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Resumo

Um grafo G é convergente quando existe um inteiro finito n > 0, tal que o n-ésimo
grafo clique iterado A™(() possui um unico vértice. O menor n que satisfaz esta condigao
é o indice de G. A deficiéncia Helly de um grafo convergente é o menor inteiro h tal
que K(G) é clique Helly, ou seja. suas cliques maximais satisfazem a propriedade Helly.
Bandelt e Prisner provaram que a deficiéncia Helly de um grafo cordal é no maximo um
e indagaram acerca da existéncia de algum grafo cuja deficiéncia Helly excede a diferenca
entre seu indice e diametro por mais de um. Neste artigo é fornecida uma resposta afirma-
tiva a esta questao. Para um inteiro arbitrario n, é exibido um grafo cuja deficiéncia Helly
excede em n unidades a diferenca entre seu indice e diametro.

Abstract

A graph G is convergent when there is some finite integer n > 0, such that the n-th
iterated clique graph A™(G) has only one vertex. The smallest such n is the index of
G. The Helly defect of a convergent graph is the smallest h such that K*(G) is clique
Helly. that is, its maximal cliques satisfy the Helly property. Bandelt and Prisner proved
that the Helly defect of a chordal graph is at most one and asked whether there is a graph
whose Helly defect exceeds the difference of its index and diameter by more than one. In
the present paper an affirmative answer to the question is given. For any arbitrary finite
integer n. it is exhibited a graph. the Helly defect of which exceeds by n the difference of
its index and diameter.
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1 Introduction

G denotes a simple finite undirected graph, V(() and E{(G) its vertex and edge sets.
respectively. A clique is a subset of vertices of G which induces a complete subgraph. G
is clique Helly if its maximal cliques satisfy the Helly property, that is, every family of
pairwise intersecting maximal cliques of G has a nonempty intersection. The clique graph
K(G) of G is the intersection graph of the maximal cliques of GG. Denote A%(G) = . The
iterated clique graph K(G) is defined as K (K*"!(G)). ¢ > L. G is (clique) convergent
if there is some finite integer n > 0, such that A™(G) has only one vertex v. In this case we
say that G is n—convergent to v. The index of a convergent graph G is the smallest n
such that G is n—convergent. while its Helly defect [1] is the smallest n such that A" (G)
is clique Helly.

Bandelt and Prisner [1] proved that the Helly defect of a chordal graph is at most one
and asked whether there is a graph whose Helly defect exceeds the difference of the index
and diameter by more than one.

In the present paper. an affirmative answer to the above question is given. For any
arbitrary finite integer n > 0 it is exhibited a graph in which the Helly defect exceeds by
n the difference of its index and diameter. The following section contains lemmas about
convergent graphs. They are applied to the study of a special class of graphs in Section
3. In the last section. we conclude that this class provides an answer to the considered
problem.

2 Basic Lemmas

First we introduce some notation.

The vertex set of K*(G) is denoted by V7. When possible, we simply write V™. Let ('
be a maximal clique of K™~ }(G) and v be the vertex of K™(G) corresponding to ('. Then
write I\’a}n(l') = C. For a subset of vertices V'CV%, let K, (V') represent the union of
all the sets A g% (v). for veV’. For veV™. K3, (v) denotes the set Ka.ln_(i_l)(I\'afi—l)(v)).
that is, K’ (v) corresponds to the vertices of V"% which led to v by applying the iterated
clique graph operation. Call ’5fn(v) the :—th inverse image of v. Similarly, if V'CV7Z
then Kafn( V") is the union of the i-th inverse images of all v€V’. Whenever possible, we
ommit GG, n or both in the notations. Finally, let H be a subgraph of G. Observe that

% ¢ V% in general, but K™*(V}) C K~™(Vg). P(V) denotes the power set of V.
The following lemma is a slight variation of Hedman’s theorem [2].

Lemma 1 Let G' be a connected subgraph of K*(G), with vertex set V'. Let H be the
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subgraph induced in G by K=*(V'). Then diam(H) < diam(G') + 1.

Proof.: The lemma follows immediately if we can prove it for 7 = 1. by repeatedly applying
the same argument.

