in (2.22) on the generic element (4.1) of

su(2) reads

RM =

(
0 iβ̄

iβ 0

)
.

To evaluate the Lagrangian (3.25) more explicitly we need to invert the operator 1−
ηRg ◦ P1. A short calculation leads to

1

1− ηRg ◦ P1
M =

(
α′ −β̄′
β′ −α′

)
,

β′ =
β

1− iη(|z1|2 − |z2|2)
, α′ = α+ iη(β′z̄1z̄2 + β̄′z1z2).

In the case at hand, the model described by the Lagrangian (3.25) is invariant under the

right U(1) gauge transformations

g(σ, τ) 7→ g(σ, τ)

(
eiθ(σ,τ) 0

0 e−iθ(σ,τ)

)
.

We choose to fix this gauge invariance by requiring the component field z1(σ, τ) to be real

and positive and parameterise the remaining fields using stereographic coordinates on the

sphere. Hence, we take

g =
1√

1 + ψ̄ψ

(
1 −ψ̄
ψ 1

)
.
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In terms of the complex field ψ, the action associated with the Lagrangian (3.25) then

takes the form

S[ψ, ψ̄] =
1 + η2

2

∫
dτdσ

∂−ψ∂+ψ̄ + ∂+ψ∂−ψ̄

(1 + ψ̄ψ)2 + η2(1− ψ̄ψ)2 . (4.2)

A term which is skew-symmetric in the light-cone coordinates has been omitted here, since

it does not participate in the field equation, which reads

∂+∂−ψ − 2
1 + ψ̄ψ − η2(1− ψ̄ψ)

(1 + ψ̄ψ)2 + η2(1− ψ̄ψ)2 ψ̄∂+ψ∂−ψ = 0. (4.3)

Zero curvature equation. In the chosen gauge, we find that the fields (3.27) entering

the equations of motion are given by

B± =

(
a± −b̄±
b± −a±

)
,

b± =
∂±ψ

1 + ψ̄ψ ± iη(1− ψ̄ψ) , a± =
1

2
(1∓ iη)ψ̄b± −

1

2
(1± iη)ψb̄±.

In terms of these quantities, the field equation (4.3) reduces to the covariant conservation

equation

(∂+b− − 2a+b−) + (∂−b+ − 2a−b+) = 0.

Moreover, provided the field equation is satisfied, one has

(∂+b− − 2a+b−)− (∂−b+ − 2a−b+) = 0,

∂+a− − ∂−a+ − (1 + η2)(b̄+b− − b̄−b+) = 0,

corresponding to the projections on the two gradings of the zero curvature equation (3.28).

Remarks. The action (4.2) has the following interesting property. It interpolates between

the coset σ-model on the compact symmetric space SU(2)/U(1) at η = 0 and the coset

σ-model on the non-compact symmetric space SU(1, 1)/U(1) at η =∞. This is reminiscent

of the discussion at the end of the subsection 3.3. Indeed, the limit η →∞ corresponds to

ǫ→ 1 and we have shown that at this special point, the model constructed corresponds to

an undeformed coset σ-model.

We end this section by computing, for generic values of η, the Ricci tensor associated

with the metric gij appearing in the action (4.2). Its only non-vanishing component is

given by

Rψψ̄ =
∂

∂ψ

∂

∂ψ̄
ln((1 + ψ̄ψ)2 + η2(1− ψ̄ψ)2)

=
2(1− η2)

(1 + ψ̄ψ)2 + η2(1− ψ̄ψ)2 +
16η2ψ̄ψ

((1 + ψ̄ψ)2 + η2(1− ψ̄ψ)2)2 . (4.4)

The second term in (4.4) vanishes in both limits η → 0 and η → ∞, at which we have

Rij = ±4gij respectively. It is only in these two limits that one recovers an Einstein

manifold, with opposite curvatures. It is well-known that the on-shell one-loop divergence

in such a model is proportional to the Ricci tensor [21, 22]. In the case at hand, such a

divergence can be reabsorbed into a renormalization of an overall factor in front of the action

as in the coset σ-model case and into a renormalization of the deformation parameter η.
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5 Conclusion

In this article we introduced a procedure for constructing integrable deformations of prin-

cipal chiral models and symmetric space σ-models associated with compact Lie groups. It

is worth emphasising that in this construction, the integrability of the deformed models

is obvious from the very outset. Indeed, the deformation originates from the choice of a

second Poisson bracket which is compatible with the original one. As such, the generalized

Faddeev-Reshetikhin bracket plays an essential role in the initial step of the construction.

