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On Clock Synchronization Algorithms for Wireless
Sensor Networks Under Unknown Delay

Mei Leng and Yik-Chung Wu

Abstract—In this paper, three clock-synchronization algorithms
for wireless sensor networks (WSNs) under unknown delay are
derived. They include the maximum-likelihood estimator (MLE),
a generalization of the estimator of Noh et al., and a novel low-
complexity estimator. Their corresponding performance bounds
are derived and compared, and complexities are also analyzed. It is
found that the MLE achieves the best performance with the price
of high complexity. For the generalized version of the estimator
of Noh et al., although it has low complexity, its performance is
degraded with respect to the MLE. On the other hand, the newly
proposed estimator achieves the same performance as the MLE,
and the complexity is at the same level as that of the generalized
version of the estimator of Noh et al.

Index Terms—Clock synchronization, two-way message ex-
change mechanism, wireless sensor network (WSN).

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have emerged as
an important research area in recent years. With their

feasibility rapidly growing, WSNs have been regarded as fun-
damental infrastructures for future ubiquitous communications
due to a variety of promising potential applications, such as
monitoring of the health status of humans and the environment
and control and instrumentation of industrial machines and
home appliances [1]–[3]. Most of these applications require the
operation of data fusion, power management, and transmission
scheduling among a large set of sensor nodes, which, in turn, re-
quire all the nodes running on a common time frame. However,
every individual sensor in the WSN has its own clock. Different
clocks drift from each other over time due to many factors, such
as imperfection of the oscillators and environmental changes.
This makes clock synchronization between different nodes
indispensable.

Clock synchronization is not an easy task in practice due
to several unique properties of WSNs [4]. The first and most
important property is limited power supply in low-end sensor
nodes. In some cases, sensor nodes are not even rechargeable.
To save power, synchronization procedures should be simple,
and the frequency of resynchronization should be low. This
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makes simplicity and accuracy the primary concerns of clock
synchronization algorithms for WSNs.

The second challenge for clock synchronization is the un-
known message delays in the physical and medium-access-
control layers. Kopetz and Ochsenreiter [5], for the first time,
analyzed the process of message delay and decomposed the
unknown delay into different components. Furthermore, these
components can be grouped into two portions [7]: 1) the fixed
delay (including transmission time, propagation time, and re-
ception time) and 2) the random delay (including send time,
access time, and receive time). For the fixed-delay part, if
it is not explicitly modeled, it will be treated as part of the
time offset, thus lowering the accuracy of timing parameter
estimation.

To effectively deal with the clock synchronization of WSNs,
many synchronization protocols have been designed over the
past few years [6]–[12]. In particular, the timing-sync protocol
for sensor networks (TPSN) [7] is one of the most widely used
protocols. TPSN is based on the classical two-way message-
exchange mechanism and corrects the clock offset between
two nodes. Unfortunately, the clock skew is not estimated in
TPSN, resulting in frequent resynchronization. Noh et al. [15]
generalized TPSN to jointly estimate the clock offset and skew,
based on an assumption that the fixed delay is known. However,
the fixed delay is usually unknown in practice. Although an-
other maximum-likelihood-like estimator (MLLE) that does not
require knowledge of the fixed delay was also derived in [15],
the performance of this estimator is not satisfactory.

In this paper, based on the two-way message-exchange mech-
anism, we propose three estimators for the joint estimation
of the clock offset and skew without knowledge of the fixed
delay. The derived estimator includes the maximum-likelihood
estimator (MLE), a generalized estimator of the MLLE, and
a newly proposed low-complexity estimator. The rest of this
paper is organized as follows: The system model is first
introduced in Section II. Three estimators are proposed in
Section III, and their performance bounds are derived in
Section IV. To compare these estimators, their performance
bounds and complexities are compared in Sections V and VI,
respectively. Simulation results are presented in Section VII to
corroborate the analyses, and finally, conclusions are drawn in
Section VIII.

