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On classical Saito-Kurokawa liftings

By Ralf Schmidt at Norman

Abstract. There exist two di¤erent generalizations of the classical Saito-Kurokawa
lifting to modular forms with (square-free) level; one lifting produces modular forms with
respect to G0ðmÞ, the other one with respect to the paramodular group GparaðmÞ. We shall
give an alternative and unified construction of both liftings using group theoretic methods.
The construction shows that a single elliptic modular form may in fact have many Saito-
Kurokawa liftings. We also obtain precise information about the spin L-function of the re-
sulting Siegel modular forms.

Introduction

The classical Saito-Kurokawa lifting was discovered numerically in 1977, and its ex-
istence was subsequently proved in a series of papers by Maass, Andrianov and Zagier; see
[Ku], [Ma], [An], [Za]. The book [EZ] gives a coherent treatment. Starting from a modular
form f A M2k�2

�
SLð2;ZÞ

�
with even k, assumed to be an eigenform for all Hecke opera-

tors, a Siegel eigenform F of degree 2 and weight k is constructed such that the (finite parts
of the) L-functions of f and F are related by the formula

Lðs;FÞ ¼ zðs � k þ 1Þzðs � k þ 2ÞLðs; f Þ:

The Saito-Kurokawa lifting can be constructed as the composition of two linear maps

M2k�2

�
SLð2;ZÞ

�
!@ Jk;1 ! Mk

�
Spð4;ZÞ

�
;ð1Þ

where Jk;1 is the space of Jacobi forms of weight k and index 1; see [EZ]. The first map is
obtained via the Shimura isomorphism, and the second map is called the Maaß lifting. In
what follows we shall restrict our attention to cusp forms and also to newforms. Given a
positive integer m, we can generalize the construction (1) as follows:

S new�
2k�2

�
G0ðmÞ

�
!@ J

cusp;new
k;m ! Sk

�
GparaðmÞ

�
:ð2Þ

Here the first isomorphism is the (inverse of the) Skoruppa-Zagier map constructed in [SZ].
The ‘‘�’’ in S new�

2k�2

�
G0ðmÞ

�
indicates the subspace of newforms such that the sign in the

functional equation of the L-function is �1. The second map in (2) is Gritsenko’s ‘‘arith-
metical lifting’’, a generalization of the Maaß lifting; see [Gr]. The image is contained in the
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space of cusp forms with respect to the paramodular group GparaðmÞ of level m. This group
is defined as the subgroup of all elements g A Spð4;QÞ such that

g A

Z mZ Z Z

Z Z Z m�1Z

Z mZ Z Z

mZ mZ mZ Z

0BBB@
1CCCA and detðgÞ ¼ 1:ð3Þ

At least when m is square-free (but see the recent work [MR1], [MR2]), there is another
generalization of the construction (1) given in the paper [MRV]. Instead of working with
Jacobi forms of index m for the full modular group, the authors consider Jacobi forms of
index 1 for a congruence subgroup and construct a lifting

S new
2k�2

�
G0ðmÞ

�
!@ J

cusp;new
k;1

�
GJ

0 ðmÞ
�
! Sk

�
G
ð2Þ
0 ðmÞ

�
:ð4Þ

For this construction to work k must assumed to be even. Note that both constructions (2)
and (4) generalize the original lifting (1). The conditions ‘‘k even’’ and ‘‘the sign in the func-
tional equation is �1’’ coincide for m ¼ 1.

Hence, starting with a newform f A S new�
2k�2

�
G0ðmÞ

�
, where m is square-free and k

is even, we can construct two Siegel cusp forms F1 A Sk

�
GparaðmÞ

�
and F2 A Sk

�
G
ð2Þ
0 ðmÞ

�
.

The purpose of this paper is to give an alternative construction and to ‘‘explain’’ the exis-
tence of two di¤erent Saito-Kurokawa liftings. It turns out that in some cases F1 and F2 cor-
respond to two di¤erent vectors in the same automorphic representation of PGSpð4;AÞ,
while in other cases F1 and F2 are vectors in di¤erent automorphic representations.

Actually, depending on the number of primes dividing the square-free integer m, a
modular form f can have many di¤erent Saito-Kurokawa liftings. Most of these liftings
will be with respect to ‘‘mixed’’ congruence subgroups, where we impose a G0-condition
at some places p jm and a paramodular condition at the other places. The automorphic
representations containing these modular forms are all nearly equivalent (meaning the local
components are equivalent at almost every place).

Our approach is based on the main result of [Sch2], which asserts the existence of cer-
tain functorial liftings

from PGLð2Þ � PGLð2Þ to PGSpð4Þ:

Such a lifting is predicted by Langlands functoriality. Let p be a cusp form on PGLð2;AF Þ,
where F is an arbitrary number field. Let S be the set of places of F such that the local
component pv is square-integrable (equivalently, not a principal series representation). For
S HS let pS be the non-cuspidal automorphic representation of PGLð2;AF Þ such that the
pS; v is the trivial representation for v B S, and the Steinberg representation for v A S. It
was proved in [Sch2] that the lifting of pn pS exists as a discrete series representation on
PGSpð4;AÞ, provided the sign condition ð�1ÞKS ¼ eð1=2; pÞ is fulfilled. The lifting is even
cuspidal if S is non-empty.

Now let the number field be Q and let p be the cuspidal automorphic representation
of PGLð2;AÞ corresponding to the classical newform f A S new

2k�2

�
G0ðmÞ

�
. Assuming that m
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is square-free, the local components pp will be square-integrable precisely if p jm or p ¼ y.
We will see that the two liftings (2) and (4) come from two di¤erent (non-empty) choices of
the set of places S. The sign condition ð�1ÞKS ¼ eð1=2; pÞ comes down to the ‘‘�’’ condi-
tion in case of the lifting (2), and to the condition that k be even in case of the lifting (4).

The local components of the lifting of pn pS to PGSpð4;AÞ have already been iden-
tified as representations in [Sch2]. The bulk of the work of the present paper consists in
analyzing these local p-adic representations at the primes p dividing m with respect to their
paramodular and G0-fixvectors. This will allow us to extract from the automorphic repre-
sentations we constructed the Siegel modular forms we are interested in. To analyze the
local representations, we realize them as subrepresentations of certain induced representa-
tions of length 2. The spaces of Iwahori fixed vectors on the full induced representations are
easily determined. To find the intersections with the subrepresentations of interest, we shall
explicitly compute intertwining operators on the spaces of Iwahori fixed vectors.

Two remarks are in order, the first one concerning certain assumptions that had been
made in [Sch2]. The construction in [Sch2] was carried out using theta liftings. To prove
functoriality, certain plausible assumptions on the still conjectural local Langlands corre-
spondence for GSpð4Þ had to be made. However, in the present paper we are not concerned
with functoriality questions, so the results are independent of any conjectures.

The second remark concerns the paper [Sch3] and its relationship with the present
work. While the paper at hand deals with a small class of modular forms of square-free
level—the Saito-Kurokawa liftings—the work [Sch3] considers general modular forms of
square-free level (with respect to various congruence subgroups). Accordingly, only a hand-
ful of Iwahori-spherical representations of GSpð4Þ play a role in the current paper, while all
such representations had to be considered in [Sch3]. For example, [Sch3], Table 3 gives the
dimensions of all spaces of fixed vectors of all Iwahori-spherical representations under all
parahoric subgroups. However, to obtain this table, certain special cases had to be treated
first, and these are the cases treated in the present work. In this sense [Sch3] depends on the
calculations in the present paper.

In section 1 we shall review the main lifting theorem of [Sch2], which lies at the heart
of our construction. In sections 2 and 3 we shall analyze the relevant local representations
by explicitly computing intertwining operators on certain spaces of induced representa-
tions. Actually we shall determine the dimensions of spaces of fixed vectors for each para-
horic subgroup of GSpð4;FÞ. In section 4 we compute some Atkin-Lehner eigenvalues on
the ‘‘local newforms’’ we found and show that these eigenvalues coincide with the signs
defined by the e-factor, as in the GLð2Þ theory. Finally, in section 5, we combine the
global lifting theorem with the local results to reprove the existence of the two di¤erent
Saito-Kurokawa liftings mentioned above—and others. We also obtain precise information
on the spin L-function of these liftings.