Let v. w be vertices in A~1(V’), and ¢,,c,, be vertices in V7 such that ¢ €K ~!(c,)
and w € K~'(cy,). Since G’ is connected there is a path ¢, = cp.c1, 6. ...c1 = ¢y in G of
length [ <diam(G'). Each pair of consecutive vertices in this path corresponds to cliques
in A*"1(G). which have at least a one vertex intersection. Let v; € (K~'(¢;j—1) N K~ (c;)).
1 <j <1 Also let vo = v. and v;4; = w. Each pair of vertices vj,v;;; is adjacent since
they are in the same clique A ~(¢;), for 0 < j < [. Therefore the vertices v; induce a path
between v and w of length /41, and thus dist(v,w) < diam(V’)+1 for any v.w € K~1 (V).
concluding the proof. s

The idea of the following lemma is simple. By applying the clique graph operation on
a graph G we are somehow also applying it to graphs isomorphic to the subgraphs of G.
There are in K () vertices corresponding to the cliques of any subgraph H, although these
cliques may or may not be maximal in G. In the latter case, these vertices correspond to
maximal cliques of G containing those of H. We can apply the same ideas to as many
iterations of the clique graph operator as we want and if H is n-convergent the vertex of
K™(G) which corresponds to the unique vertex of k"(H) will satisfy Lemma 2.

Lemma 2 Let H and G be graphs such that H is n—convergent and a subgraph of G. Then
there is at least one vertex v € V% such that V(H) C K™"(v).

Proof.: It will sufice to show that there exist functions f* : P(Vy) — P(V%). such that
K~{(f{(VYy)) covers V(H).

First we show that there are functions f* : P(Vi) — P(VL) satisfving the following
conditions. for VCVY,.

If:=0, then fO(V)=V.
Ifi > 0, then fi-1(K-1(V)) C K-1(f{(V)).

The case i = 0 is trivial. Assume that we can define functions f*, i < k, satisfying the
conditions above, and such that if v, we€V; are adjacent, then fi({v}) and f'({w}) are
also single vertices, which either coincide or are adjacent in K*(G). Then we show how to
construct f¥. Start from one vertex subsets and define the image of the larger subsets as
the union of the images of its subsets of size one. The empty set is its own image.



For each v € V%, there is a maximal clique C' = K7Y%. and the above conditions
imply that the set {f*~'({u})/u € C'} induces in K*~!(G) a complete subgraph. Taking a
maximal clique ' in K*~1(G) covering this set. we define f*({v}) to be the unique vertex
' in V% such that K~'(¢') = C’. Given a set 1". f* is defined as the union of the sets

ff{e}), veVv.

Clearly f* satisfies the required conditions. In addition. every pair of singleton sets {v}
and {w} where v is adjacent to w are mapped to singleton sets {v'} and {w’} where v" and
w' are either adjacent or coincide. A pair of vertices is adjacent in A*(H)(k > 0) when
its corresponding cliques in K'*~1(H) intersect. So the corresponding sets in K*~1((7) also
intersect. Therefore the maximal cliques taken in K*~(G) also intersect.

The next step is to show that the fuctions ft above defined satisty the lemma.
For i = 0. obviously K~*(f'(V%)) = fY%V(H)) covers (coincides with) V(H).

Assume as induction hypothesis that f* satisfies the lemma for i = p. and we show that
it does so for p + 1.

By the definition of the A ~! operation, K~} (V%) = V"%, and since

T VD) € K V),
V) C K=Y (VE),
applying K7, K=2(f7(V%)) C K="='(f"(VE™)).

By hypothesis K 7?(f?(V%)) covers V(H). Therefore, the set in which it is contained
also covers V'(H). thus completing the proof. =

Lemma 3 Let H' C H C G be graphs and v', v € V§ distinct vertices. such that H' and
H are the graphs induced in G respectively by K;"(v') and K;"(v). Then there are two
distinct vertices w and w' in VY such that H' and H are induced in H by K" (w') and
Ky (w).

Proof.: By definition of K~™ all the vertices of G that give rise to v and v’ through
the construction of K™(G) originate from the subgraph H. Therefore there are distinct
vertices w and w’ in V' whose inverse images by K" must induce H and H'. =

Corollary 1 Let H C G be a n—convergent graph with H = K~"(v) for some v € K™(G).
Then v is the unique vertezr in Vg for which K~"(v) is entirely contained in V(H).

Lemma 4 Let H be a mazimal subgraph with diameter n of G, such that H is n—convergent.
Then H = K7"(v) for a unique v in V3.



"Proof.: By Lemma 2 there is a vertex v € V& with H C K™"(v). By lemma 1 this set
must induce a graph with diameter at most n, and thus H = K ~"(v). The uniqueness of
v follows from corollary 1. [ ]

Lemma 5 Let H. H, and H, be distinct induced subgraphs of G. satisfying the following
conditions :

— H, and H, are n—convergent respectively to u; and u,
— H is (n — 1)~convergent to u and H C (V(Hy) N V(H3)).

