
On classifying processes
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1. Introduction and statement of results

If G is a subclass of all stationary and ergodic binary processes then a sequence of

functions g n : f0, 1gn ! fYES, NOg is a classification for G in probability if

lim
n!1

P(gn(X 1, . . . , X n) ¼ YES) ¼ 1

for all processes in G, and

lim
n!1

P(g n(X 1, . . . , X n) ¼ NO) ¼ 1

for all processes not in G. Similarly, g n : f0, 1gn ! fYES, NOg is a classification for G in a

pointwise sense if

gn(X 1, . . . , X n) ¼ YES eventually almost surely

for all processes in G, and

g n(X1, . . . , X n) ¼ NO eventually almost surely

for all processes not in G. Of course, if gn is a classification in a pointwise sense then it is a

classification in probability, but a classification in probability is not necessarily a

classification in a pointwise sense.

For the class Mk of k-step mixing Markov chains of fixed order k, there is a pointwise

classification of the type we have just described. (For mixing Markov chains, see

Proposition I.2.10 in Shields 1996.) It was carried out in detail for independent processes by

Bailey (1976). (Actually, he proved the result only for independent processes and indicated

how to generalize his result for the class of Mk .) For the class Mmix ¼
S1

k¼0 Mk of

mixing Markov chains of any order, Bailey showed that no such classification exists. See

Ornstein and Weiss (1990) for further results on this kind of question. Our concern in this

paper is with the class of finitarily Markovian processes which is defined as follows. Let

fX ng1n¼1 be a stationary and ergodic binary time series. A one-sided stationary time series

Bernoulli 11(3), 2005, 523–532

1350–7265 # 2005 ISI/BS



fX ng1n¼1 can always be thought to be a two-sided time series fX ng1n¼�1. For m < n let

X n
m ¼ (X m, . . . , X n).

Definition. A stationary and ergodic binary time series fX ng is said to be finitarily

Markovian if for almost every x�1
�1 there is a finite K(x�1

�1) such that, for all i . 0 and y�1
�i , if

P(X0 ¼ 1jX�K�1
�K�i ¼ y�1

�i , X�1
�K ¼ x�1

�K ) . 0 then

P(X0 ¼ 1jX�1
�K ¼ x�1

�K ) ¼ P(X0 ¼ 1jX�K�1
�K�i ¼ y�1

�i , X�1
�K ¼ x�1

�K ):

This class includes all finite-order Markov chains (mixing or not) and many other processes

such as the finitarily deterministic processes of Kalikow, et al. (1992).

Example 1. First we define a Markov process which serves as the technical tool for our

construction. Let the state space S be the non-negative integers. The transition probabilities

are as follows: with probability one move from 0 to 1 and from 1 to 2; for all s > 2 move

with equal probability 0:5 to 0 and s þ 1. This construction yields a stationary and ergodic

Markov process fM ig with stationary distribution

P(M i ¼ 0) ¼ P(M i ¼ 1) ¼ 1

4

and

P(M i ¼ j) ¼ 1

2 j
for j > 2:

Now we define the binary hidden Markov chain fX ig, which we denote as X i ¼ f (M i). Let

f (0) ¼ 0, f (1) ¼ 0, and f (s) ¼ 1 for all even states s. A feature of this definition of f (�) is

that whenever X n ¼ 0, X nþ1 ¼ 0, X nþ2 ¼ 1, we know that M n ¼ 0 and vice versa. Consider

the class of processes of the above form for all possible labellings of the rest of the states by

zero and one. (It is easy to see that this class contains Markov chains of order up to r þ 1,

e.g. when, for all s > r, f (s) ¼ 1, and processes which are not Markov of any order, e.g.

when f (2i þ 1) ¼ 0 for i ¼ 1, 2, . . . and for the rest of the yet unlabelled odd states s,

f (s) ¼ 1.) This class is a subclass of all stationary and ergodic binary finitarily Markovian

processes. (Clearly, the conditional probability P(X 1 ¼ 1jX 0
�1) does not depend on values

beyond the first (going backward) occurrence of 001.) Györfi et al. (1998) proved that there is

no estimator of the value P(X nþ1 ¼ 1jX n
1 ) from samples X n

1 such that the error tends to zero

as n tends to infinity in the pointwise sense for this class of processes.

