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Resumo

l-m grafo C é convergente quando existe um inteiro finito n ;:::: O, tal que o n-ésiíno

grafo clique iterado Kn(C;) possui um único vértice. O menor n que satisfaz esta condição
é o índice de C. .-\ deficiência Helly de um grafo convergente é o menor inteiro h tal

que I.;h(C) é clique Helly, ou seja. suas cliques maximais satisfazem a propriedade Helly.
Bandelt e Prisner provaram que a deficiência Helly de um grafo cordal é no máximo um

e indagaram acerca da existência de algum grafo cuja deficiência Helly excede a diferença
entre seu ílldice e diâmetro por mais de um. Neste artigo é fornecida uma resposta afirma-

ti,.a a esta questão. Para um inteiro arbitrário n. é exibido um grafo cuja deficiência Helly

excede em 11 unidades a diferença entre seu índice e diâmetro.

Abstract

.\ graph G is convergent when there is some finite integer n � O, such that the n-th

iterated clique graph I(n( G) has only one vertex. The smallest such n is the index of

G. The Helly defect of a convergent graph is the sma1lest h such that I(h(G) is clique

He1l)., that is, its maximal cliques satisfy the He1ly property. Bandelt and prisner proved
that the He1ly defect of a chordal graph is at most one and asked whether there is a graph

whose He1ly defect exceeds the difference of its index and diameter by more than one. In
the present paper an affirmative an�wer to the question is given. For any arbitrary finite
integer n. it is exhibited a graph. the He1ly defect of which exceeds by n t.he difference of

its index and diameter.
�



Introd uction1

c; denotes a simple finite undirected graph, \!(C;) and E(G) its vertex and edge sets.

respectively. A clique is a subset of vertices of C; which induces a complete subgraph. C;
is clique Helly if its maximal cliques satisfy the Helly property, that is, every famil�. of
pairwise intersecting maximal cliques of G has a nonempty intersection. The clique graph
I((G) of G is the intersection graph of the maximal cliques of C;. Denote I(O(G) = C;. The
iterated clique graph I( i ( C;) is defined as I( ( I(i-l ( G) ) , i � 1. C; is ( clique ) convergent

if there is some finite integer n � O, such that I\n(G) has only one vertex v. ln this case ".f'
say that G is n-convergent to v. The index of a convergent graph C; is the smallest n

such that G is n--convergent. while its Helly defect [1] is the smallest II such that I\n(C;)

is clique Helly.

Bandelt and Prisner [11 proved that the Helly defect of a chordal graph is at most one

In the present paper, an affirmative answer to the above question is given. For an�.

arbitrary finite integer n � O it is exhibited a graph in which the Hell�. defect exceeds b�.

n the difference of its index and diameter. The following sectioll colltains lemmas about

convergent graphs. They are applied to the study of a special class of graphs in Section

3. In the last section, we conclude that this class provides an answer to the considered

problem.

2 Basic Lemmas

First we introduce some notation.

�

The vertex set of Kn( G) is denoted by �/.G. When possible, \\e simpl�. write \c'1I. Let ( .

be a maximal clique of I(n-l(G) and v be the vertex of I(n(G) correspondihg to C. Thell
write I(G�n ( t' ) = C. For a subset of: vertices V' C VG, let I(G�n ( \11) represent the union of

all the sets I\G�n(r), for vEtíl. For 'vEr. I(G:n(v) denotes the set I(G�n-(i-l)(I\G�li!-l)(v)).

that is, KG�n ( v) corresponds to the vertices of vn-i which led to v by applying the iterated

clique graph operation. Call KG:n ( v) the i-th inverse image of v. Similarly, if V' C \:G

then I(G:n(V') is the union of the i-th inverse images of all vEt11. Whenever possible. \\e

ommit G, n or both in the notations. Finally, let H be a subgraph of G. Observe that

VH � VG in general, but K-n(vH) C I\-n(VG). 'P(V) denotes the power set of \-í.

"!!