— H. H, and H, are mazimal subgraphs of G with diameters n—1. n and n respectively.

Then there are in V% two vertices vy and ve whose inverse images K~"(v;) are exactly
the verter sets V(H;). In addition vy and v, are adjacent.

Proof.: The first part follows from Lemma 4 that assures the existence and uniqueness of
vy and v, in V.

We show that v; and v, are adjacent. The argument below implies that A ~!(v;),
i = 1.2 have at least one common vertex. which completes the proof.

Let fi. ¢' and h* be functions
froP(Vi,) = P(Vg)
g': P(Vy) = P(Viy,)
B P(Vig) = P(VE)

as those defined in the proof of Lemma 2. It follows that A’ can be obtained as a composition

of f* and g¢'.
Clearly. this is true for z = 0.

The functions satisfy /= (K~1(»)) C K~'(f'({v})) and thus

FTH UK (v) € FUETH ({v]) € KU (g ({o})-
{
Therefore the composition of the funtions f* agd ¢ is a function A’.

By Lemma 4 there is a unique value for A"~ '({u}).



On the other hand. by Lemma 4 again. v1 = f*({u1}).

By the definition of the functions g' there is a vertex v € V"H'll with ¢""1({u}) =
{v}. Clearly v € K~'(u). and thus f*"'({v}) C K~*(vy). Since A"~'({u}) is unique.
g™ ({ud) = A ({e}h) = A7 ({v}). Therefore A*~1({u}) C K7 (v1).

Applying the same argument to H, leads to A*~!({u}) C K~!(vz). what concludes the
proof. [ ]

3 The F, and H', graphs

Let GG be a graph with minimum degree 6. An extreme vertex of (7 is one with degree o.
An extreme path is a shortest path between two extreme vertices such that all internal
vertices of it have degree 6 4+ 1 or ¢ + 2.

Next we define the class of F',, graphs:

F is the graph K3. For: > 1., F'; is obtained as follows: Let vg. vy, .... v;—y be an extreme
path of F;_;, and wo, wy,....w; € V(F,;_;). F; has vertex set V(F;_1) U {wo, wy.....w;}.
and edge set E(F;_1) U {(vj,w;), (w;,wj+1), (vj,wj41)/0 < j < i}

Figure 1 illustrates the graphs F'y, F'; and F3.

The graphs H' are defined as follows.

H! is the graph obtained from F, by removing its extreme vertices. and in general H'
is obtained from F', by removing the vertices of F',, that are at a distance less than : from

its extreme vertices. We deal only with those H* satisfving ¢ < n/2. F, is also denoted
by HC. Figure 2 shows the graph H? and its six extreme paths.

Theorem 1 F, and H', are both convergent graphs. Moreover. each of them has equal
index and diameter.

Proof.: With regard to Fy, F; and F5 the theorem can be checked by inspection. The
same for H} and H}.

Clearly diam(F,) = n and diam(H}) = n — 1.

The proof is by induction on n. Let n > 3.

Note that when n is even, H™/? is F./;. When n is odd. H(™=1/2 coincides with



H(ln+3)/2, and that (n + 3)/2 is less than n when n > 3. The induction hypothesis is that
the theorem holds for F'y and Hi k < n. and for H{L, nf2>j>u

The outline of the proof for H' is as follows. We find the maximal subgraphs H' of H?,
with diameter n — ¢ — 1. These graphs will be among those which converge in n — ¢ — 1
iterations by hypothesis.

Any subgraph of H' with diameter less than n —7 — | is contained in some H'. Hence.
by Corollary 1 there is a one to one correspondence between the vertices of A"~ H*)

and the subgraphs H'.

Finally we verify that each pair of distinct subgraphs H' satisfies the conditions of
Lemma 5. Therefore the corresponding vertices in K™ *~!(H!) are adjacent. Thus the
graph K™~*~1(H?) is complete, what proves the theorem.

Now we proceed to find all subgraphs H'.

Consider H:, 0 < 7 < n/2. H' has exactly six extreme paths. Label these paths
clockwise from 1 to 6. so that the paths 2, 4 and 6 have length n — 2;. while 1. 3 and 5
have length . An example is given in Figure 2.

Let S be a subgraph of H' with diameter less than n — i.

If S has some vertex from the extreme path 1, it cannot have any vertex from path 4.
since these vertices would be at a distance n —z. If S does not have vertices from paths 3
and 5, then S is contained in a graph H:_, (class 1). See Figure 3.