Notations

Throughout the paper we let

G ¼ GSpð4Þ ¼ fg A GLð4Þ : tgJg ¼ lðgÞJ for some lðgÞ A GLð1Þg;
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where

J ¼

1

1

�1

�1

0BBB@
1CCCA:

As a Borel subgroup B of G we choose upper triangular matrices. The two conjugacy
classes of proper maximal parabolic subgroups are represented by the Siegel parabolic sub-

group P, whose Levi factor is

MP ¼ A

uA 0

� �
: u A GLð1Þ;A A GLð2Þ

� �
FGLð1Þ � GLð2Þ;

where A 0 :¼ 1

1

� �
tA�1 1

1

� �
, and the Klingen parabolic subgroup Q, whose Levi fac-

tor is

MQ ¼
u

A

u�1 detðAÞ

0@ 1A : u A GLð1Þ;A A GLð2Þ

8<:
9=;FGLð1Þ � GLð2Þ:

If F is a local field, we shall employ the notations of [ST] for induced representations of the
group GSpð4;FÞ. We shall write nðxÞ ¼ jxj for the normalized absolute value on the local
field F .

Parahoric subgroups. Let F be a p-adic field, o its ring of integers, and $ a genera-
tor of the maximal ideal p of o. The two matrices

s1 ¼

1

1

1

1

0BBB@
1CCCA; s2 ¼

1

1

�1

1

0BBB@
1CCCAð5Þ

are representatives for the two simple reflections generating the 8-element Weyl group W of
G ¼ GSpð4;FÞ. The Atkin-Lehner element is the matrix

h ¼

1

1

�$

�$

0BBB@
1CCCAs2s1s2 ¼

1

1

$

$

0BBB@
1CCCA A GSpð4;FÞ:ð6Þ

While h commutes with s1, we let s0 ¼ hs2h
�1. Consider the Dynkin diagram of the a‰ne

Weyl group C2:

� � �
s0 s1 s2
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Let I be the Iwahori subgroup, the inverse image of the minimal parabolic subgroup under
the projection map GðoÞ ! Gðo=pÞ. The parahoric subgroups PA of GSpð4;FÞ correspond
bijectively to subsets A of f0; 1; 2g, the correspondence being that the parahoric subgroup
PA is generated by I and fsi : i A Ag. Hence P1 is the Siegel congruence subgroup, the in-
verse image of the Siegel parabolic subgroup under the projection map GðoÞ ! Gðo=pÞ,
and P2 is the Klingen congruence subgroup, the inverse image of the Klingen parabolic
subgroup under the same map. The group P02 is generated by P2 and hP2h

�1, and is called
the paramodular group; it is explicitly given as the set of all g A GSpð4;FÞ such that

g A

o o o p�1

p o o o

p o o o

p p p o

0BBB@
1CCCA and detðgÞ A o�:ð7Þ

This is the local analogue of the global group (3). The paramodular group represents one of
the two conjugacy classes of maximal compact subgroups of GSpð4;FÞ. The other conju-
gacy class is represented by the standard maximal compact subgroup P12 ¼ GðoÞ.

1. The main lifting result

In this section we recall the main result of [Sch2]; we refer to that paper for more
details. Let F be a number field and A its ring of adeles. For each finite set S of places of
F we have an automorphic representation pS ¼

N
pS; v of PGLð2;AÞ defined by

pS; v ¼
1GLð2Þ if v B S;

StGLð2Þ if v A S:

�
Here 1GLð2Þ is the trivial representation and StGLð2Þ is the Steinberg representation of
PGLð2Þ. The global representation pS thus defined is automorphic since it is an irreducible
constituent of a globally induced representation.

Let pv be an irreducible, admissible, infinite-dimensional representation of the local
group PGLð2;FvÞ, where v is any place of F . We have defined in [Sch2] an irreducible,
admissible representation Pðpv n 1vÞ of PGSpð4;FvÞ as the unique irreducible quotient
of the induced representation n1=2pv z n�1=2. Assuming that pv is square-integrable, we
have moreover defined a (tempered) representation Pðpv n StvÞ of PGSpð4;FvÞ be means
of certain theta liftings. If p ¼

N
pv is a cuspidal automorphic representation of

PGLð2;AÞ, and S is a set of places such that pv is square integrable for each v A S, define
a global representation Pðpn pSÞ of PGSpð4;AÞ as the tensor product

N
Pðpv n pS; vÞ.

1.1. Theorem. Let p ¼
N

pv be a cusp form on PGLð2;AÞ. Let S be a set of

places of F such that pv is a discrete series representation for each place v A S, and let pS be

the corresponding (non-cuspidal) automorphic representation defined above. Assume that the

sign condition

ð�1ÞKS ¼ eð1=2; pÞð8Þ

is fulfilled. Then:
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(a) The global lifting Pðpn pSÞ is an automorphic representation of PGSpð4;AÞ
which appears discretely in the space of automorphic forms.

(b) If Lð1=2; pÞ ¼ 0 or if S 3j, then Pðpn pSÞ is a cuspidal automorphic represen-

tation.

Given the results of Waldspurger [Wa1], [Wa2] and Piatetski-Shapiro [PS], this
theorem is not too hard to prove. The main point of [Sch2] was to show that if one
believes in what is currently conjectured about the local Langlands correspondence for
GSpð4Þ, the representation Pðpn pSÞ is a functorial lifting of the representation pn pS

on PGLð2;AÞ � PGLð2;AÞ, as the notation suggests.

We now describe the local representations Pðpv n pS; vÞ in more detail, starting with
the archimedean case. Since we are dealing with classical holomorphic modular forms, let
us assume that F ¼ Q, that v is the real place and that pv ¼ Dð2k � 3Þ, the holomorphic
discrete series representation of PGLð2;RÞ with a lowest weight vector of weight 2k � 2.
In our situation we shall always choose S to contain the archimedean place, hence we
need only describe Pðpv n StvÞ. Here Stv is the lowest discrete series representation
Dð1Þ, and it was determined in [Sch2] (see also [La]) that Pðpv n StvÞ is the holomor-
phic discrete series representation of PGSpð4;RÞ with a scalar minimal K-type of weight
ðk; kÞ. It is these representations which appear as archimedean components of automor-
phic representations corresponding to holomorphic Siegel modular forms of weight k, see
[AS].

Considering a finite place p jm, the local component pp (of the automorphic represen-
tation p corresponding to the modular form f A S new

2k�2

�
G0ðmÞ

�
, where m is square-free), can

only be the Steinberg representation St or its non-trivial unramified twist x St; here x is the
unique non-trivial unramified quadratic character of Q�

p . Consequently there are four pos-
sible lifts, and these have been identified in [Sch2] as follows.

representation name description

PðStn 1Þ L
�
ðn1=2 St; n�1=2Þ

�
subrepresentation of 1F � z 1GLð2Þ

ð9Þ
PðStn StÞ tðT ; n�1=2Þ subrepresentation of

n1=21GLð2Þz n�1=2

Pðx Stn 1Þ L
�
ðxn1=2 St; n�1=2Þ

�
subrepresentation of
xn1=21GLð2Þ z xn�1=2

Pðx Stn StÞ y10 supercuspidal

The first three representations in this list are named as in [ST]. In the following sections we
shall determine the dimensions of their spaces of fixed vectors under each parahoric sub-
group. The fourth representation was investigated in [KPS]. Being supercuspidal it has no
Iwahori invariant vectors. In our choices of the set of places S we shall avoid the constella-
tion x Stn St. Hence y10 plays little role in our investigations.

216 Schmidt, On classical Saito-Kurokawa liftings

Brought to you by | University of Oklahoma Libraries
Authenticated

Download Date | 5/20/16 4:53 PM



2. Invariant vectors in P(StnSt) and P(xStn 1)

In this section we shall work over a p-adic field F , with the symbols o, p, q having the
usual meaning. We shall fix a generator $ of p. Consider the degenerate principal series
representation

xns1GLð2Þz x�1n�s; x an unramified character of F �; s A C:ð10Þ

Let Vx; s be the standard model for this induced representation, consisting of smooth func-
tions f : GðFÞ ! C with the transformation property

f

 
A �

uA 0

� �
g

!
¼ x
�
u�1 detðAÞ

�
ju�1 detðAÞjsþ3=2

f ðgÞ:

According to the table (9), two of our local Saito-Kurokawa lifts appear as constituents of
some Vx; s, namely PðStn StÞ as a constituent of V1;1=2, and Pðx Stn 1Þ as a constituent of
Vx;1=2, where x is the non-trivial unramified quadratic character of F �. To characterize sub-
representations of Vx; s, we shall study an intertwining operator AðsÞ : Vx; s ! Vx�1;�s, given
by �

AðsÞ f
�
ðgÞ ¼

Ð
N

f ðs2s1s2ngÞ dn;ð11Þ

where N ¼ 1 �
1

� �
is the unipotent radical of the Siegel parabolic P, and where s1, s2 are

the Weyl group elements defined in (5).