The following lemma i8 a 81ight variation of Hedman '8 theorem [2]

Lemma I Let C' be a connected subgraph of J{i(C), with 'uertex set V', Let H be lhE

1

and asked ,vhether there is a graph whose Helly defect exceeds the difference of the index

and diameter by more than one.



subgraph induced in G by I.;-i(V'). Then diam(H) :5 diam(C;') + i.

Proof.: The lemma follows immediately if \ve can prove it for i = 1. by repeatedly applying

the same argument .

Let v. tV be vertices in l.;-l(�/-'), and Cv,Cw be vertices in v'.' such that t� EI.;-l(cv)
and w E I.;-l(cw). Since G' is connected there is a path c1J = CO,Cl,c2. ...ci = cu, in G' of

length I :5diam( G'). Each pair of consecutive vertices in this path corresponds to cliques
in I.;i-l(G). which have at least a one vertex intersection. Let Vj E (K-1(cj-l) n l.;-l(cj)),
1 :5 j :5 I. .\lso let Vo = v. and VI+l = u.. Each pair of vertices Vj, Vj+l is adjacent since

the�. are in the same clique I.;-l(cj), for 0:5 j :5 I. Therefore the vertices v:i induce a path

bet\,een v and w of length 1+1, and thus dist( v, w) :5 diam(V')+ 1 for any v, w E K-1( V'),

concluding the proof. .
.

The idea of the following lemma is simple. By applying the clique graph operation on

a graph G we are somehow also applying it to graphs isomorphic to the subgraphs of G.
There are in K(G) vertices corresponding to the cliques of any subgraph H, although these

cliques ma�' or may not be maximal in G. In the latter case, these vertices correspond to

maximal cliques of G containing those of H. We can apply the same ideas to as many
iterations of the clique graph operator as we want and if H is n-convergent the vertex of

l.;n(G) which corresponds to the unique \.ertex of kn(H) will satisfy Lemma 2.

Lemma 2 Let H and G be graphs such that H is n-convergent and a subgraph ofG. Then

there is at least one vertex v E VG such that V(H) C K-n( V ).

Proof.: It will sufice to show that there exist functions fi : p(v'.k) -+ P(�!�). such that

I<-i(fi(�lk)) covers V(H).

First we show that there are functions fi : P( Vk ) -+ P( VG ) satisfying the following

conditions. for V c,/k.

$

If i = O, then fO(\;T) = V.

� If i > 0, then fi-l(I<-l(\;T)) C I<-l(fi(�!)).

The case i = 0 is trivial. Assume that we can define functions fi, i < k, satisfying the

conditions above, and such that if v, 'wE�;k are adjacent, then fi({v}) and fi({w}) are

also single vertices, which either coincide or are adjacent in Ki(G). Then we show how to
construct fk. Start from one vertex subsets and define the image of the larger subsets as
the union of the images of its subsets of size one. The empty set is its own image.
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For each v E y'�, there is a maximal clique C = I{H�k, and the above conditions

imply that the set {fk-l({U})/u E (-Y} induces in I{k-l(G) a complete subgraph. Taking a
maximal clique C' in I{k-l (C;) coyering this set. \\"e define .fk( {l' } ) to be the unique vertex
v' in V� such that I{-l(t�') = C'. Given a SE't l.. ,fl.. is defined as thE' union of the SE'ts

fk({v}), v E vT.

Clearl). .fk satisfies the required conditiolls. In additioll. evE'r�. pair of singletoll sets {t.}

and {w} where v is adjacent to tV are mapped to singletoll sets { l"} and { tv'} whE're v' and

u.' are eithE'r adjacent or coincide. ,-\ pair of vE'rtices is adjacent in Kk(H)(�. > O) when
its corresponding cliques in I{k-l(H) intersect. So the corresponding sets in I{k-l(G) also

intersect. Therefore the maximal cliques taken in I{k-l ( G) also intersect.

The next step is to show that the fuctions fi above defined satisfy t he lemma.

For i = 0. obviously I{-i(fi(Vk)) = ,fO(V(H)) covers (coincides \vith) V(H).

,-\ssume as induction h�rpothesis that ,fi satisfies thE' lemma for i = p. and WE' show that

it does so for p + 1.