As in the case of the anisotropic SU(2) principal chiral model, a natural question to con-

sider is whether two-parameter deformations of these σ-models may also be constructed

within this framework using a third compatible Poisson bracket.

Another important ingredient is given by the non-split R-matrix which shows up in

the resulting Lagrangians. In fact, the integrability of the corresponding field equations

relies in a subtle way on the modified classical Yang-Baxter equation for this R-matrix. Its

appearance in our construction can be traced back to the fact that the gauge transformed

Lax matrix takes values in Borel subalgebras at the poles of the twist function. More-

over, this latter property was essential in order to extract the classical q-deformed UP
q (f)

symmetry algebra.

The charges associated with the q-deformed Uq(f) symmetry were extracted from the

leading order behaviour of the monodromy matrix at the poles of the twist function. This

raises a natural question with regards to the higher conserved charges. By extracting these

from the higher order expansion of the gauge transformed monodromy matrix at the poles

of the twist function, we may anticipate that they should satisfy a classical affine UP
q ( f̂ )

Poisson-Hopf algebra. Indeed, in the case of the squashed sphere σ-model, the hidden

symmetries were already shown to satisfy a UP
q ( ŝl2) algebra [14].

Much like the squashed sphere σ-model, the example of the deformed SU(2)/U(1)

coset σ-model is simple enough that it can be studied very explicitly. In fact, many of the

general properties discussed in the general case are also present in this simplest example.

This integrable deformation certainly deserves further study.

It is very exciting to consider the possible generalisation of this work. The case of

the AdS5 × S5 superstring σ-model, currently under investigation, is particularly enticing,

especially because the generalisation of the Faddeev-Reshetikhin Poisson bracket is already

known [23].

A Compact real form

Let F be a compact Lie group with Lie algebra f = Lie(F ). We denote by fC the

complexification of f and fix a choice of Cartan subalgebra h with corresponding root

space decomposition

fC = h
⊕(
⊕α∈Φ CEα

)
.

Given a choice of simple roots αi ∈ Φ, i = 1, . . . , n = rk fC we denote the pair of opposite

nilpotent subalgebras as n± = ⊕α>0CE
±α and the corresponding Borel subalgebras as
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b± = h⊕ n±. The non-trivial Lie algebra relations in fC read, for any roots α, β ∈ Φ,

[H,Eα] = α(H)Eα, [Eα, E−α] = Hα, [Eα, Eβ] = Nα,βE
α+β , if α+ β ∈ Φ

whereHα ∈ h is defined for any root α ∈ Φ in terms of the Killing form on fC as κ(Hα, H) =

α(H). The latter induces a (positive definite) inner product on the set of roots denoted

(α, β) = α(Hβ). We have chosen the normalisation of the generators Eα so that

κ(Eα, Eβ) = δα,−β .

Letting H i = Hαi for any simple root αi we have

κ(H i, Hj) = αi(H
j) = (αi, αj) = Bij ,

where Bij = diAij denotes the symmetrised Cartan matrix with di = (αi, αi)/2. With

respect to the basis H i, i = 1, . . . , n and Eα, α ∈ Φ of fC, the tensor Casimir then reads

C12 =
n∑

i,j=1

B−1
ij H

i ⊗Hj +
∑

α>0

(
Eα ⊗ E−α + E−α ⊗ Eα

)
. (A.1)

If β + pα, . . . , β, . . . , β + qα denotes the α-string through β, where p ≤ 0 and q ≥ 0, then

with the above conventions one may show that

N2
α,β = q(1− p)

(α, α)

2
,

2(β, α)

(α, α)
= −(p+ q). (A.2)

In particular, the structure constants Nα,β are all real.

The real Lie algebra f is recovered from its complexification fC as the fixed point set

of a certain anti-linear involutive automorphism τ , namely such that

τ(λX + µY ) = λ τ(X) + µ τ(Y ), τ2 = 1, τ([X,Y ]) = [τ(X), τ(Y )],

for any X,Y ∈ fC and λ, µ ∈ C. It is convenient to define τ(X) = −X† in terms of an

anti-linear involutive anti-automorphism X 7→ X† with the properties

(λX + µY )† = λX† + µY †, (X†)† = X, [X,Y ]† = [Y †, X†].