2.1. Proposition. Assume x is an unramified character of F �. The intertwining

operator AðsÞ defined by (11) is convergent for ReðsÞ large enough. It has meromorphic

continuation to all of C with possible poles at those values s A C where q�sG1=2 ¼ xð$Þ�1

or where q�2s ¼ xð$Þ�2
. At all other values of s it defines a non-zero intertwining map

xns1GLð2Þz x�1n�s ! x�1n�s1GLð2Þz xns.

Proof. Let f be a function in Vx; s. Let Ci HF be compact sets containing 0. One
can proof in a standard manner that for large enough Ci the integral

I :¼
Ð

FnC3

Ð
FnC2

Ð
FnC1

f

0BBBB@
1

1

m x 1

k m 1

0BBB@
1CCCAs2s1s2

1CCCCA dx dm dk; ReðsÞg 0;

is given by

I ¼ polynomial function in q�s�
1 � xð$Þq�sþ1=2

��
1 � xð$Þ2q�2s

��
1 � xð$Þq�s�1=2

� f ð1Þ:

Other parts of the integral, such as
Ð Ð Ð

C3�ðFnC2Þ�ðFnC1Þ
. . . dx dm dk, lead to similar expressions.

This settles the convergence question. Replacing f by a flat section fs, it also proves the
assertion about analytic continuation. In the region of convergence it is easily seen that
AðsÞ fs has the required transformation property, and that AðsÞ is an intertwining operator.
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The same is then true for all s by analytic continuation. It will become apparent by the ex-
plicit computations further below that AðsÞ is a non-zero map. r

Let I HGðoÞ be the Iwahori subgroup, i.e., the inverse image of Bðo=pÞ under the
projection GðoÞ ! Gðo=pÞ (in our realization of GðoÞ, these are all matrices that become
upper triangular mod p). Our goal is to determine the space of I -invariant vectors in
PðStn StÞ and Pðx Stn 1Þ, where x denotes the unique nontrivial unramified quadratic
character of F �, characterized by xð$Þ ¼ �1. The desired information will be obtained by
considering the intertwining operator (11) on the space of I -invariant vectors of the degen-
erate principal series representations (10).

For the moment let x be any unramified character of F �. As in the previous section,
let Vx; s be the standard space of the induced representation xns1GLð2Þ z x�1n�s. Let V I

x; s

denote the subspace of I -invariant vectors. Via restriction to GðoÞ the functions in V I
x; s are

in bijection with the left PðoÞ-invariant and right I -invariant functions on GðoÞ. Since

PðoÞnGðoÞ=I FPðo=pÞnGðo=pÞ=Bðo=pÞ

is represented by the four Weyl group elements 1, s2, s2s1 and s2s1s2, any f A V I
x; s is deter-

mined by the four numbers

a :¼ f ð1Þ; b :¼ f ðs2Þ; g :¼ f ðs2s1Þ; d :¼ f ðs2s1s2Þ:ð12Þ

In particular, dimCðV I
x; sÞ ¼ 4. We are going to compute AðsÞ f for such a function f . Since

AðsÞ f is again I -invariant, we only have to compute
�
AðsÞ f

�
ðwÞ for w A f1; s2; s2s1; s2s1s2g.

This is achieved by the following three lemmas.

2.2. Lemma. Let f A V I
x; s and a, b, g, d as in (12). Then, for any unramified char-

acter x,

Ð
F

f

0BBBB@
1

1

1

k 1

0BBB@
1CCCAw

1CCCCA dk ¼

q�1aþ 1 � q�1

1 � xð$Þq�s�1=2
g; w ¼ 1;

q�1b þ 1 � q�1

1 � xð$Þq�s�1=2
d; w ¼ s2;

q�1aþ 1 � q�1

1 � xð$Þq�s�1=2
b; w ¼ s1;

q�1gþ 1 � q�1

1 � xð$Þq�s�1=2
d; w ¼ s2s1;

b þ ð1 � q�1Þxð$Þq�s�1=2

1 � xð$Þq�s�1=2
a; w ¼ s1s2;

dþ ð1 � q�1Þxð$Þq�s�1=2

1 � xð$Þq�s�1=2
g; w ¼ s2s1s2;

gþ ð1 � q�1Þxð$Þq�s�1=2

1 � xð$Þq�s�1=2
a; w ¼ s1s2s1;

dþ ð1 � q�1Þxð$Þq�s�1=2

1 � xð$Þq�s�1=2
b; w ¼ s2s1s2s1:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

218 Schmidt, On classical Saito-Kurokawa liftings

Brought to you by | University of Oklahoma Libraries
Authenticated

Download Date | 5/20/16 4:53 PM



Proof. If the conjugation g 7! w�1gw moves the k-variable to a positive root, we
split the integral as

Ð
o

þ
Ð

Fno
, otherwise as

Ð
p

þ
Ð

Fnp
. The first integral can then trivially be

computed, while for the second one one uses

1

k 1

� �
¼ �k�1

�k

� �
1 k

1

� �
1

�1

� �
1 k�1

1

� �
ð13Þ

and proceeds in a standard manner. r

2.3. Lemma. With f as in Lemma 2.2 define

BðwÞ :¼
Ð

F 2

f

0BBBB@
1

1

m 1

k m 1

0BBB@
1CCCAw

1CCCCA dm dk:

Then

BðwÞ

¼

q�2aþ
ð1 � q�1Þq�1

�
1 þ xð$Þq�sþ1=2

�
1 � xð$Þ2

q�2s
gþ 1 � q�1

1 � xð$Þ2
q�2s

d; w ¼ 1;

q�2b þ ð1 � q�1Þq�1

1 � xð$Þ2
q�2s

gþ
ð1 � q�1Þ

�
1 þ xð$Þq�s�1=2

�
1 � xð$Þ2

q�2s
d; w ¼ s2;

q�2aþ
ð1 � q�1Þq�1

�
1 þ xð$Þq�sþ1=2

�
1 � xð$Þ2

q�2s
b þ 1 � q�1

1 � xð$Þ2
q�2s

d; w ¼ s1;

ð1 � q�1Þxð$Þ2
q�2s�1

1 � xð$Þ2
q�2s

b þ q�1gþ
ð1 � q�1Þ

�
1 þ xð$Þq�s�1=2

�
1 � xð$Þ2

q�2s
d; w ¼ s2s1;

ð1 � q�1Þxð$Þq�s�1=2
�
1 þ xð$Þq�s�1=2

�
1 � xð$Þ2

q�2s
aþ q�1b þ 1 � q�1

1 � xð$Þ2
q�2s

g; w ¼ s1s2;

ð1 � q�1Þxð$Þ2
q�2s�1

1 � xð$Þ2
q�2s

aþ
ð1 � q�1Þxð$Þq�s�1=2

�
1 þ xð$Þq�sþ1=2

�
1 � xð$Þ2

q�2s
gþ d; w ¼ s2s1s2;

ð1 � q�1Þxð$Þq�s�1=2
�
1 þ xð$Þq�s�1=2

�
1 � xð$Þ2q�2s

aþ ð1 � q�1Þxð$Þ2
q�2s

1 � xð$Þ2q�2s
b þ g; w ¼ s1s2s1;

ð1 � q�1Þxð$Þ2
q�2s�1

1 � xð$Þ2
q�2s

aþ
ð1 � q�1Þxð$Þq�s�1=2

�
1 þ xð$Þq�sþ1=2

�
1 � xð$Þ2

q�2s
b þ d; w ¼ s2s1s2s1:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
This holds for any unramified character x.
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Proof. If the conjugation g 7! w�1gw moves the m-variable to a positive root, we
split the m-integral as

Ð
o

þ
Ð

Fno
, otherwise as

Ð
p

þ
Ð

Fnp
. Then one uses

1

1

m 1

k m 1

0BBB@
1CCCA ¼

�m�1 �1

m�2k �m�1 �1

�m

�k �m

0BBB@
1CCCA

1

1

1

km�2 1

0BBB@
1CCCAð14Þ

�

1

1

�1

�1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼s2s1s2

1 m�1

1 m�1

1

1

0BBB@
1CCCA

on the second integral and Lemma 2.2. r

2.4. Lemma. With f and x as in the previous lemmas, we have

�
AðsÞ f

�
ðwÞ ¼

Ð
F 3

f

0BBBB@
1

1

m x 1

k m 1

0BBB@
1CCCAs2s1s2w

1CCCCA dx dm dk

¼

ð1 � q�1Þxð$Þ2
q�2s

�
1 � xð$Þq�s�3=2

��
1 � xð$Þ2

q�2s
��

1 � xð$Þq�sþ1=2
� aþ ð1 � q�1Þxð$Þq�s�1=2

1 � xð$Þq�sþ1=2
b

þ ð1 � q�1Þxð$Þq�sþ1=2

1 � xð$Þq�sþ1=2
gþ d; w ¼ 1;