Example 2. Let fM ng be any stationary and ergodic first-order Markov chain with finite or

countably infinite state space S. Let s 2 S be an arbitrary state with P(M1 ¼ s) . 0. Now let

X n ¼ IfM n¼sg. By Shields (1996, Section I.2.c.1), the binary time series fX ng is stationary

and ergodic. It is also finitarily Markovian. (Indeed, the conditional probability

P(X1 ¼ 1jX 0
�1) does not depend on values beyond the first (going backwards) occurrence

of one in X 0
�1 which identifies the first (going backwards) occurrence of state s in the

Markov chain fM ng.) The resulting time series fX ng is not a Markov chain of any order in

general. (Indeed, consider the Markov chain fM ng with state space S ¼ f0, 1, 2g and
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transition probabilities P(X2 ¼ 1jX1 ¼ 0) ¼ P(X 2 ¼ 2jX 1 ¼ 1) ¼ 1, P(X 2 ¼ 0jX 1 ¼ 2) ¼
P(X 2 ¼ 1jX 1 ¼ 2) ¼ 0:5. This yields a stationary and ergodic Markov chain fM ng; cf.

Example I.2.8 in Shields (1996). Clearly, the resulting time series X n ¼ IfM n¼0g will not be

Markov of any order. The conditional probability P(X 1 ¼ 0jX 0
�1) depends on whether until

the first (going backwards) occurrence of one there is an even or odd number of zeros.) These

examples include all stationary and ergodic binary renewal processes with finite expected

inter-arrival times, a basic class for many applications. (A stationary and ergodic binary

renewal process is defined as a stationary and ergodic binary process such that the times

between occurrences of ones are independent and identically distributed with finite

expectation; cf. Shields 1996, Section I.2.c.1.)

Our main result is that there is no classification for membership in the class of finitarily

Markovian processes. As a by-product we will also improve Bailey’s result from mixing

Markov chains to the class of Markov chains. Our results apply to both pointwise

classifications and classifications in probability.

Theorem 1. Given a sequence of functions gn : f0, 1gn ! fYES, NOg such that

• for all stationary and ergodic binary Markov chains fX ng with arbitrary finite order

lim
n!1

P(g n(X n
1 ) ¼ YES) ¼ 1, (1)

• for all stationary and ergodic binary non-finitarily Markovian processes

lim
n!1

P(gn(X n
1 ) ¼ NO) ¼ 1, (2)

we can construct a single stationary and ergodic binary process fX ng such that

lim sup
n!1

P(g n(X n
1 ) ¼ YES) ¼ 1 and lim sup

n!1
P(gn(X n

1 ) ¼ NO) ¼ 1:

Corollary 1. There is no classification for the class of all stationary and ergodic binary

Markov chains with arbitrary finite order, in a pointwise sense or in probability.

Remark 1. For motivation, consider the universal intermittent estimation problem where the

goal is to find stopping times �k such that one can estimate P(X � kþ1 ¼ 1jX � k

1 ) from samples

X
� k

1 in the pointwise sense for all stationary and ergodic binary time series. Such a universal

scheme was proposed in Morvai (2003). Unfortunately, the stopping times of Morvai (2003)

grow very rapidly. Had one classified the Markov chains from non-Markov chains then one

could have improved the scheme of Morvai such that it would have remained universially

pointwise consistent for all stationary and ergodic processes; and in particular, if the process

turned out to be Markov, one could have estimated the conditional probability

P(X kþ1 ¼ 1jX k
1 ) eventually for all k, that is, �nþ1 ¼ �n þ 1 eventually. Indeed, if gn(X n

1 )

classified the process as Markov then one could simply use a Markov order estimator (e.g.

that of Csiszár and Shields 2000) and count frequencies of blocks with length equal to the

order, and this estimator is consistent in the pointwise sense for Markov chains. Otherwise

one could use the universal estimator of Morvai (2003).
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Corollary 2. There is no classification for the class of all stationary and ergodic binary

finitarily Markovian processes, in a pointwise sense or in probability.

Remark 2. Concerning the above-mentioned intermittent estimation problem, one could have

improved the universal estimator of Morvai (2003) for finitarily Markovian processes. Had

g n(X n
1 ) classified the process as a finitarily Markovian process one could, for example, have

used the stopping times and estimator in Morvai and Weiss (2003); the latter estimator is not

universal but works for all finitarily Markovian processes, and the growth of the stopping

times is much more moderate than that of the stopping times associated with the universal

estimator in Morvai (2003). For non-finitarily Markovian processes one could use the

universal estimator of Morvai (2003).