B�. the defillition of the 1{-1 operation. I{-I(\1.�+l) = �:iI, and since

fP( 1{-1 ( yTiI+1 ) ) C 1{-1 (fP+l ( yT�+l ) ),

fP(V�) C I{-l(fP+l(Vjjl)),

applying I{-P, I{-P(fP(YT� )) C I{-p-l(fP+l(V�+I)).

By hypothE'sis I{-P(.fP(ViI)) covE'rs ',(.(H). TherE'forE', the set in which it is containecl

also covE'rs ':(H). thus completing the proof. .

Lemma 3 Let H' C H C C; be graphs and 'V' , t� E VG distinct t'ertices. .�uch that H' and

H are the graphs induced in G respectively by I{õn( .v') and I{õn ( v) .Then therf are two

distinct vertices 'U. and w' in VH such that H' and H are induced in H by I{Hn ( tv' ) and

I{Hn(w).

Proof.: By definition of I{-n all the vertices of G that give rise to v and t.' through
the construction of I{n( G) originate from the subgraph H. Therefore there arE' distinct

vertices w and w' in VH whose inverse images by K-n must induce H and H'. .

Corollary 1 Let H C G be a n-convergent graph with H = I{-n(v) for .5ome v E I{n(G).

Then v is the unique vertex in VG for which K-n(v) is entirely contained i.n V(H).

Lemma 4 Let H be a maximal subgraph with diameter n ofG, such that H is n-convergent.
Then H = I{-n( v) for a unique v in VG.

3



Proof.: By Lemma 2 theTe is a vertex l' E VG \\.ith H C I(-n( v). By lemma 1 this set

must induce a graph with diameter at most n, and thus H = I(-n(v). The uniqueness of

v follo\vs from corollary 1. .

Lemma 5 Let H. H1 and H2 be disti11Ct i11d,uced subgraph.5 o.fC;. sati.5j:IJing thf jollotvillg

conditions :

-H 1 and H 2 are n-co11vergent respectively to Ul and u2

-H is (n -l)-converge'nt to u and H C (V(H1) n vT(H2)).

-H .H 1 and H 2 are maximal s'Ubgraphs of G with diaJneter.5 n- 1. n and n respectivel.IJ.

Then there arf in VG two vertices Vl and V2 {L'hose illver.5e images J(-n(Vi) are exactl.1j

the L'erte:r .5ets v)' ( H j ) .Jn addition Vl and v2 arf adjacen t.

Proof.: The first part follo\vs from Lemma 4 that assures the existence and U1liquenes1; of
, . d . V1111 an t'2 ln G.

We show that Vl and l'2 are adjacent. The aTgument below implies that I(-l(vj),

i = 1,2 have at least one common vertex, which completes the proof.

Let fj. gi and hj be functions

.fj : P(Vk1) -+ P(V�)

gj : P(Vk) -+ P('(,(k1 )

hi : P( \/'.k ) -+ P(,/�)

as those defined in the proof of Lemma 2. It follows that hi can be obtained as a composition

of fj and gi.

Clearl�.. this is true for i = o.

The functions satisfy fj-l(K-l(V)) C I(-l(fi({v})) and thus

fi-l(gj-l(I(-l(v») C fi-l(I(-l(gi({v}))) C I(-l(fi(gi({v}))).

(
Therefore the composition of the funtions fi andgi is a function hi.

By Lemma 4 there is a unique value for hn-l( { U }).
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On the other hand, by Lernrna 4 again, Vl = r ( { Ul } ) .

By the definition of t he functions gi there is a vertex v E VrH�l \vith gn-l ( { tt } ) =

{t'}. Clearly v E I(-l(Ul). and thus r-1({V}) C I(-l(Vl)' Since hn-l({U}) is unique.
r-l(gn-l({U})) = .fn-l({V}) = hn-l({V}). Therefore hn-l({U}) C I(-l(Vl).

Applying the same argument to H2, leads to hn-l({u}) C J{-1(V2). \vhat concludes the
proof. 8

3

Let G be a graph \Vith minimum degree 8. An extreme vertex of C; is one with degree ().