ð1 � q�1Þxð$Þq�s�3=2

1 � xð$Þq�sþ1=2
aþ q�1gþ ð1 � q�1Þ

1 � xð$Þq�sþ1=2
d

þ
ð1 � q�1Þxð$Þq�s�1=2

�
1 � q�1 þ xð$Þq�sþ1=2 � xð$Þ2

q�2s
��

1 � xð$Þ2
q�2s

��
1 � xð$Þq�sþ1=2

� b; w ¼ s2;

ð1 � q�1Þxð$Þq�s�3=2

1 � xð$Þq�sþ1=2
aþ q�2b þ ð1 � q�1Þ

1 � xð$Þq�sþ1=2
d

þ
ð1 � q�1Þq�1

�
1 � xð$Þq�s�1=2 þ xð$Þ2

q�2sþ1 � xð$Þ2
q�2s

��
1 � xð$Þ2

q�2s
��

1 � xð$Þq�sþ1=2
� g; w ¼ s2s1;

q�3aþ ð1 � q�1Þq�2

1 � xð$Þq�sþ1=2
b þ ð1 � q�1Þq�1

1 � xð$Þq�sþ1=2
g

þ
ð1 � q�1Þ

�
1 � xð$Þq�s�3=2

��
1 � xð$Þ2

q�2s
��

1 � xð$Þq�sþ1=2
� d; w ¼ s2s1s2:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
Proof. One has to split the x-integration and then use
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1

1

m x 1

k m 1

0BBB@
1CCCA ¼

1

�mx�1 �x�1 �1

�x

�m 1

0BBB@
1CCCA

1

1

�mx�1 1

k� m2x�1 �mx�1 1

0BBB@
1CCCAð15Þ

�

1

1

�1

1

0BBB@
1CCCA

1

1 x�1

1

1

0BBB@
1CCCA

and Lemma 2.3. r

2.5. Proposition. Let Vx; s be the standard space of the induced representation

xns1GLð2Þz x�1n�s.

(i) For each flat section fs A V1; s and each g A GðFÞ, the limit

lim
s!�1=2

�
AðsÞ fs

�
ðgÞð16Þ

exists. This defines a non-zero intertwining operator Að�1=2Þ : V1;�1=2 ! V1;1=2. With re-

spect to a suitable basis, the restriction of this operator to the four-dimensional spaces of

I-invariant vectors has matrix

q�1 �q�1 �1 1

�q�2 q�2 q�1 �q�1

�q�2 q�2 q�1 �q�1

q�3 �q�3 �q�2 q�2

0BBB@
1CCCA:ð17Þ

(ii) Let x be the non-trivial unramified quadratic character of F �. For each flat section

fs A Vx; s and each g A GðFÞ, the limit

lim
s!1=2

�
AðsÞ fs

�
ðgÞð18Þ

exists. This defines a non-zero intertwining operator Að1=2Þ : Vx;1=2 ! Vx;�1=2. With re-

spect to a suitable basis, the restriction of this operator to the four-dimensional spaces of

I-invariant vectors has matrix

1

2
ð1 þ q�2Þq�1 � 1

2
ð1 � q�1Þq�1 � 1

2
ð1 � q�1Þ 1

� 1

2
ð1 � q�1Þq�2 q�2 q�1 1

2
ð1 � q�1Þ

� 1

2
ð1 � q�1Þq�2 q�2 q�1 1

2
ð1 � q�1Þ

q�3 1

2
ð1 � q�1Þq�2 1

2
ð1 � q�1Þq�1 1

2
ð1 þ q�2Þ

0BBBBBBBBBBB@

1CCCCCCCCCCCA
:ð19Þ
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Proof. We prove (i), the argument for (ii) being very similar. From the formulas in
Lemma 2.4 it is clear that the limit (16) exists for each g, provided fs is an I -invariant sec-
tion. Let V HV1;�1=2 be the G-invariant subspace generated by the I -invariant functions.
Each f A V lies in a unique flat section fs, and we can define

�
Að�1=2Þ f

�
ðgÞ :¼ lim

s!�1=2

�
AðsÞ fs

�
ðgÞ:

The limit exists since f is a linear combination of right translates of I -invariant functions,
and g in (16) is arbitrary. Taking the limit on

�
AðsÞ fs

�
ðghÞ ¼

�
AðsÞ f h

s

�
ðgÞ

shows that Að�1=2Þ defines an intertwining operator V ! V1; s. Now let f1, f2, f3, f4 be
the basis of V I

x;�1=2 such that the vectors ða; b; g; dÞ as in (12) run through the standard

unit vectors. With respect to this basis and the analogous one for V I
1;1=2 it is easily com-

puted from Proposition 2.4 that Að�1=2Þ has the matrix given by (17). This matrix
has rank 1. In particular, Að�1=2Þ is neither zero nor injective, and so V cannot be
irreducible. Since we know the length of n�1=21GLð2Þz n1=2 is 2, it follows that V is all of
V1;�1=2. r

2.6. Corollary. (i) The representation PðStn StÞ ¼ tðT ; n�1=2Þ has no non-zero GðoÞ-
fixed vector and, up to multiples, a unique non-zero I-invariant vector. If tðT ; n�1=2Þ is real-

ized as a subrepresentation of n1=21GLð2Þz n�1=2, then the I-invariant function f is given by

the values

�
f ð1Þ; f ðs2Þ; f ðs2s1Þ; f ðs2s1s2Þ

�
¼ ð1;�q�1;�q�1; q�2Þ:ð20Þ

This function is even P1-invariant (see the section on notations).

(ii) Let x be the non-trivial unramified quadratic character of F �. The representation

Pðx Stn 1Þ ¼ L
�
ðn1=2x StGLð2Þ; n

�1=2Þ
�

has no non-zero GðoÞ-invariant vector, but has a two-

dimensional subspace of I-invariant vectors. The representation can be realized as a subrepre-

sentation of xn1=21GLð2Þ z xn�1=2 in such a way that the space of I-invariant functions f is

spanned by the functions given by

�
f ð1Þ; f ðs2Þ; f ðs2s1Þ; f ðs2s1s2Þ

�
¼
�
�ð1 þ qÞq2; ð1 � qÞq; ð1 � qÞq; 1 þ q

�
ð21Þ

and �
f ð1Þ; f ðs2Þ; f ðs2s1Þ; f ðs2s1s2Þ

�
¼ ð�q2;�q2; 1; 1Þ:ð22Þ

In fact, the function (21) is P1-invariant, and the function (22) is P2-invariant.

Proof. (i) From the previous proposition we get a non-zero and non-injective inter-
twining operator
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Að�1=2Þ : n�1=21GLð2Þz n1=2 ! n1=21GLð2Þ z n�1=2:

On I -invariant vectors AðsÞ has rank 1, by (17), thus one of the two constituents of
n�1=21GLð2Þz n1=2 contains a three-dimensional space of I -invariant vectors, the other one
a one-dimensional space. The spherical vector in V1;�1=2 has ða; b; g; dÞ ¼ ð1; 1; 1; 1Þ and
lies in the kernel of AðsÞ. Therefore this kernel is isomorphic to L

�
ðn; 1F � z n�1=2Þ

�
, the

spherical constituent of n1=21GLð2Þz n�1=2; see [ST], Lemma 3.8. It follows that the image
of Að�1=2Þ in V1;1=2 is isomorphic to tðT ; n�1=2Þ and contains an essentially unique I -
invariant vector. Its explicit form can be read o¤ from (17). The function is obviously
right-invariant under s1 and therefore under P1.