2. Proofs

The following lemma is well known.

Lemma 1. Let fX ng be a stationary and ergodic binary time series and N a positive integer.

Then there is a stationary and ergodic binary Markov chain fZ ng of some finite order up to

N such that the N-dimensional distributions of fX ng and fZ ng are identical.

Proof. Put P(Z Nþ1 ¼ zjZ N
1 ¼ xN

1 ) ¼ P(X Nþ1 ¼ zjX N
1 ¼ xN

1 ). This yields a stationary and

ergodic Markov chain fZ ng of some finite order up to N with the original marginal

distribution P(Z N
1 ¼ xN

1 ) ¼ P(X N
1 ¼ xN

1 ), that is, for n . N, define

P(Z n
1 ¼ xn

1 ) ¼ P(Z N
1 ¼ xN

1 )
Yn

i¼Nþ1

P(Zi ¼ zijZi�1
i�N ¼ xi�1

i�N ):

Clearly fZ ng is a stationary Markov chain of some finite order up to N since fX ng was

stationary. The chain fZ ng can be thought of as a one-step Markov chain by passing to N -

tuples. The ergodicity of the fX ng process guarantees that this chain is irreducible when

considered as a chain on those N -tuples which have positive measure under the distribution

of X N
1 . The process fZ ng is also ergodic since stationary binary irreducible Markov chains of

some finite order are ergodic by Proposition I.2.9 in Shields (1996). (See also Kemeny and

Snell 1960.) The proof of Lemma 2 is complete. h

Definition. The entropy rate H associated with a stationary binary time series fX ng is

defined as

H ¼ �E P(X 0 ¼ 1jX�1
�1)log2 P(X 0 ¼ 1jX�1

�1)
�

þ P(X0 ¼ 0jX�1
�1)log2 P(X0 ¼ 0jX�1

�1)
�
:

Lemma 2. Given a stationary and ergodic binary process fX ng, an integer N . 0 and a

real number 0 , � , 1, there exists a stationary and ergodic non-finitarily Markovian

process fYng such that
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X
yN

1
2f0,1gN

jP(X N
1 ¼ yN

1 ) � P(Y N
1 ¼ yN

1 )j , �: (3)

Proof. Let fZ ng be a stationary and ergodic binary time series with zero entropy rate such

that all finite words have positive probability. It is well known that such processes exist. For

the sake of completeness we supply a proof in Lemma 3 in the Appendix. This process is

clearly not finitarily Markovian.

By ergodicity of the fX ng process, there exists an r and a word wr
1 such that the

empirical counts of all N blocks from wr
1 are �=2Nþ1 close to the probabilities

corresponding to the fX ng process.

We would like to define a process in which we alternate between the fixed word wr
1 and

the Z n: Z1, wr
1, Z2, wr

1, . . . . If we can do this and identify uniquely the position of the Z n

then this process will not be finitarily Markovian. In order to uniquely identify the positions

of the Z n we will add a synchronizing word um
1 whose length is very small compared to the

length of wr
1 and which appears only where we place it. The fact that its length is small

means that the finite distributions will remain close to the finite distribution of the fX ng
process. For um

1 to sychronize we need to know that when looking across a string such as

Z1, um
1 , wr

1, Z2, um
1 , wr

1, Z3 the word appears only in the two locations where it is written.

Now choose some word um
1 with length m ¼ d10 log2 re such that this word does not

appear in the word wr
1 and it has no reasonable non-trivial self-overlap. More precisely,

there is no non-trivial self-overlap greater than 2=5m and there is no overlap with wr
1

greater than 2=5m. The number of words with length m which have greater self-overlap is

at most 2m23=5m. The number of words of length m which have overlap with wr
1 greater

than 2=5m but not completely contained in wr
1 is at most 2m23=5m. The number of words

with length m completely contained in wr
1 is at most r. Summing the number of these

possible bad words, we get

r þ 4m23=5m , 2m:

Thus there is at least one word um
1 with the desired property. The word um

1 will serve as a

synchronizing word.

We will define the desired fYng process in two steps. First we will define a non-

stationary process fW ng as follows. Consider n � 1 ¼ �(m þ r þ 1) þ Ł, where 0 < Ł <

m þ r and � > 0. The process fW ng will be obtained by inserting a fixed block um
1 , wr

1 of

length m þ r between successive symbols of the process fZ ng. Define the process fW ng as

follows:

W n ¼
Z�þ1 if Ł ¼ 0,

uŁ if 1 < Ł < m,

wŁ�m if m þ 1 < Ł < m þ r.