An extreme path is a shortest path bet\Veen t\VO extreme vertices such that alI interIl:a1

vertices of it have degree 8 + 1 or () + 2.

='Jext we define the class of F n graphs

F 1 is the graph I{ 3. For i > 1, F i is obtained as follo,vs: Let 'Vo. Vl, L.i-l be all extreme

path of Fi-l, and LVO,Wl, Wi fj '/T(Fi-l). Fi has vertex set �:(Fi-l) U {'LVo,tL.1 ,LUi}.

and edge set E(F i-l ) U {(Vj, Wj), (Wj, Wj+l ), ( Vj, U)j+l )/o:::; j < i}.

Figure I illustrates t.he graphs F 1, F 2 and F 3

The graphs H� are defined a.s follows.

H; is the graph obtained from F n by removing its extreme \!ertices. and in gelleral H�,
is obtained from F n by removing the vertices ofF n that are at a distance less than i from

its extreme vertices. We deal only with those H� satisfying i � n/2. Fn is also denoted

by H�. Figure 2 shows the graph H� and its six extreme paths.

Theorem 1 F n and H� are both c.onvergent graphs. i\1oreover. each o.f them has eq'Ual

index and diameter.
�

TheProof. : With regard to F 1, F 2 and F 3 the theorem can be checked by inspection.

same for H� and H1.

Clearly diam(F n) = n and diam(H�) = n -i.

The proof is by induction on n. Let n > 3,

When n is odd, H�n-l)/2 coincides withNote that when n is even, H�/2 is F n/2"
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Htn+3)/2' and that (n + 3)/2 is less than n when n > 3. The induction hypothesis is that

the theorem holds for Fk and Ht. h. < n. and for H�, n/2 � j > i;

The outline of the proof for H� is as follows. We find the maximal subgraphs H' of H�

,,"ith diameter n- i -1. These graphs ",i1l be among those which con,.erge in n -i -1

iterations by hypothesis.

.--\ny subgraph of H:i with diameter less thaIl n -,i -1 is colltailled ill some H'. Hence.

b�. C'orollary 1 there is a oneto olle correspondence between the vertices of I\n-i-I(H�)

and the subgraphs H'.

Fina1l�. ,ve verify that each pair of distinct subgraphs H' satisfies the conditions of

Lemma .5. Therefore the corresponding vertices in I\n-i-I ( H� ) are adjacent. Thus the

graph I(n-i-I ( H� ) is complete, what proves the theorem.

\"ow we proceed to find a1l subgraphs H'.

('onsider H�, O < i < n/2. H� has exactly six extreme paths. Label these paths

clockwise from 1 to 6. so t hat the paths :2, 4 and 6 have length n -:2i. while 1. ;J and .5

ha,'e length i. An example is given in Figure 2.

Let S be a subgraph of H� with diameter less than n -i.

If S' has some vertex from the extreme path 1, it cannot have any ,"ertex from path 4.
since these vertices would be at a distance n -i. If S does not have vertices from paths ;3
and .j, then S is contained in a graph H�-I ( class 1 ). See Figure 3.

Assume that ,,) has vertices from path ;3 and not from 5. Then S. cannot ha,.e vertices

from path 6, since its diameter must be a,t most n -i -1. Hence S is contained in the

subgraph obtained by removing the vertices from the extreme paths 4. ;) and 6. that is, a

graph H�--\ ( class 2).

Otherwise if S has vertices from both paths 3 and .5, it cannot have any vertex from
paths :2,4 and 6. In this case, it is contained in a graph H�--23 (class ;3). i > 1. If i = 1 we

,vould have a graph F n-3. ,,"hich is contained in a1l other classes.

� Fina1ly, ir S does not have vertices from paths 1, 3 and 5 it is contained in a graph

H�+I (class 4).

The remaining cases are a1l similar and lead to subgraphs belonging to the four classes

âbove.