The argument for (ii) is very similar. The relevant matrix (19) has rank 2, its kernel
is spanned by t

�
�ð1 þ qÞq2; ð1 � qÞq; ð1 � qÞq; 1 þ q

�
and tð�q2;�q2; 1; 1Þ. The function

(21) is right invariant under s1 and therefore under P1. The function f as in (22) is right
invariant under s2 and therefore under P2. r

3. Invariant vectors in P(Stn 1)

We shall now investigate the p-adic properties of the non-tempered representation
PðStn 1Þ ¼ L

�
ðn1=2 St; n�1=2Þ

�
. By [ST], Lemma 3.8, it occurs as a subrepresentation of

1F � z 1GLð2Þ (induction from the parabolic Q). We therefore consider the family of induced
representations

ns z n�s=21GLð2Þ; s A C;

and apply a similar method as in the previous section. Let Vs be the standard model for
ns z n�s=21GLð2Þ, i.e., Vs consists of locally constant functions f : GðFÞ ! C that transform
as

f

0B@ u � �
A �

u�1 detðAÞ

0@ 1Ag

1CA¼ juj2þsjdetðAÞj�s=2�1
f ðgÞ; u A F �; A A GLð2;FÞ

(the modular factor of the parabolic Q is ju4 detðAÞ�2j). Let V I
s be the subspace of I -

invariant vectors. Restricting functions in Vs from GðFÞ to GðoÞ is an injective operation,
thus V I

s is isomorphic to the space of functions GðoÞ ! C that are left QðoÞ-invariant and
right I -invariant. Now

QðoÞnGðoÞ=I FQðo=pÞnGðo=pÞ=Bðo=pÞ:

Since s2 A Q, a complete set of representatives for this double coset space is
f1; s1; s1s2; s1s2s1g. It follows that dimCðV I

s Þ ¼ 4; any f A V I
s is determined by the values

a :¼ f ð1Þ; b :¼ f ðs1Þ; g :¼ f ðs1s2Þ; d :¼ f ðs1s2s1Þ;ð23Þ
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and these values can be chosen arbitrarily. We would like to determine, for s ¼ 0, the inter-
section of V I

s with a subspace W0 of V0 that carries the representation L
�
ðn1=2 St; n�1=2Þ

�
.

For this purpose we consider the intertwining operator AðsÞ : Vs ! V�s defined by

�
AðsÞ f

�
ðgÞ ¼

Ð
H

f ðwlngÞ dn; wl ¼ s2s1s2s1 ¼

1

1

�1

�1

0BBB@
1CCCA:ð24Þ

Here H is the unipotent radical of the parabolic Q.

3.1. Proposition. The intertwining operator AðsÞ defined by (24) is convergent

for ReðsÞ > 1. It has meromorphic continuation to all of C with possible poles at

points s A C where q�sG1 ¼ 1 or q�2s ¼ 1, and defines a non-zero intertwining map

ns z n�s=21GLð2Þ ! n�s z ns=21GLð2Þ.

Proof. The proof is analogous to that of Proposition 2.1. r

3.2. Lemma. With f as in (23), we have for ReðsÞ > �1 and w A W

Ð
F

f

0BBBB@
1

l 1

1

�l 1

0BBB@
1CCCAw

1CCCCA dl ¼

q�1aþ 1 � q�1

1 � q�s�1
b; w ¼ 1;

q�1aþ 1 � q�1

1 � q�s�1
g; w ¼ s2;

b þ ð1 � q�1Þq�s�1

1 � q�s�1
a; w ¼ s1;

q�1b þ 1 � q�1

1 � q�s�1
d; w ¼ s2s1;

gþ ð1 � q�1Þq�s�1

1 � q�s�1
a; w ¼ s1s2;

q�1gþ 1 � q�1

1 � q�s�1
d; w ¼ s2s1s2;

dþ ð1 � q�1Þq�s�1

1 � q�s�1
b; w ¼ s1s2s1;

dþ ð1 � q�1Þq�s�1

1 � q�s�1
g; w ¼ s2s1s2s1:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
Proof. If the conjugation g 7! w�1gw moves the l-variable to a positive root, we

split the integral as
Ð
o

þ
Ð

Fno
, otherwise as

Ð
p

þ
Ð

Fnp
. In either case the first integral is trivial,

while the second one can be computed using (13). r

3.3. Lemma. With f as in (23), define
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BðwÞ :¼
Ð
F

f

0BBBB@
1

l 1

1

k �l 1

0BBB@
1CCCAw

1CCCCA dl; w A W :

Then, for ReðsÞ > 0,

BðwÞ ¼

q�2aþ ð1 � q�1Þq�1

1 � q�s
b þ 1 � q�1

1 � q�s
d; w ¼ 1;

q�2aþ ð1 � q�1Þq�1

1 � q�s
gþ 1 � q�1

1 � q�s
d; w ¼ s2;

ð1 � q�1Þq�s�1

1 � q�s
aþ q�1b þ 1 � q�1

1 � q�s
g; w ¼ s1;

q�2b þ ð1 � q�1Þq�1

1 � q�s
gþ 1 � q�1

1 � q�s
d; w ¼ s2s1;

ð1 � q�1Þq�s�1

1 � q�s
aþ ð1 � q�1Þq�s

1 � q�s
b þ g; w ¼ s1s2;

ð1 � q�1Þq�s�1

1 � q�s
b þ q�1gþ 1 � q�1

1 � q�s
d; w ¼ s2s1s2;

ð1 � q�1Þq�s�1

1 � q�s
aþ ð1 � q�1Þq�s

1 � q�s
b þ d; w ¼ s1s2s1;

ð1 � q�1Þq�s�1

1 � q�s
aþ ð1 � q�1Þq�s

1 � q�s
gþ d; w ¼ s2s1s2s1:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
Proof. If the conjugation g 7! w�1gw moves the k-variable to a positive root, we

split the k-integration as
Ð
o

þ
Ð

Fno
, otherwise as

Ð
p

þ
Ð

Fnp
. We then use the formula

1

l 1

1

k �l 1

0BBB@
1CCCA ¼

k�1 k�1l 1

1 k�1l2 l

1

k

0BBB@
1CCCA

1

k�1l 1

1

�k�1l 1

0BBB@
1CCCAð25Þ

�

1

1

1

�1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼s1s2s1

�1 �k�1

1

1

�1

0BBB@
1CCCA

on the second integral and Lemma 3.2. r

The intertwining operator AðsÞ induces a linear map between the four-dimensional
spaces V I

s and V I
�s. Using Lemma 3.3, we can now explicitly compute this linear map.
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3.4. Lemma.

�
AðsÞ f

�
ðwÞ ¼

ð1 � q�1Þq�s�1

1 � q�sþ1
aþ ð1 � q�1Þq�s

1 � q�sþ1
b þ ð1 � q�1Þq�sþ1

1 � q�sþ1
gþ d; w ¼ 1;

ð1 � q�1Þq�s�1

1 � q�sþ1
aþ ð1 � q�1Þq�s

1 � q�sþ1
b þ q�1gþ 1 � q�1

1 � q�sþ1
d; w ¼ s1;

ð1 � q�1Þq�s�1

1 � q�sþ1
aþ q�2b þ ð1 � q�1Þq�1

1 � q�sþ1
gþ 1 � q�1

1 � q�sþ1
d; w ¼ s1s1;

q�3aþ ð1 � q�1Þq�2

1 � q�sþ1
b þ ð1 � q�1Þq�1

1 � q�sþ1
gþ 1 � q�1

1 � q�sþ1
d; w ¼ s1s2s1:

8>>>>>>>>>>>><>>>>>>>>>>>>:
Proof. One uses the matrix identity

1

l 1

m 1

k m �l 1

0BBB@
1CCCA ¼

�m�1 1

�m�1 �l� km�1 1

�m

�m

0BBB@
1CCCAð26Þ

�

1

�km�1 1

1

�m�2kþ m�1l km�1 1

0BBB@
1CCCA

1

1

�1

�1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼s2s1s2

�

1 �m�1

1 �m�1

1

1

0BBB@
1CCCA

and the results of the previous lemma. r

3.5. Proposition. For each flat section fs A ns1GLð2Þ z n�s and each g A GðFÞ, the

limit

lim
s!0

�
AðsÞ fs

�
ðgÞð27Þ

exists. This defines a non-zero intertwining operator

Að0Þ : 1F � z 1GLð2Þ ! 1F � z 1GLð2Þ:

With respect to a suitable basis, the restriction of this operator to the four-dimensional space

of I-invariant vectors has matrix

�q�2 �q�1 �1 1

�q�2 �q�1 q�1 �q�1

�q�2 q�2 �q�2 �q�1

q�3 �q�3 �q�2 �q�1

0BBB@
1CCCA:ð28Þ
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Proof. We argue as in Proposition 2.5. It follows from the formulas in Lemma 3.4
that the limit (27) exists for each g, provided fs is an I -invariant section. Let W HV0 be the
G-invariant subspace generated by the I -invariant functions. Each f A W lies in a unique
flat section fs, and we can define�

Að0Þ f
�
ðgÞ :¼ lim

s!0

�
AðsÞ fs

�
ðgÞ:

The limit exists since f is a linear combination of right translates of I -invariant functions,
and g in (27) is arbitrary. This defines an intertwining operator Að0Þ : W ! V0. Now con-
sider the basis of V I

0 consisting of those four functions f such that ða; b; g; dÞ as defined in
(23) are the standard unit vectors. With respect to this basis it is easily computed from
Lemma 3.4 that the endomorphism of V I

0 induced by Að0Þ has the matrix given by (28).
This matrix is invertible, with characteristic polynomial

wAð0ÞðX Þ ¼ ðX þ q�2 þ q�1Þ3ðX � q�2 � q�1Þ:

It follows that the intertwining operator

Að0Þ � ðq�2 þ q�1Þ idV0
: W ! V0

is neither zero nor injective, and so W cannot be irreducible. Since we know the length of
1F � z 1GLð2Þ is 2, it follows that W ¼ V0. r

3.6. Corollary. The representation PðStn 1Þ ¼ L
�
ðn1=2 St; n�1=2Þ

�
has no non-zero

P1-invariant vector, but a non-zero I-invariant vector, unique up to multiples. If the represen-

tation is realized as a subrepresentation of 1F � z 1GLð2Þ, then the I-invariant function f is

given by the values�
f ð1Þ; f ðs1Þ; f ðs1s2Þ; f ðs1s2s1Þ

�
¼ ð1;�q�1;�q�1; q�2Þ:ð29Þ

This function is even invariant under the Klingen congruence subgroup P2.

Proof. From Proposition 3.5 we get a non-zero and non-injective intertwining
operator

j :¼ Að0Þ � ðq�2 þ q�1Þ idV0
: 1F � z 1GLð2Þ ! 1F � z 1GLð2Þ:

Let W HV0 be the kernel of j. It follows from (28) that W contains a unique I -invariant
function (up to scalars), namely the one given by (29). Since s1 A P1, this function is not
P1-invariant. It is therefore also not GðoÞ-invariant. Since the unique spherical constituent
of 1F � z 1GLð2Þ is L

�
ðn; 1F � z n�1=2Þ

�
(see [ST], Lemma 3.8), it follows that W carries the

representation L
�
ðn1=2 St; n�1=2Þ

�
. The vector (29) is P2-invariant since it is obviously

s2-invariant. r

4. Atkin-Lehner involutions and e-factors

We consider the Atkin-Lehner element h defined in (6). Since h normalizes the Iwa-
hori subgroup I , the operator pðhÞ acts on the space of I -invariant vectors, for any repre-
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sentation p of GSpð4;FÞ. If p has trivial central character, then pðhÞ acts as an involution,
because h2 ¼ $1. We call these operators Atkin-Lehner involutions. They split the spaces
of I -invariant vectors intoG1-eigenspaces. If v is an eigenvector, we call its eigenvalue the
Atkin-Lehner eigenvalue of v. The Atkin-Lehner involutions also act on the space of P1-
invariant vectors and on the space of P02-invariant vectors, since these parahoric subgroups
are also normalized by h.

Consider the representation P ¼ PðStn StÞ ¼ tðT ; n�1=2Þ with its one-dimensional
space of I -invariant vectors given explicitly in Corollary 2.6 (i). Let f be the P1-invariant
function given by �

f ð1Þ; f ðs2Þ; f ðs2s1Þ; f ðs2s1s2Þ
�
¼ ð1;�q�1;�q�1; q�2Þ

in the standard induced model of n1=21GLð2Þ z n�1=2. The eigenvalue of PðhÞ on f is very
easily computed: We have�

PðhÞ f
�
ð1Þ ¼ f ðhÞ ¼ j�$�1j2f ðs2s1s2Þ ¼ 1 ¼ f ð1Þ;

and similarly
�
PðhÞ f

�
ðwÞ ¼ f ðwÞ for w A fs2; s2s1; s2s1s2g. Thus PðhÞ f ¼ f , and the

Atkin-Lehner eigenvalue of f is 1.

Next consider the representation P ¼ Pðx Stn 1Þ ¼ L
�
ðn1=2x StGLð2Þ; n

�1=2Þ
�
, where

x is the unramified quadratic character of F �. According to Corollary 2.6 (ii), we now
have a two-dimensional space of I -invariant vectors. A computation very similar to the
one above shows that

PðhÞ f ¼ f for each I -invariant f A Pðx Stn 1ÞH xn1=21GLð2Þ z xn�1=2:

In other words, the Atkin-Lehner eigenvalue is 1 on the whole space of I -invariant vectors.
This also implies that the vector (22) is not only invariant under P2 but even under the par-
amodular group P02.

Finally consider the representation P ¼ PðStn 1Þ ¼ L
�
ðn1=2 St; n�1=2Þ

�
. According

to Corollary 3.6 there is an essentially unique I -invariant function

f A PðStn 1ÞH 1F � z 1GLð2Þ

given by �
f ð1Þ; f ðs1Þ; f ðs1s2Þ; f ðs1s2s1Þ

�
¼ ð1;�q�1;�q�1; q�2Þ:

A similar computation as before yields PðhÞ f ¼ �f , i.e., the Atkin-Lehner eigenvalue of
f is �1. Moreover it shows that the above vector is not only invariant under P2 but even
under P02.

The following table gives, for each of the three representations we investigated above,
the dimensions of the spaces of vectors invariant under the subgroups indicated in the top
row. These are the results of sections 2 and 3. The next-to-last column gives the Atkin-
Lehner eigenvalues we just computed.
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representation I P1 P2 P02 AL-eigenvalue eð1=2;PÞ

PðStn 1Þ 1 0 1 1 �1 �1
ð30Þ

Pðx Stn 1Þ 2 1 1 1 1 1

PðStn StÞ 1 1 0 0 1 1

We have noted above that under some reasonable assumptions on the local Langlands
correspondence, the representation PðStn 1Þ is a functorial lift of the representation
Stn 1 of PGLð2;FÞ � PGLð2;FÞ, and similarly for the other two representations. There-
fore the e-factor of Pðp1 n p2Þ should be given by eðs; p1;cÞeðs; p2;cÞ. Noting that

eð1=2; StÞ ¼ �1; eð1=2; x StÞ ¼ 1; eð1=2; 1Þ ¼ 1;

we have listed the value of eð1=2; p1Þeð1=2; p2Þ in the last column of table (30). Note that
these values do not depend on the choice of c. We see that all our Atkin-Lehner eigen-
values coincide with the signs defined by e-factors. Hence the situation is similar as for
PGLð2Þ, where the sign defined by the e-factor always coincides with the Atkin-Lehner
eigenvalue on the local newform; see [Sch1].

5. Classical modular forms

In this final chapter our global ground field is F ¼ Q. We shall use the main lifting
result, Theorem 1.1, to construct certain holomorphic Siegel modular forms of degree 2.
The congruence properties of these modular forms will be controlled by our local results
as summarized in (30). In the classical theory of Siegel modular forms it is customary to
realize symplectic groups using the symplectic form

J ¼ 12

�12

� �
:

Thus, we change our notation from now on and define, using this J,

G ¼ GSpð4Þ ¼ fg A GLð4Þ : tgJg ¼ lðgÞJ for some lðgÞ A GLð1Þg;

and similarly for Spð4Þ. An isomorphism between this GSpð4Þ and our previous version is
given by switching the first two rows and the first two columns. Siegel modular forms of
degree 2 are holomorphic functions on the Siegel upper half space

H2 ¼ fM A Mð2;CÞ symmetric; ImðMÞ positive definiteg

with certain invariance properties. We refer to [Fr] for the precise definition (we shall allow
modular forms for arbitrary arithmetic subgroups of Spð4;QÞ). Note that GSpð4;RÞþ, the
index-2 subgroup of GSpð4;RÞ of elements with positive multiplier, acts on H2 by the usual
linear fractional transformations,

Z 7! ghZi :¼ ðAZ þ BÞðCZ þ DÞ�1; g ¼ A B

C D

� �
A GSpð4;RÞþ:
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We shall also use the classical notation

jðg;ZÞ ¼ detðCZ þ DÞ for Z A H2 and g ¼ A B

C D

� �
A GSpð4;RÞþ:

We shall now describe how to extract a classical modular form from an automorphic re-
presentation of PGSpð4;AÞ; see also [AS] and [Yo3]. Assume that P ¼

N
Pp is the decom-

position into local components of a cuspidal automorphic representation of PGSpð4;AÞ.
Assume that the archimedean component Py is sþk , the holomorphic discrete series repre-
sentation of PGSpð4;RÞ with scalar minimal K-type ðk; kÞ (see [Sch2], section 4). It is these
representations that underlie holomorphic Siegel modular forms of weight k; see [AS]. Note
that Py contains a distinguished lowest weight vector Fy of weight ðk; kÞ.