8<
:

Our assumptions on the synchronizing word imply that such a process will not be stationary,

and to ensure stationarity we need to randomize over m þ r þ 1. Here is a formal description.

Let � be uniformly distributed on f0, . . . , m þ rg. Let � be independent of fW ng. Define
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fYng as Yn ¼ W nþ�. (That is, fYng is constructed from fW ng by averaging over the

m þ r þ 1 shifts of the fW ng process.)

The fact that um
1 was synchronizing means that � is a function of the fYng process. Thus

from fYng one recovers the fZ ng process exactly. Now fYng is a stationary and ergodic

binary non-finitarily Markovian time series since fZ ng was such. To see that (3) is satisfied

one uses the property of wr
1 and takes r sufficiently large that the edge effects caused by um

1

are negligible. The proof of Lemma 2 is complete. h

Proof of Theorem 1. To construct fX ng we will alternately use the two lemmas to construct

a sequence of processes fY (i)
n g, which for odd i will be a Markov chain and for even i will

not even be finitarily Markovian, but the entire sequence will converge to an ergodic process

fX ng which will have the required properties. Here is how this is done. Let 0 , Ek , 1 such

that Ek ! 0 and 0 , �k , 1 such that
P1

k¼1�k , 0:25: We construct our process as follows.

Let fY (1)
n g be independent and identically distributed random variables assuming the values

f0, 1g with equal probability. Let N1 . 1 be so large that

P(gN1
(Y

(1)
1 , . . . , Y

(1)
N1

) ¼ YES) > 1 � E1

and there exists a set UN1
� f0, 1gN1 such that P((Y

(1)
1 , . . . , Y

(1)
N1

) 2 UN1
) . 1 � E1 and

max
u

N1
1

,v
N1
1

2UN1

X
x2f0,1g

1

N1

���� XN1�1

i¼0

Ifuiþ1¼xg � Ifviþ1¼xg
� ����� , E1:

Assume, for k ¼ 2, . . . , i � 1, that we have already defined a sequence of stationary and

ergodic binary time series fY (k)
n g and positive integers Nk . k2 and sets UNk

� f0, 1gNk

such that P((Y
(k)
1 , . . . , Y

(k)
Nk

) 2 UNk
) . 1 � Ek ,X

y
Nk�1
1

2f0,1gNk�1

jP(Y
(k�1)
1 ¼ y1, . . . , Y

(k�1)
Nk�1

¼ yNk�1
) � P(Y

(k)
1 ¼ y1, . . . , Y

(k)
Nk�1

¼ yNk�1
)j , �k�1,

max
u

Nk
k

,v
Nk
1

2UNk

X
xk

1
2f0,1g k

1

Nk � k þ 1

���� X
Nk�k

i¼0

Ifuiþ k
iþ1

¼x k
1
g � Ifviþ k

iþ1
¼x k

1
g

� ����� , Ek , (4)

and

• if k is even then fY (k)
n g is not finitarily Markovian and

P(gNk
(Y

(k)
1 , . . . , Y

(k)
Nk

) ¼ NO) > 1 � Ek

• if k is odd then fY (k)
n g is a Markov chain with some order and

P(g Nk
(Y

(k)
1 , . . . , Y

(k)
Nk

) ¼ YES) > 1 � Ek :

Now we define the same for i. If i is odd then apply Lemma 1 for fY (i�1)
n g with Ni�1. Let

fY (i)
n g denote the resulting stationary and ergodic binary Markov chain. Now let Ni . i2 be

so large that
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P(g Ni
(Y

(i)
1 , . . . , Y

(i)
Ni

) ¼ YES) > 1 � Ei

and there is a set UNi
� f0, 1gNi such that P((Y

(i)
1 , . . . , Y

(i)
Ni

) 2 UNi
) . 1 � Ei and

max
u

Ni
i

,v
Ni
1
2UNi

X
xi

1
2f0,1gi

1

Ni � i þ 1

����X
Ni�i

j¼0

Ifu
jþi

jþ1
¼xi

1
g � Ifv jþi

jþ1
¼xi

1
g

� ����� , Ei:

By assumption (1) and the ergodicity of fY (i)
n g1n¼1 there exists such an Ni.