II. SYSTEM MODEL

We consider the synchronization between a parent node P
and its child node S based on a two-way timing message-
exchange mechanism, as shown in Fig. 1. In the ith round of
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Fig. 1. Two-way time stamps exchange between two nodes S and P .

message exchange, node S sends a synchronization message to
node P at T1,i. Node P records its time T2,i at the reception
of that message and replies to node S at T3,i. The replied
message contains both time stamps T2,i and T3,i. Then, node
S records the reception time of node P ’s reply as T4,i. Note
that T1,i and T4,i are the time stamps recorded by the clock
of node S, whereas T2,i and T3,i are recorded by that of node
P . After N rounds of message exchange, node S obtains a set
of time stamps {T1,i, T2,i, T3,i, T4,i}N

i=1. The aforementioned
procedure can be modeled as [15]

T2,i =β1 × T1,i + β0 + β1 × (d + Xi) (1)

T3,i =β1 × T4,i + β0 − β1 × (d + Yi) (2)

where β0 and β1 represent the clock offset and clock skew of
node S with respect to node P , respectively; d stands for the
fixed portion of message delay from one node to another; and
Xi and Yi are the variable portions of the message delay. In
the literature, this random delay has been modeled as random
variables following different distributions based on different
justifications and applications, such as Gaussian distribution,
exponential distribution, and Gamma and Weibull distribution.
By considering the random delay as a variable due to numerous
independent random processes, we can assume that Xi and
Yi are independent identically distributed (i.i.d.) Gaussian ran-
dom variables, and this assumption was experimentally verified
in [8]. The goal is to estimate clock offset β0 and clock
skew β1 based on the observation of a set of time stamps
{T1,i, T2,i, T3,i, T4,i}N

i=1.
If d is known, it is easy to rewrite the system model (1) and

(2) in the standard linear form. Then, β1 and β0 can easily
be estimated [14]. Noh et al. [15] made such assumption and
derived the MLE for the joint estimation of clock offset β0 and
clock skew β1. Unfortunately, in most cases, the value of d will
be unknown, as will a parameter that needs to be estimated,
such as in the context of node localization. Therefore, efficient
methods for estimating β1 and β0 with unknown delay d are
of great interest. In the following, we will present and analyze

three different methods for estimating β0 and β1 when d is
unknown.

Remark 1: In the system model, d is assumed to be unknown
but of the same value for both the uplink (from node S to
node P ) and the downlink (from node P to node S). This is
because the packets for timing message exchanges between two
nodes are usually of the same length and data rate, which makes
both nodes undergo similar transmission and reception times.
In addition, the propagation time is determined by the distance
between two nodes. Since it is assumed that the relative position
of two nodes does not change during the message exchange, the
propagation time stays the same.

III. ESTIMATION ALGORITHMS FOR THE

CLOCK PARAMETERS

A. MLE

Based on the system model (1) and (2), we will derive the
MLE for the joint estimation of clock offset β0, clock skew β1,
and fixed delay d. Rewrite (1) and (2) as

1
β1

· T2,i = T1,i +
β0

β1
+ d + Xi (3)

1
β1

· T3,i = T4,i +
β0

β1
− d − Yi. (4)

Defining θ1 = 1/β1 and θ0 = β0/β1 and stacking all the
time stamps in matrix form, we have⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1,1

...
T1,N

−T4,1

...
−T4,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Δ
=TS

+d · 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T2,1 −1
...

...
T2,N −1
−T3,1 1

...
...

−T3,N 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Δ
=TP

[
θ1

θ0

]
︸ ︷︷ ︸

Δ
=Θ

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1
...

XN

Y1
...