In the case of the compact real form we define the latter on the basis H i, Eα as

(H i)† = H i, (Eα)† = E−α. (A.3)

We then have by definition f = {X ∈ fC | τ(X) = X}. A basis over R for the compact real

form f is then given by

T i = iH i, Bα =
i√
2
(Eα + E−α), Cα =

1√
2
(Eα − E−α). (A.4)

With respect to these generators the Killing form reads

κ(T i, T j) = −Bij , κ(Bα, Bβ) = −δα,−β, κ(Cα, Cβ) = −δα,−β (A.5)

so that the tensor Casimir may be expressed as

C12 = −
n∑

i,j=1

B−1
ij T

i ⊗ T j −
∑

α>0

(
Bα ⊗Bα + Cα ⊗ Cα

)
. (A.6)
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Iwasawa decomposition. Let h0 denote the linear span over R of the set of Cartan

generators H i, i = 1, . . . , n. Then the lower Borel subalgebra b− ∈ fC is contained in f ⊕
h0⊕n+. Indeed, any element in b− takes the form X+h where X =

∑
α>0 xαE

−α ∈ n− and

h =
∑n

i=1 aiH
i for some xα, ai ∈ C. It then follows using (A.3) thatX† =

∑
α>0 xαE

α ∈ n+

and hence

X + h =

((
X +

1

2
h

)
−
(
X +

1

2
h

)†)
+

1

2
(h+ h†) +X† ∈ f⊕ h0 ⊕ n+.

In particular, using the decomposition fC = b− ⊕ n+ it follows that

fC = f⊕ h0 ⊕ n+. (A.7)

This is known as the Iwasawa decomposition of the complex Lie algebra fC.

B q-Poisson-Serre relations

In this appendix we prove the q-Poisson-Serre relations (2.43). To do this we will define

charges associated also with non-simple roots α ∈ Φ+. This in turn requires choosing a

normal ordering on the set of positive roots Φ+ of fC (see for instance [15, 24, 25]), namely

such that if α < β and α+β is a root then α < α+β < β. Given such a choice of ordering,

we write the nilpotent part of the monodromy matrix (2.33a) as follows

P←−exp
[
γ
∑

α>0

∫ ∞

−∞
dσ JEα (σ)E

α

]
=
∏<

α>0

exp

(
γ

∫ ∞

−∞
dσQE

α (σ)E
α

)
,

where the superscript < on the product indicates the use of normal ordering on the positive

roots. Note that the normal ordering only defines a partial ordering on the set of positive

roots. However, whenever two roots α and β are not ordered this implies that α+ β is not

a root. It follows that the corresponding generators Eα and Eβ commute and therefore

their relative order in the above product is irrelevant.

Let αi, αj be simple roots and consider the collection of roots α belonging to the αi-

string through αj , namely αj , αj +αi, . . . , αj +qαi for some q ≥ 0 such that αj +(q+1)αi
is not a root. It is easy to see that for the simple root αj we have

QE
αj
(σ) = JEαj

(σ).

Next, consider the sum αj + αi. Assuming this is a root, which is the case if q ≥ 1, we

must have either αj < αi or αi < αj . It will be more convenient to work with a normal

ordering such that αj < αi. In this case it follows that the roots of the αi-string through

αj are ordered as

αj < αj + αi < αj + 2αi < . . . < αj + qαi < αi.

The charge density corresponding to the sum of simple roots αj + αi is found to be

QE
αj+αi

(σ) = JEαj+αi
(σ)− γ Nαj ,αi

JEαi
(σ)

∫ σ

−∞
dσ′ JEαj

(σ′). (B.1)
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More generally, the charge density QE
αj+rαi

(σ) associated with the root αj + rαi with 0 <

r ≤ q may be expressed recursively in terms of the preceding charge density QE
αj+(r−1)αi

(σ)

as follows

QE
αj+rαi

(σ) = JEαj+rαi
(σ)− γ Nαj+(r−1)αi,αi

JEαi
(σ)

∫ σ

−∞
dσ′QE

αj+(r−1)αi
(σ′). (B.2)

Finally, recalling the notation (2.40) we define the charges corresponding to each root

αj + rαi as

QEαj+rαi
= DjD

r
i

∫ ∞

−∞
dσQE

αj+rαi
(σ), (B.3)

so that in the case r = 0 this definition agrees with (2.39).

In the remainder of this appendix we will prove that the generators defined in (B.3)

satisfy the following Poisson algebra with respect to the q-Poisson bracket introduced

in (2.42), for r ≤ q,
{
QEαi

, QEαj+rαi

}
q ǫ

= 2iNαj+rαi,αi
QEαj+(r+1)αi

. (B.4)

Since αj+(q+1)αi is not a root by definition of q we have that Nαj+qαi,αi
= 0. It therefore

follows from (B.4) that
{
QEαi

,
{
QEαi

, . . .
{
QEαi︸ ︷︷ ︸

q+1 times

, QEαj

}
q ǫ
. . .
}
q ǫ

}
q ǫ

= 0,

which is nothing but the q-Poisson-Serre relation (2.43) since q = −Aij . In fact, to establish

the q-Poisson-Serre relations for classical Lie algebras it suffices to show that (B.4) holds

with r ≤ 2 since for every pair of simple roots αi and αj , the αi-string through αj has at

most q = 2.