If i is even then apply Lemma 2 for fY (i�1)
n g with Ni�1 and �i�1. Let fY (i)

n g denote the

resulting non-finitarily Markovian process. Now let Ni . i2 be so large that

P(gNi
(Y

(i)
1 , . . . , Y

(i)
Ni

) ¼ NO) > 1 � Ei

and there is a set UNi
� f0, 1gNi such that P((Y

(i)
1 , . . . , Y

(i)
Ni

) 2 UNi
) . 1 � Ei and

max
u

Ni
i

,v
Ni
1
2UNi

X
xi

1
2f0,1gi

1

Ni � i þ 1

����X
Ni�i

j¼0

Ifu
jþi

jþ1
¼xi

1
g � Ifv jþi

jþ1
¼xi

1
g

� ����� , Ei:

By assumption (2) and the ergodicity of fY (i)
n g1n¼1 there exists such an Ni.

Now it follows from the construction that for any n < Nk and k < K,

jP(Y
(k)
1 ¼ y1, . . . , Y (k)

n ¼ yn) � P(Y
(K)
1 ¼ y1, . . . , Y (K)

n ¼ yn)j <
X1
i¼k

�i

which tends to zero as k ! 1. Now define fX ng in the following way. For each n, let

P(X n
1 ¼ xn

1 ) ¼ lim
k!1

P(Y
(k)
1 ¼ x1, . . . , Y (k)

n ¼ xn):

Clearly fX ng is stationary since all fY (k)
n g were stationary. Since P((X1, . . . , X Nk

) 2 UNk
)

. 1 � Ek �
P1

i¼k�i, N k . k2, by (4) and Lemma 4 in the Appendix, fX ng is also ergodic.

Now it follows from the construction that

jP(X n
1 ¼ xn

1 ) � P(Y
(k)
1 ¼ x1, . . . , Y (k)

n ¼ xn)j <
X1
i¼k

�i:

Thus for k even,

P(gNk
(X1, . . . , X Nk

) ¼ NO) > 1 � Ek �
X1
i¼k

�i

and the right-hand side tends to 1 as k ! 1. Similarly, when k is odd,

P(g Nk
(X 1, . . . , X Nk

) ¼ YES) > 1 � Ek �
X1
i¼k

�i

and the right-hand side tends to 1 as k ! 1. The proof of Theorem 1 is complete. h

On classifying processes 529



Appendix

We present now the proofs of two fairly standard lemmas that we used before.

Lemma 3. There exists a stationary and ergodic time series fZ ng with zero entropy rate such

that all finite words have positive probability.

Proof. Let T : [0, 1] ! [0, 1] denote the mapping x ! x þ Æ mod 1, where Æ is a fixed

irrational. Denote the Lebesgue measure on [0, 1] by �. For a measurable subset A of [0, 1],

let �A(x) ¼ minfn > 1 : T nx 2 Ag denote the first return time to A. Partition A into

Ak ¼ fx 2 A : �A(x) ¼ kg. Note that T i Ak : 0 < i , kg are disjoint sets. We will define a

particular set A with the property that, for all k, the sets Ak will have positive measure.

Indeed, one can choose inductively points fxng and �n . 0,
P1

m¼nþ1 m�m , 0:1�n

sufficiently small that if I n ¼ [xn � �n, xn þ �n] the A defined as follows will have the

required property:

A ¼
[1
n¼1

I n

[
T n I n

 !
�

[1
m¼nþ1

[i¼1

m�1

T i I m

" #" #
:

It is easy to see that, for all k, �(Ak) . 0. In this case we can list all binary words with finite

length, f0, 1, 00, 01, . . .g ¼ fw1, w2, . . .g, and denote by jwk j the length of wk . Define a

partition of [0, 1] into two sets fP0, P1g by taking the kth word wk in the list and assigning

the first jwk j sets of (T 0 Ak), (T 1 Ak), . . . , (T k�1 Ak) to P0 or P1 according to the symbols in

wk and then assign to P0 all remaining points in [0, 1]. Finally, define a stationary and

ergodic binary process as follows. Choose x uniformly on [0, 1] and set

Z n(x) ¼ 1, if T nx 2 P1

0, if T nx 2 P0.