YN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Δ
=Z

(5)

where 1 = [1, . . . , 1]T with dimension 2N × 1.
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Since the random delays Xi and Yi follow i.i.d. Gaussian dis-
tribution [i.e., Xi ∼ N (0, σ2), Yi ∼ N (0, σ2)], the probability
density function (pdf) of the observed time stamps conditioned
on d and Θ is

ln f(TS ,TP ;Θ, d)= ln
N

2πσ2
−‖TS + d1−TP Θ‖2

2σ2
. (6)

For a fixed d, the MLE of Θ is [14]

Θ̂(d) =
(
TH

P TP

)−1
TH

P (TS + d1). (7)

Plugging (7) into (6) and ignoring the irrelevant constants,
we arrive at the compressed likelihood function with only
one parameter d. Denoting P = I2N − TP (TH

P TP )−1TH
P and

noting that PHP = P, the likelihood function is given by

Λ(d) = ‖P(TS + d1)‖2 . (8)

Taking the derivative over the likelihood function (8) with
respect to d and setting the result to zero, it can easily be shown
that the estimator for d is

d̂ = −1
2
· 1HPTS + TH

S P1
1HP1

. (9)

Putting the estimated d̂ back into (7), we finally get
the estimator of β1 and β0 as β̂1 = 1/[Θ̂(d̂)]1 and β̂0 =
[Θ̂(d̂)]2/[Θ̂(d̂)]1, respectively, where [v]i denotes the ith el-
ement of vector v.

B. Generalization of the MLLE of [15]

By observing that the clock difference between two nodes
is monotonically increasing and every message exchange ex-
periences the same amount of clock offset β0 and fixed delay
d, Noh et al. [15] proposed subtracting Tr,1 from Tr,N to
obtain Wr = Tr,N − Tr,1(r = {1, 2, 3, 4}), such that Wr does
not depend on β0 and d. Then, estimation of β1 based on
{W1,W2,W3,W4} can easily be derived. This estimator was
named MLLE. One drawback of this estimator is that only the
time stamps in the first and last rounds of message exchange are
used, and not all observations have been exploited. The MLLE
will be generalized here by using all the available time stamps.

First, define Dr,j
Δ= Tr,α+j − Tr,j(j = 1, . . . , N − α and

r = 1, 2, 3, 4), where α ∈ {1, . . . , N − 1} indicates the gap
between two subtracting time stamps. Apparently, to construct
the sequence {Dr,j}, the parent node P has to perform at
least two rounds of message exchange with its child node S,
i.e., N ≥ 2. Using (1) and (2), it can easily be shown that the
following relationships hold:

D2,j =β1D1,j + β1(Xα+j − Xj) (10)

D3,j =β1D4,j − β1(Yα+j − Yj) (11)

for j = 1, . . . , N − α. Dividing (10) and (11) by β1 and stack-
ing all the Dr,j in matrix form, we have⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−D1,1

...
−D1,N−α

D4,1

...
D4,N−α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−D2,1

...
−D2,N−α

D3,1

...
D3,N−α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
· θ1+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Xα+1 − X1

...
XN − XN−α

Yα+1 − Y1

...
YN − YN−α

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Since Xi and Yi are i.i.d. Gaussian distributed with
variance σ2, (Xα+i − Xi) ∼ N (0, 2σ2), and (Yα+i − Yi) ∼
N (0, 2σ2). From (12), the MLE for β1 is given by [14]

β̂1 =
1

θ̂1

=

∑N−α
j=1

(
D2

2,j + D2
3,j

)
∑N−α

j=1 (D1,jD2,j + D4,jD3,j)
. (13)

To estimate the clock offset β0, we plug the estimated clock
skew back to the original model (1) and (2) and obtain

T2,i − β̂1 × T1,i =β0 + β̂1 × (d + Xi) (14)

T3,i − β̂1 × T4,i =β0 − β̂1 × (d + Yi). (15)

Adding (14) and (15) together, we have (T2,i + T3,i) −
β̂1(T1,i + T4,i) = 2β0 + β̂1(Xi − Yi). Since (Xi − Yi) ∼
N (0, 2σ2), the clock offset can be estimated as

β̂0 =
1

2N

N∑
i=1

[
(T2,i + T3,i) − β̂1(T1,i + T4,i)

]
. (16)

Remark 2: When α = N − 1, j must be 1, and we have
Dr,1 = Tr,N − Tr,1 = Wr. Thus, the estimator (13) reduces to

β̂1 =
W 2

2 + W 2
3

W1W2 + W3W4
(17)

which is exactly the estimator proposed by Noh et al. [15].