For each finite p let Kp be an open compact subgroup of GðQpÞ such that Kp ¼ GðZpÞ
for almost all p. Let Fp A Pp be a non-zero vector fixed by Kp. We also require that Fp is
for almost all p the distinguished vector used to define the restricted tensor product

N
Pp.

All the local vectors can then be pieced together to define an element

F :¼
N

Fp A P:

The representation P is realized as a space of automorphic forms, so we consider F a func-
tion on GðAÞ. By definition this function has the property

Fðrghyhf Þ ¼ jðhy; IÞ�kFðgÞ for all r A GðQÞ; g A GðAÞ; hy A Ky; hf A Kf :ð31Þ

Here Kf ¼
Q

p<y
Kp, and

Ky ¼ A B

�B A

� �
A GLð4;RÞ : AtA þ BtB ¼ 1;AtB ¼ BtA

� �
FUð2Þ

is the standard maximal compact subgroup of Spð4;RÞ. Note that hy 7! jðhy; IÞ, where

I ¼ i

i

� �
, is a character of Ky.

5.1. Lemma. Let G ¼ GSpð2nÞ. For each prime number p let Kp be an open compact

subgroup of GðQpÞ such that Kp ¼ GðZpÞ for almost all p, and such that the multiplier map

Kp ! Z�
p is surjective for all p. Then

GðAÞ ¼ GðQÞGðRÞþKf ; Kf ¼
Q

p<y
Kp;

where GðRÞþ is the group of elements of GðRÞ with positive multiplier.

This lemma is well known and not hard to prove, making use of strong approxima-
tion for the simply connected algebraic group Spð2nÞ. Together with equation (31) it implies
that F as above is determined by its values on GðRÞþ, provided the local compact sub-
groups are ‘‘big enough’’, as we shall assume from now on. Let us define a function F on
H2 by putting
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FðZÞ ¼ lðgyÞ�k
jðgy; IÞkFðgyÞ; where gy A GðRÞþ is such that gyhIi ¼ Z:ð32Þ

The stabilizer of I in GðRÞþ is Ky times the center, so F is well-defined by (31) and because
of the factor lðgyÞ�k. The fact that Fy is a lowest weight vector for the discrete series
representation sþk implies that F is a holomorphic function; see [AS], 4.2. If we define the
congruence subgroup

G :¼ GðQÞXGðRÞþ
Q

p<y
Kp H Spð4;QÞ;

then the function F has the invariance property

FðZÞ ¼ ðF j gÞðZÞ :¼ jðg;ZÞ�k
FðghZiÞ for all g A G:

In other words, F is a Siegel modular form of weight k with respect to the congruence sub-
group G. One can prove that the fact that the representation P is cuspidal implies that F is
a cusp form in the classical sense, meaning that only positive definite matrices occur in the
Fourier expansion of F and all F j r, r A Spð4;QÞ.

Let f A S2k�2

�
G0ðmÞ

�
be a classical elliptic holomorphic cusp form of weight 2k � 2

and level m. Assuming that f is an eigenform for all Hecke operators TðpÞ with pFm,
there is a well-known procedure to attach a cuspidal automorphic representation pf of
PGLð2;AÞ to f , see [Ge], §5 or [Bu], 3.6. Because of the strong multiplicity one theorem for
GLð2Þ, the space of automorphic forms realizing pf inside L2

0

�
GLð2;QÞnGLð2;AÞ; 1A�

�
is

unique; here 1A� is the trivial character of A� FZ
�
GLð2;AÞ

�
. In the following we shall

moreover assume that f is a newform, because oldforms do not lead to any additional
automorphic representations.

Now let us assume that a set S of places of Q exists that satisfies the hypotheses of
our lifting theorem 1.1, where we put p ¼ pf . Let us also assume that y A S. Such an S

can always be found if pf ¼
N

pf ;p with pf ;p being square integrable for some finite p.
Given such an admissible S, let P ¼ Pðpn pSÞ be the global lifting whose existence is
guaranteed by Theorem 1.1. By that theorem, it is a cuspidal automorphic representation
of PGSpð4;AÞ. Let P ¼

N
pey

Pp be the factorization of P into local components.

Our modular form f has weight 2k � 2, and this determines the archimedean compo-
nent of pf , namely, pf ;y ¼ Dð2k � 3Þ. Since we have assumed y A S, the local archime-
dean lifting is

Py ¼ Pðpf ;y n StÞ ¼ P
�
Dð2k � 3ÞnDð1Þ

�
¼ sþk

in the notation of [Sch2]. Recall that sþk is the holomorphic discrete series representation of
PGSpð4;RÞ with scalar minimal K-type ðk; kÞ. As above let Fy be the distinguished lowest
weight vector.

As for the finite places, we choose vectors Fp A Pp, fixed under compact open sub-
groups Kp HGðQpÞ, that allow us to define the global element F ¼

N
Fp A P. As described

above, F corresponds to a classical holomophic cuspform F with respect to the congruence
subgroup G ¼ GðQÞXGðRÞþ

Q
p<y

Kp H Spð4;QÞ.
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We would like to control the level of these lifts, which of course depends on the local
subgroups Kp. If pFm, then pf ;p as well as Pp are unramified representations, and we can
choose Kp ¼ GðZpÞ and Fp a spherical vector. These places do not impose any congruence
conditions on g A G (except for being p-integral). To control the level at the bad primes, we
shall now assume that m is square-free. Then we have

pf ;p ¼ StGLð2Þ or pf ;p ¼ x StGLð2Þ;

where x is the non-trivial unramified quadratic character of Q�
p . Which of the two represen-

tations occurs is decided by the eigenvalue of f under the Atkin-Lehner involution (defined
completely in classical terms, as in [Mi], 4.6, for example). If this eigenvalue is �1, then
pf ;p ¼ St, otherwise pf ;p ¼ x St.

In the following theorem we shall be talking about the L-function of a classical Siegel
modular form F (of degree 2). It is not clear whether this is a well-defined notion for eigen-
forms on arbitrary congruence subgroups. We therefore agree to associate an L-function to
F only if the following holds: F is related to an adelic function F by formula (32); the
GðAÞ-invariant subspace of L2

0

�
GðQÞnGðAÞ; 1A�

�
generated by F carries a multiple of a

cuspidal automorphic representation P of GðAÞ; and we know the local Langlands param-
eter for each local component of P, so that we can define the spin (degree 4) L-function
Lðs;PÞ. Under these circumstances, we define Lðs;FÞ :¼ Lðs;PÞ. If F is a modular form
for the full modular group and an eigenform for all Hecke operators, this definition of
Lðs;FÞ coincides (up to a shift in the argument) with the usual spin L-function of F , see
[AS]. In our square-free situation the only problematic local representations will be the
three liftings

PðStn 1Þ; Pðx Stn 1Þ; PðStn StÞ

we investigated before. All three representations are Iwahori-spherical, so we will define
their local parameters to be those given by [KL]. One can show that the local parameter
of PðStn 1Þ is then the direct sum of the local parameters for StGLð2Þ and 1GLð2Þ, and sim-
ilarly for the other representations. The local L-factors of these representations are there-
fore given as follows.

Pp Lpðs;PpÞ�1

PðStn 1Þ ð1 � p�s�1=2Þ2ð1 � p�sþ1=2Þ
ð33Þ

Pðx Stn 1Þ ð1 � p�s�1=2Þð1 � p�sþ1=2Þð1 þ p�s�1=2Þ

PðStn StÞ ð1 � p�s�1=2Þ2

In the following theorem the paramodular group GparaðmÞ is as in (3). The group
G0ðmÞ is the usual Hecke subgroup, defined by a congruence condition on the lower left
block. We shall use the same symbol for subgroups of SLð2;ZÞ and of Spð4;ZÞ, hoping
this causes no confusion.

5.2. Theorem. Let m be a square-free positive integer and f A S2k�2

�
G0ðmÞ

�
an ellip-

tic eigenform, assumed to be a newform. Let ep be the eigenvalue of f of the Atkin-Lehner

involution at p. Let hp be the Atkin-Lehner involution in degree 2 at p.
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(i) If the sign in the functional equation of Lðs; f Þ is �1, then there exists a cusp form

F A Sk

�
GparaðmÞ

�
of degree 2, unique up to multiples, whose completed spin L-function is

given by

Lðs;FÞ ¼ 1

4p
s � 1

2

� �
Z s þ 1

2

� �
Z s � 1

2

� �
Lðs; f Þ;ð34Þ

where Z is the completed Riemann zeta function. This lifting preserves Atkin-Lehner eigen-

values, i.e., hpF ¼ epF for each p.