�

It is clear that all finite words have positive probability. Furthermore, it is well known that

any process defined by an irrational rotation as above is stationary and ergodic and has zero

entropy; see Cornfeld et al. (1982). The proof of Lemma 3 is complete. h

Lemma 4. A binary stationary time series fX ng is ergodic if there is a sequence of positive

integers N k . k2 tending to 1, Ek . 0 tending to zero and a sequence of sets

UNk
� f0, 1gNk with probability greater than 1 � Ek such that for all u

Nk

1 , vNk

1 2 UNk
,

X
x k

1
2f0,1g k

1

N k � k þ 1

���� X
Nk�k

i¼0

Ifuiþ k
iþ1

¼xk
1
g � Ifviþ k

iþ1
¼xk

1
g

� ����� , Ek : (5)

Proof. First observe that (5) implies that, for all u
Nk

1 , vNk

1 2 UNk
, and for all j < k,

X
x

j

1
2f0,1g j

1

Nk � k þ 1

���� X
Nk�k

i¼0

Ifu
iþ j

iþ1
¼x

j

1
g � Ifviþ j

iþ1
¼x

j

1
g

� ����� , Ek : (6)
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(Indeed,

X
x

j

1
2f0,1g j

1

Nk � k þ 1

���� X
Nk�k

i¼0

Ifu
iþ j

iþ1
¼x

j

1
g � Ifviþ j

iþ1
¼x

j

1
g

� �����

¼
X

x
j

1
2f0,1g j

1

Nk � k þ 1

���� X
Nk�k

i¼0

X
xk

jþ1
2f0,1g k� j

Ifuiþ k
iþ1

¼xk
1
g � Ifviþ k

iþ1
¼xk

1
g

� �����

<
X

x
j

1
2f0,1g j

X
xk

jþ1
2f0,1g k� j

1

Nk � k þ 1

���� X
Nk�k

i¼0

Ifuiþ k
iþ1

¼xk
1
g � Ifviþ k

iþ1
¼xk

1
g

� �����

¼
X

xk
1
2f0,1g k

1

Nk � k þ 1

���� XNk�k

i¼0

Ifuiþ k
iþ1

¼x k
1
g � Ifviþ k

iþ1
¼x k

1
g

� �����
which is, by assumption, less than Ek .) Now for any M < k and u

Nk

1 , vNk

1 2 UNk
,

X
xM

1
2f0,1gM

1

Nk � M þ 1

���� X
Nk�M

i¼0

IfuiþM
iþ1

¼xM
1
g � IfviþM

iþ1
¼xM

1
g

� �����

<
X

xM
1
2f0,1gM

1

Nk � k þ 1

���� X
Nk�k

i¼0

IfuiþM
iþ1

¼xM
1
g � IfviþM

iþ1
¼xM

1
g

� ����� N k � k þ 1

Nk � M þ 1

þ k � M

Nk � M þ 1
2M

< Ek þ
k � M

Nk � M þ 1
2M ,

where we used (6). Thus, for any M < k and u
Nk

1 , vNk

1 2 UNk
,

X
xM

1
2f0,1gM

1

Nk � M þ 1

���� X
Nk�M

i¼0

IfuiþM
iþ1

¼x M
1
g � IfviþM

iþ1
¼x M

1
g

� ����� < Ek þ
k � M

Nk � M þ 1
2M : (7)

Assume the process fX ng is stationary but not ergodic. Then, for some M and for some

aM
1 2 f0, 1gM ,

lim
n!1

1

n

Xn�1

i¼0

IfX iþM
iþ1

¼aM
1
g

almost surely exists, but the limit is not a constant on any set of probability one (cf. Theorem

7.2.1 in Gray 1988). This means that there exist � . 0 and a positive integer n0 such that, for

all n . n0, there will be sets En, Fn � f0, 1gn of probability . 10� such that, for all

un
1 2 En and vn

1 2 Fn,
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1

n � M þ 1

���� Xn�M

i¼0

IfuiþM
iþ1

¼a M
1
g � IfviþM

iþ1
¼a M

1
g

� ����� . 10�:

For M and � above choose k large enough that M , k, Ek , 0:5�,

2M (k � M)=(N k � M þ 1) , 0:5�, and Nk . n0. (Such a k exists since Ek ! 0 and

k=Nk , 1=k ! 0.) However, this leads to a contradiction since UNk
fills all but �, while on

sets ENk
and FNk

, which have probability at least 10�, the empirical distributions differ. (UNk

should have non-empty intersection with both ENk
and FNk

, and so on UNk
the emprical

distribution should differ by 10� which contradicts (7) and the fact that

Ek þ 2M (k � M)=(N k � M þ 1) , �. ) The proof of Lemma 4 is complete. h
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