C. Proposed Low-Complexity Estimator

By observing that the uplink and downlink undergo the same
amount of fixed delay, we can rewrite the original model by
adding (1) to (2), and the modified model is given by

T2,i + T3,i = β1 × (T1,i + T4,i) + 2β0 + β1 × (Xi − Yi).
(18)

Dividing the aforementioned equation by β1 and stacking all
the time stamps in matrix form, the model becomes⎡
⎢⎣ T1,1+T4,1

...
T1,N +T4,N

⎤
⎥⎦

︸ ︷︷ ︸
Δ
=TS′

=

⎡
⎢⎣ T2,1+T3,1 −2

...
T2,N +T3,N −2

⎤
⎥⎦

︸ ︷︷ ︸
Δ
=TP ′

[
θ1

θ0

]
︸ ︷︷ ︸
=Θ

+

⎡
⎣ Y1−X1

...
YN−XN

⎤
⎦

︸ ︷︷ ︸
Δ
=Z′

.

(19)
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Since the i.i.d. random delay Xi and Yi follow Gaussian

distribution with variance σ2, Z ′
i

Δ= (Yi − Xi) ∼ N (0, 2σ2).
The MLE for Θ is given by

Θ̂ =
(
TH

P ′TP ′
)−1

TH
P ′TS′ . (20)

The estimators for β1 and β0 are given by β̂1 = 1/[Θ̂]1 and
β̂0 = [Θ̂]2/[Θ̂]1, respectively.

IV. PERFORMANCE BOUND DERIVATION

A. Cramer-Rao Lower Bound (CRLB)

Noh et al. [15] presented the CRLB for the joint estimation
of clock skew β1 and clock offset β0 under the assumption that
the fixed delay d is known. When the fixed delay is included as
a parameter, we need to rederive the CRLB for each parameter
in the joint estimation.

The PDF in (6) can be rewritten as

ln f
(
{T1,i, T2,i, T3,i, T4,i}N

i=1;β1, β0, d
)

= ln
N

2πσ2
− 1

2σ2

×
N∑

i=1

[(
T2,i

β1
−T1,i−

β0

β1
−d

)2

+
(

T4,i−
T3,i

β1
+

β0

β1
−d

)2
]

.

(21)

Then, the Fisher information matrix is given by [14]

FIM(β1, β0, d) =

⎡
⎢⎢⎣
−E∂2 lnf

∂β2
1

−E ∂2 lnf
∂β1∂β0

−E∂2 lnf
∂β1∂d

−E∂2 lnf
∂β2

0
−E ∂2 lnf

∂β0∂β1
−E∂2 lnf

∂β0∂d

−E∂2 lnf
∂d2 −E∂2 lnf

∂d∂β1
−E∂2 lnf

∂d∂β0

⎤
⎥⎥⎦

=

⎡
⎣A B C
B 2N

β2
1

0
C 0 2N

⎤
⎦ (22)

where

A Δ=
1
β4

1

N∑
i=1

[
β2

1(T1,i + d)2 + β2
1σ2 + (T3,i − β0)2

]
(23)

B Δ=
1
β3

1

N∑
i=1

[β1(T1,i + d) + (T3,i − β0)] (24)

C Δ=
1
β2

1

N∑
i=1

[β1(T1,i + d) − (T3,i − β0)] . (25)

By inverting the matrix (22), it can be shown that the CRLB for
each parameter is

CRLB(β1) =
2Nσ2

2NA− β2
1B2 − C2

(26)

CRLB(β0) =
σ2β2

1(2NA− C2)
2N (2NA− β2

1B2 − C2)
(27)

CRLB(d) =
σ2
(
2NA− β2

1B2
)

2N (2NA− β2
1B2 − C2)

. (28)

Remark 3: In the two-way message exchange mechanism,
the values of time stamps T1,i and T3,i are determined by
the two nodes and should be seen as the system inputs, with
T2,i and T4,i being the corresponding outputs. Once the inputs
and statistics of the random delay are fixed, the CRLB should
be fixed and independent of the system outputs. Therefore,
the CRLB previously derived depends only on time stamps
{T1,i, T3,i}N

i=1 and the random-delay variance. However, the
CRLB derived in [15] was based on all the time stamps
{T1,i, T2,i, T3,i, T4,i}N

i=1, and CRLB may change according to
different realizations of {T2,i, T4,i}N

i=1.