Case r = 0. We begin by proving the relation (B.4) in the case r = 0. Comparing

coefficients of Eβ on both sides of the second relation in (2.37) yields

{eα(σ), eβ(σ′)}ǫ = 2iNβ,αeα+β(σ)δσσ′ , if α+ β ∈ Φ.

Using the definition (2.34) of JEα this then leads to

{JEα (σ), JEβ (σ′)}ǫ = 2iNβ,αJ
E
α+β(σ)δσσ′ + iγ (α, β)JEα (σ)J

E
β (σ

′)ǫσσ′ . (B.5)

Introducing the Heaviside step function θσσ′ = 1
2(ǫσσ′ + 1) we may rewrite this as

{JEα (σ), JEβ (σ′)}ǫ + iγ (α, β)JEα (σ)J
E
β (σ

′)

= 2i
(
Nβ,αJ

E
α+β(σ)δσσ′ + γ (α, β)JEα (σ)J

E
β (σ

′)θσσ′

)
.

In terms of the q-Poisson bracket introduced in (2.42), it now follows from the above in

the case α = αi and β = αj that
{
QEαi

, QEαj

}
q ǫ

= {QEαi
, QEαj

}ǫ + iγ (αi, αj)Q
E
αi
QEαj

= 2iDiDj

(
Nαj ,αi

∫ ∞

−∞
dσ JEαj+αi

(σ)

+ γ (αj , αi)

∫ ∞

−∞
dσ JEαi

(σ)

∫ σ

−∞
dσ′ JEαj

(σ′)

)
.
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Now using (A.2) with α = αi and β = αj , since αj − αi is not a root we have p = 0 from

which we deduce that N2
αj ,αi

= −(αj , αi). Hence we deduce using the definitions (B.1)

and (B.3) that {
QEαi

, QEαj

}
q ǫ

= 2iNαj ,αi
QEαj+αi

.

Cases r = 1 and r = 2. The relation (B.4) in the cases r = 1 and r = 2 follows in a

similar way. For instance, starting from the definition (B.1) and the relation (B.5) one can

show that

{JEαi
(σ),QE

αj+αi
(σ′)}ǫ + iγ (αi, αj + αi)J

E
αi
(σ)QE

αj+αi
(σ′)

= 2i
(
Nαj+αi,αi

JEαj+2αi
(σ)δσσ′

+ γ (αi, αj + αi)J
E
αi
(σ)QE

αj+αi
(σ′)θσσ′ + γ (αi, αj)J

E
αi
(σ′)QE

αj+αi
(σ)θσ′σ

)
.

Taking the integral over σ and σ′ then yields the desired relation (B.4) in the case

r = 1, namely {
QEαi

, QEαj+αi

}
q ǫ

= 2iNαj+αi,αi
QEαj+2αi

.

In deriving these results we make use of the following useful identities, valid for

any 0 ≤ r ≤ q,

N2
αj+rαi,αi

= −
(
(r + 1)αj +

r(r+1)
2 αi, αi

)
,

−N2
αj+(r−1)αi,αi

+ (αj + rαi, αi) = −N2
αj+rαi,αi

.

Finally, in the case r = 2, a lengthy calculation leads to the following

{JEαi
(σ), QE

αj+2αi
(σ′)}ǫ + iγ (αi, αj + 2αi)J

E
αi
(σ)QE

αj+2αi
(σ′)

= 2i

(
Nαj+2αi,αi

JEαj+3αi
(σ)δσσ′

+ γ (αi, αj + 2αi)J
E
αi
(σ)JEαj+2αi

(σ′)θσσ′ − γ N2
αj+αi,αi

JEαi
(σ′)JEαj+2αi

(σ)θσ′σ

− γ2Nαj+αi,αi

(
(αi, αj + αi)J

E
αi
(σ)JEαi

(σ′)

∫ σ′

−∞
dσ′′QE

αj+αi
(σ′′)θσσ′

+ (αi, αj + αi)J
E
αi
(σ)JEαi

(σ′)

∫ σ

−∞
dσ′′QE

αj+αi
(σ′′)θσ′σ

+ (αi, αi)J
E
αi
(σ)JEαi

(σ′)

∫ σ′

−∞
dσ′′QE

αj+αi
(σ′′)θσσ′

+ (αi, αj)J
E
αi
(σ′)QE

αj+αi
(σ)

∫ σ′

−∞
dσ′′JEαi

(σ′′)θσ′σ

− (αi, αj)J
E
αi
(σ′)QE

αj+αi
(σ)

∫ σ

−∞
dσ′′JEαi

(σ′′)θσ′σ

))
.