(ii) If k is even, then there exists a cusp form F A Sk

�
G0ðmÞ

�
of degree 2, unique up to

multiples, whose completed spin L-function is given by

Lðs;FÞ ¼ 1

4p
s � 1

2

� �� Q
ep¼�1

ð1 � p�sþ1=2Þ
�

Z s þ 1

2

� �
Z s � 1

2

� �
Lðs; f Þ:ð35Þ

We have hpF ¼ F for each p.

Proof. (i) Let p be the cuspidal automorphic representation of PGLð2;AÞ corre-
sponding to f . In Theorem 1.1 let S ¼ fyg. Since eð1=2; pÞ is the sign in the functional
equation of Lðs; f Þ, the sign condition in Theorem 1.1 is fulfilled by our hypothesis. Hence
we obtain a cuspidal lifting P ¼ Pðpn pSÞ. By definition of S, the local components Pp

for p jm are either PðStn 1Þ or Pðx Stn 1Þ, each of which contains an essentially unique
paramodular-invariant vector. Together with the lowest weight vector at the archimedean
place and the unramified vectors for finite pFm, we get a cuspidal Siegel modular form
F A Sk

�
GparaðmÞ

�
. The assertion about the Atkin-Lehner eigenvalues can be read o¤ from

table (30), and the L-function of F can easily be determined using table (33) (the factor
s � 1=2 comes from the archimedean place, see [Sch2], (11)).

As for the uniqueness statement, assume that F 0 is another cusp form with L-function
as in (35). Let F 0 be the corresponding adelic function, generating (a multiple of ) an auto-
morphic representation P 0. From the form of the Euler factors at good primes, we see that
the local components of P and of P 0 coincide almost everywhere. Thus P 0 is also ‘‘strongly
associated to P’’ in the terminology of [PS]. By [PS], Theorem 2.2, considering the way the
liftings in our Theorem 1.1 are constructed, the representation P 0 is also a lift of the form
Pðp 0 n pS 0 Þ for some automorphic representation p 0 of GLð2;AÞ and some set of places S 0

(see the proof of Theorem 1.1).

The local components P 0
p of P 0, being Iwahori-spherical, must therefore be amongst

the ones occuring in table (30). A look at the Euler factors (33) of these representations
shows that Pp ¼ P 0

p for p jm. Similarly Py ¼ P 0
y. Therefore the global representations

P and P 0 are isomorphic. By [PS], Theorem 6.2, the multiplicity one result for lifts
from fSLSLð2;AÞ, the representations P and P 0 coincide as spaces of automorphic forms.
We have shown that F and F 0 are elements of the same irreducible space of automorphic
forms. The uniqueness statement now follows from the local uniqueness expressed by the
one-dimensionality of the spaces of fixed vectors in (30).

(ii) The proof is similar as in (i). This time we choose S ¼ fygW fp jm : ep ¼ �1g.
Since eð1=2; pÞ ¼ ð�1Þk�1Q

p

ep ¼ ð�1Þk�1ð�1ÞKS�1, the sign condition in Theorem 1.1 is
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equivalent to our hypothesis that k is even. Hence we get a cuspidal lifting P ¼ Pðpn pSÞ.
By definition of S, the local components Pp for p jm are either Pðx Stn 1Þ or PðStn StÞ.
In either case, by (30), we have an essentially unique local fixvector for the Siegel congru-
ence subgroup P1. We can therefore extract a Siegel cusp form F A Sk

�
G0ðmÞ

�
from P. The

Atkin-Lehner eigenvalues and the L-function can be seen from the tables (30) and (33). The
uniqueness proof is the same as in (i). r

Remarks. (a) The factor s � 1=2 in the L-functions, which appears because our sets
S contain the archimedean place, assures that the L-functions are holomorphic at s ¼ 1=2.
However, because of the presence of the zeta functions, the L-functions of all our lifts have
simple poles at s ¼ 3=2 and s ¼ �1=2.

(b) If m ¼ 1, then (i) and (ii) are equivalent statements. This is the classical Saito-
Kurokawa case.

(c) If m is divisible by many primes, a single modular form f A S2k�2

�
G0ðmÞ

�
can

have many Saito-Kurokawa lifts, corresponding to various choices of S. All that has to
be observed is the parity condition in Theorem 1.1. However, most of the liftings thus
obtained will be cusp forms with respect to ‘‘mixed’’ congruence subgroups.

(d) As mentioned in the introduction, part (ii) of the theorem holds for arbitrary pos-
itive integers m, not only square-free ones. This result can be reproved using the above
methods, which requires a more delicate analysis of the local representations. The necessary
invariance properties were obtained in collaboration with Brooks Roberts and will appear
elsewhere.

(e) If we choose S not to contain the archimedean place, we obtain certain non-
holomorphic Siegel modular forms. See [Mz] for a construction using classical notation.

Examples. (a) There exists an elliptic eigenform f A S new
2

�
G0ð37Þ

�
with Atkin-

Lehner eigenvalue e37 ¼ 1. Since 2 ¼ 2 � 2 � 2, both sign conditions in (i) and (ii) of
Theorem 5.2 are fulfilled, and we get Siegel modular forms F1 A S2

�
Gparað37Þ

�
and

F2 A S2

�
G0ð37Þ

�
. In this case F1 and F2 correspond to di¤erent vectors in the same auto-

morphic representation of PGSpð4;AÞ; the local representation at the place 37 is
Pðx Stn 1Þ.

(b) There exists an elliptic eigenform f A S new
2

�
G0ð91Þ

�
with Atkin-Lehner eigenval-

ues e7 ¼ e13 ¼ �1. Again both sign conditions are fulfilled, so that we get two Siegel mod-
ular forms F1 A S2

�
Gparað91Þ

�
and F2 A S2

�
G0ð91Þ

�
. In this case the two modular forms are

vectors in di¤erent (but near equivalent) automorphic representations of PGSpð4;AÞ.

Finally, let us compare the construction in part (i) of Theorem 5.2 with the Yoshida
liftings of [Yo1], [Yo2] and [BSP1], [BSP2]. The starting point for the latter is also an eigen-
form f A S2k�2

�
G0ðmÞ

�
of some square-free level m. The first step is to move f to an

automorphic form j on the unit group D�ðAÞ of a global quaternion algebra D via the
Jacquet-Langlands correspondence. Next, the close relationship between D�ðAÞ and global
orthogonal groups is exploited to produce an automorphic form f on some GOðV ;AÞ,
where V is a four-dimensional quadratic space (this corresponds to the left vertical arrows
in the diagram (12) in [Sch2]). This function is then moved to a Siegel modular form (an
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automorphic form on GSpð4;AÞ) via the theta correspondence. The result is a cusp form of
degree 2 of the same level m (meaning for G0ðmÞ).

To make this procedure work, one has to choose a suitable quaternion algebra D. Ap-
parently D has to be ramified at y, and then necessarily also at an odd number of finite
places p. But D must be unramified at finite places outside m, because otherwise f has no
Jacquet-Langlands lift. It follows that necessarily m3 1, i.e., classical Saito-Kurokawa lifts
are not Yoshida lifts.

Let us assume that m > 1 and that D is chosen such that the Jacquet-Langlands lift
j of f exists. Then another assumption had to be made in [BSP1] and [BSP2] to obtain a
non-vanishing function f on the orthogonal group, namely, for all p jm we must have

D unramified at p , ep ¼ 1:ð36Þ

Thus f completely determines D. For fixed f , there is at most one Yoshida lift. Note that
the condition (36) amounts precisely to the choice of S made in part (i) of the theorem
above. The unique Saito-Kurokawa lift F for G0ðmÞ constructed in this theorem coincides
with the Yoshida lift of f . The weight condition that k be even is also necessary in [BSP1]
and [BSP2], namely for the final theta lifting to be non-zero.

Thus the point is that our Saito-Kurokawa lifts are locally lifted from orthogonal
groups (see [Sch2]), while this is true globally for Yoshida lifts.

References

[An] Andrianov, A., Modular descent and the Saito-Kurokawa conjecture, Invent. Math. 53 (1979), 267–280.

[AS] Asgari, M., Schmidt, R., Siegel modular forms and representations, Manuscr. Math. 104 (2001), 173–

200.
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