B. Performance Bound for the Generalized MLLE

Strictly speaking, for a set of data generated from a specific
system model, there should be a unique and lowest performance
bound for any estimator dealing with these data. The CRLB
given in Section IV-A is just such a lowest bound for unbiased
estimators. However, if the data are manipulated in the process
of estimation such that the system model for estimation is
changed, we need to know whether the manipulation causes
degradation of the performance limit. Therefore, a performance
bound for the generalized MLLE is needed.

Since (12) is a standard linear model and the random delays
are i.i.d. Gaussian distributed, following the standard method
of deriving CRLB [14], the performance bound for β1 can be
shown to be

PBg(β1) =
2σ2β4

1∑N−α
j=1

(
β2

1D2
1,j + D2

3,j + 6β2
1σ2
) . (29)

Furthermore, from the estimator for β0 in (16), together with
(1) and (2), the estimation error for the clock offset is given by

β̂0 − β0 =
β̂1 − β1

2N

N∑
i=1

(T1,i + T4,i) +
β1

2N

N∑
i=1

(Xi − Yi).

(30)

Computing the variance on both sides of the aforementioned
equation, it can be shown that

PBg(β0) =
σ2β2

1

2N
+

PBg(β1)
4N2

×

⎧⎨
⎩ 1

β2
1

[
N∑

i=1

β1(T1,i + d) + (T3,i − β0)

]2
+ Nσ2

⎫⎬
⎭ (31)

where we use varX = EX2 − [EX]2 and the fact that the
estimator for the clock skew β1 is asymptotically unbiased.

Clearly, from (29) and (31), the performance bounds of the
generalized MLLE for both β1 and β0 depend on the integer
parameter α. To obtain the best performance, this user-defined
α has to be carefully chosen. As shown in Appendix A, the
optimal α in the sense of minimizing PBg(β1) and PBg(β0) is
given by the following proposition:

Proposition 1 (Choosing the Optimal α): Assuming T1,i =
iH and T3,i = iG, where H and G are the gap between neigh-
boring time stamps in T1,i and T3,i, respectively, the optimal α
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in the sense of minimizing both PBg(β0) and PBg(β1), which
is denoted as α∗, is given by

α∗ = arg max
α=�α∗

r	,
α∗
r�

Φ(α) (32)

where Φ(α) = (β2
1H2 + G2)(−α3 + Nα2) + 6(N − α)β2

1σ2

and

α∗
r =

⎧⎨
⎩ 1

3N +
√

1
9N2 − 2β2

1σ2

β2
1H2+G2 , σ2 ≤ λTh or N = 3

1, σ2 > λTh and N = 3
(33)

where λTh
Δ= (2/27N3 − N + 1)(β2

1H2 + G2)/[2β2
1(N −

3)]. Moreover, in the high-SNR region, the optimal α reduces
to α∗ = 2k + 
j/2�, where k and j are related to N by
N = 3k + j, with k ∈ {0, 1, 2, 3, . . .} and j ∈ {0, 1, 2}.

Remark 3: Since the values of T1,i and T3,i are determined
by the two nodes in the two-way message exchange mech-
anism, the assumption T1,i = iH and T3,i = iG is practical
and causes no loss of generality. Furthermore, as numerically
shown in Section VII, α∗ = 2k + 
j/2� provides the optimal
performance, even when the transmitted time stamps are not
uniformly spaced.