After taking the integral over σ and σ′ we obtain the sought after relation (B.4) with

r = 2, namely {
QEαi

, QEαj+2αi

}
q ǫ

= 2iNαj+2αi,αi
QEαj+3αi

.
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C Modified classical Yang-Baxter equation

The modified classical Yang-Baxter equation (2.24) satisfied by the R-matrix (2.22) in the

present article (see also [5]) is slightly different from the one which appeared in [7]. The

general form of this equation over a real Lie algebra f reads

[RX,RY ]−R
(
[RX, Y ] + [X,RY ]

)
= −ω[X,Y ], (C.1)

for some real parameter ω ∈ R. Of course, by rescaling the linear map R ∈ End f by

1/
√
|ω| we may restrict attention to the cases ω = ±1. The R-matrices discussed in [7] are

solutions of this equation with ω = 1, sometimes referred to as the ‘split case’. However,

the R-matrix (2.22) used here and in [5] is a solution of this equation with ω = −1, referred
to as the ‘non-split case’.

In either case, the modified classical Yang-Baxter equation (C.1) may be rewritten as

(R±
√
ω)
(
[X,Y ]R

)
=
[
(R±

√
ω)X, (R±

√
ω)Y

]
, (C.2)

where [X,Y ]R := [RX, Y ] + [X,RY ] defines a second Lie bracket on f by virtue of (C.1).

In the split case, this implies that the linear maps R± := R ± 1 are both Lie algebra

homomorphisms fR → f where fR is the vector space f equipped with the Lie bracket

[·, ·]R. In the non-split case, however, things are a little more subtle. Since
√
ω = i, we

see that the linear maps R± i are still Lie algebra homomorphisms by (C.2) but now from

fR → fC. Recall that in the split case (ω = 1), the pair of maps R± can be used to define

an embedding fR → f⊕ f so that fR may be regarded as a subalgebra of the double f⊕ f. In

the present non-split case (ω = −1), however, the map R − i alone defines an embedding

of the real Lie algebra fR into the complexification fC.

D Deformed Poisson bracket for coset σ-model

The deformed Poisson bracket (3.7), when expressed in terms of the graded components of

the fields A and Π, takes the following form

{A(0)
1

(σ), A
(0)
2

(σ′)}ǫ = −ǫ2
[
C

(00)
12

, 2A
(0)
2

(σ) + Π
(0)
2

(σ)
]
δσσ′ + 2ǫ2C

(00)
12

δ′σσ′ ,

{A(0)
1

(σ), A
(1)
2

(σ′)}ǫ = −ǫ2
[
C

(00)
12

, A
(1)
2

(σ) + Π
(1)
2

(σ)
]
δσσ′ ,

{A(1)
1

(σ), A
(1)
2

(σ′)}ǫ = −ǫ2
[
C

(11)
12

,Π
(0)
2

(σ)
]
δσσ′ ,

{A(0)
1

(σ),Π
(0)
2

(σ′)}ǫ =
[
C

(00)
12

, A
(0)
2

(σ)
]
δσσ′ − C(00)

12
δ′σσ′ ,

{A(0)
1

(σ),Π
(1)
2

(σ′)}ǫ = (1− ǫ2)
[
C

(00)
12

, A
(1)
2

(σ)
]
δσσ′ − ǫ2

[
C

(00)
12

,Π
(1)
2

(σ)
]
δσσ′ ,

{A(1)
1

(σ),Π
(0)
2

(σ′)}ǫ =
[
C

(11)
12

, A
(1)
2

(σ)
]
δσσ′ ,

{A(1)
1

(σ),Π
(1)
2

(σ′)}ǫ =
[
C

(11)
12

, A
(0)
2

(σ)
]
δσσ′ + ǫ2

[
C

(11)
12

,Π
(0)
2

(σ)
]
δσσ′ − C(11)

12
δ′σσ′ ,

{Π(0)
1

(σ),Π
(0)
2

(σ′)}ǫ =
[
C

(00)
12

,Π
(0)
2

(σ)
]
δσσ′ ,

{Π(0)
1

(σ),Π
(1)
2

(σ′)}ǫ =
[
C

(00)
12

,Π
(1)
2

(σ)
]
δσσ′ ,

{Π(1)
1

(σ),Π
(1)
2

(σ′)}ǫ = (1− ǫ2)
[
C

(11)
12

,Π
(0)
2

(σ)
]
δσσ′ .
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