Assume that S has vertices from path 3 and not from 5. Then S cannot have vertices
from path 6. since its diameter must be at most n —: — 1. Hence S is contained in the
subgraph obtained by removing the vertices from the extreme paths 4. 5 and 6. that is. a
graph H'7Y (class 2).

Otherwise if S has vertices from both paths 3 and 5, it cannot have any vertex from
paths 2, 4 and 6. In this case, it is contained in a graph H. % (class 3). i > 1. If i = 1 we

would have a graph F,_3. which is contained in all other classes.

Finally, if S does not have vertices from paths 1, 3 and 5 it is contained in a graph
H1 (class 4).

The remaining cases are all similar and lead to subgraphs belonging to the four classes
above.

Now, the last step of the proof:

All the maximal subgraphs with 8iameter n — i — 1 above have a common subgraph
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obtained by removing from H' its extreme paths. that is. a graph H -1 By hypothesis it
is (n — ¢ — 2)-convergent.

By applving Lemma 5 we conclude that H' is (n — {)-convergent.

We apply a similar strategy to prove the theorem for F',. Let S be a subgraph of
F,. with diameter less than n. Then if S has any extreme vertex. it cannot have any
vertex belonging to the extreme path opposite to this vertex. Therefore S is contained in
a subgraph F,_;.

On the other hand, if S does not have any extreme vertex it must be contained in H..

Every maximal subgraph with diameter n — 1 of F, is either a F,_; or a H. graph.
They have pairwise intersections which contain subgraphs F,_; or H}_,. These graphs are
(n — 2)-convergent by hypothesis. By Lemma 5. K"~'(F,) is complete and the theorem
is proved. =

In addition we have shown that, for n > 3, A""!(F,) is the graph Ay.

Next we determine the Helly defect of F',,. The following notation is used. Given a graph
F..n > 3. let its extreme vertices be called vy, v, and vs arbitrarily. 5;; (1 <: <y <3)
is the subgraph induced in F, by the vertices of F', such that:

if 4 # j, their distances to v; and v; is less than n;

if 2 = j, their distances to v; is less than n — 1.
F,, contains six such subgraphs, which are examined in the following lemma.
Lemma 6 F, is an induced subgraph of K™ 2(F,), n > 3.

Proof.: The six subgraphs S;; are .F',_, subgraphs induced in F,. We show that these
graphs converge to six distinct vertices of A"~ 2(F,), forming an induced F, in A" %(F,).

By Theorem 1, S;; is (n — 2)-convergent. By Lemma 4, each maximal subgraph of
F, with diameter n — 2 corresponds to a unique vertex of K" %(F,). Sy, Si and S13
pairwise intersect in subgraphs F,_3, and their corresponding vertices in K"~?(F,) are

therefore adjacent. The same happens with S;3, S;2 and S, 3, as well as with S;3, So3
and 5313.

Except those above, no other edges exist among the vertices of K™~ 2(F,) whose inverse

images are the S;;’s. Otherwise K™7*(F,) would contain vertices whose corresponding
inverse images in G induce a subgraph with diameter n, contradicting Lemma 1. =
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Theorem 2 K" 2(F,) is not clique Helly (n > 2).

Proof.: For a graph containing an induced F; to be clique Helly. the three cliques that
contain respectively the extreme vertices of the £, must have at least one vertex in common.
Hence there must be a vertex v adjacent to the extreme vertices of the induced F,.

It follows that the inverse image of v in F, is a subgraph F’ of the induced F,_;.
obtained from F', by removing its extreme paths. Otherwise. Lemma | is contradicted.

But F’ is properly contained in the three subgraphs S; ; . i # j that give rise to the non-
extreme vertices of the induced F,. By Corollary 1 there is only one vertex in A" 2(F,)
with its inverse image contained in each of these subgraphs 5; ;. The latter correspond to
the non-extreme vertices of the F';. This is inconsistent with the existence of a vertex v
adjacent to the three extreme vertices of the F',.

Therefore A™"%(F,) is not clique Helly. (]

4 Conclusion

The clique graph of a clique Helly graph is also clique Helly [3]. Therefore Theorem 2
implies that the Helly defect of F,, is exactly n — 1. since K""'(F,) is a complete graph.
From Theorem 1, F, has its diameter and index equal to n. Hence the Helly defect of F,
exceeds the difference between its index and diameter by n — 1.
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Figure 2 - H? and the labelling of its six extreme paths
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Class 1 Class 2 Class 3 Class 4

Figure 3 - H! maximal subgraph classes with diameter n — 1.