Now, the last step of the proof:

A1l the maximal subgraphs with �iameter n -i -1 above have a common subgraph
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obtained b�. removing from H� its extreme paths. that is. a graph H�--13. By hypothesis it

is (n -i -:2)-convergent.

B�. appl�.ing Lemma .5 ,ve conclude that H� is (n -i)-con\.ergent.

\\.e appl�' a similar strategy to prove the theorem for F n. Let .�. be a subgraph of

F r, ,vith diameter less than n. Then if S has any extreme ,.ertex. it cannot have an.v

\.ertex belonging to the extreme path opposite to this vertex. Therefore .5' is co1ltained i1l

a subgraph Fn-l.

On the other hand, if S does not have any extreme \'ertex it must be contai1led in H� .

E\'ery maximal subgraph with diameter n -1 of F n is either a F n-l or a H� graph.

They have pairwise intersections which contain subgraphs F n-2 or H�-l. These graphs are

(n -2)�con\'ergent by hypothesis. By Lemma ,5. Kn-l(F n) is complete and the theorem
is proved. .

In addition we have shown that. for n > 3, I\n-l(F n) is the graph 1\4.

�ext ,ve determine the Helly defect of F n. The following 1lotation is used. (;i"en a graph

F n .n > :3. let its extreme \.ertices be called Vl, t.2 and t':3 arbitrarily. .�. i.j ( 1 .:::; i.:::; j .:::; ;J )

is the subgraph induced in Fn by the vertices of F n such that:

if Á # j, t heir distances to v i and v j is less than n ;

if i = j, their distances to Vi is less than n- 1.

F n contains six such subgraphs, which are examined in the followi1lg lemma.

Lemma 6 F2 is an ind.uced subgraph ofl\n-2(Fn), n > :3.

Proof.: The six subgraphs Si,j are .F n-2 subgraphs induced in F n. \\;e show that these
graphs con'.erge to six distinct vertices of I\n-2(F n), forming an induced F2 in l\n-2(F n).

� By Theorem 1. Si,j is (n -2)-convergent. By Lemma 4, each maximal subgraph of

F n with diameter n -2 corresponds to a unique vertex of Kn-2(F n). 5'1.1, Sl.2 and 5'1.3

pairwise intersect in subgraphs F n-3, and their corresponding vertices in Kn-2(F n) are

therefore adjacent. The same happens with Sl.2, S2,2 and S2,3, as well as with Sl.3, S2.3
and S3.3.

Except those above, no other edges exist among the vertices of Kn-2(F n) whose inverse
images are the Si,j'S. Otherwise Kn-l(F n) would contain vertices whose corresponding
inverse images in G induce a subgraph with diameter n, contradicting Lemma 1. .

7



Theorem 2 I(n-2(F n) is not clique Helly (n :.;::: 2).

Proof.: For a graph containing an induced F2 to be clique Helly, the three cliques that

contain respectivel�. the extreme vertices of the F 2 must have at least one \;ertex in common.

Hence there must be a vertex v adjacent to the extreme \.ertices of the induced F 2.

It follo\\,s that the inverse image of t' in F n is a subgraph F' of the induced }.'n-3,
obtained from F n by remo\Ting its extreme paths. Other\\'ise. Lemma 1 is contradicted.

But F' is properly contained in the three subgraphs ,5'i.j .i =f J. that gi\.e rise to the non-

extreme vertices of the induced F 2. By Corollary 1 there is only one \.ertex in J\"n-2 ( F I! )

with its in\.erse image contained in each of these subgraphs .S..i.J. The latter correspond to

the non-extreme \;ertices of the F 2. This is inconsistent \vith the existence of a vertex v

adjÇlcent to the three extreme vertices of the F 2.

Theyefore J(n-2 ( F n ) is not clique Hell�'. .

4 Concl usion

The clique graph of a clique Helly graph is also clique Helly [31. Therefore Theorem 2

implies that the Helly defect of Fn is exactly n- 1. since J(n-l(F n) is a complete graph.

From Theorem 1, F n has its diameter and index equal to n. Hence the Helly defect of F n
exceeds the difference between its index and diameter by n- 1.
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