C. Performance Bound for the Proposed Low-Complexity
Estimator

For the same reason stated in Section IV-B, we need to derive
the performance bound for the novel low-complexity estimator.
From the model TS′ = TP ′Θ + Z′ in (19), the pdf of TS′

is ln f(TS′ ;Θ) = −N/2 ln(2πσ2) − 1/2σ2‖TS′ − TP ′Θ‖2.
Then, the Fisher information matrix can be derived as [14]

FIM(β1, β0) =
1

2σ2

[ K 2B
2B 4N

β2
1

]
(34)

where B was defined in (24), and

K =
1
β2

1

N∑
i=1

{[
(T1,i + d) +

1
β1

(T3,i − β0)
]2

+ 3σ2

}
. (35)

Inverting the 2 × 2 matrix in (34), the performance bounds for
the clock skew β1 and the clock offset β0 are given by

PBP (β1) =
2Nσ2

NK − β2
1B2

(36)

PBP (β0) =
σ2β2

1K
2NK − 2β2

1B2
. (37)

V. FURTHER PERFORMANCE ANALYSES

To see whether the performance limits of the two estimators
in Sections III-B and C can meet the CRLB, in this section,
we compare their performance bounds with the CRLB. To
get insightful conclusions, it is assumed that T1,i = iH and
T3,i = iG, where H and G are the gap between neighboring
time stamps in T1,i and T3,i, respectively. Simulation results
will be presented in Section VII to corroborate the results in
this section when T1,i and T3,i are not uniformly spaced.

A. CRLB and Performance Bound of the Proposed
Estimator PBp

From (26) and (36), the normalized difference between the
performance bound PBp(β1) of the proposed low-complexity
estimator and CRLB(β1) can be computed as

PBP (β1) − CRLB(β1)
CRLB(β1)

=
2NA− C2 − NK

NK − β2
1B2

. (38)

Using the definition of A, B, C, and K in (23)–(25) and (35),
and after some straightforward manipulations, it can be shown
that

2NA−C2−NK =
N2

β2
1

⎡
⎣ 1

N

N∑
i=1

V 2
i −
(

1
N

N∑
i=1

Vi

)2

−σ2

⎤
⎦
(39)

NK−β2
1B2 =

N2

β2
1

⎡
⎣ 1

N

N∑
i=1

U2
i −
(

1
N

N∑
i=1

Ui

)2

+3σ2

⎤
⎦

(40)

where Vi = (T1,i + d) − (1/β1)(T3,i − β0), and Ui = (T1,i +
d) + (1/β1)(T3,i − β0). With the assumption T1,i = iH and
T3,i = iG, (39) and (40) can further be simplified as

2NA−C2−NK

=
N2

β4
1

⎧⎨
⎩(β1H−G)2

⎡
⎣ 1
N

N∑
i=1

i2− 1
N2

(
N∑

i=1

i

)2⎤⎦−β2
1σ2

⎫⎬
⎭

(41)

NK−β2
1B2

=
N2

β4
1

⎧⎨
⎩(β1H+G)2

⎡
⎣ 1
N

N∑
i=1

i2− 1
N2

(
N∑

i=1

i

)2⎤⎦+3β2
1σ2

⎫⎬
⎭ .

(42)

Putting (41) and (42) into (38) and recognizing that∑N
i=1 i2/N − (

∑N
i=1 i)2/N2 = (N2 − 1)/12, the normalized

difference between PBp(β1) and CRLB(β1) is given by

PBP (β1) − CRLB(β1)
CRLB(β1)

=
(N2 − 1)(β1H − G)2 − 12β2

1σ2

(N2 − 1)(β1H + G)2 + 36β2
1σ2

(43)

<
(β1H − G)2

(β1H + G)2
. (44)

Since H and G are usually of similar values to keep the two-
way message exchange in order and the clock skew is generally
close to 1, (β1H − G) is a small value, and the normalized
difference is close to zero. For example, supposing β1 = 0.95,
H = 25, and G = 30, the normalized difference computed
using (44) is approximately 0.0135. Thus, the performance
limit of the proposed estimator for clock skew β1 is almost
the same as that of the CRLB. Simulation results shown in
Section VII further verify that the performance bound PBp(β1)
of the proposed estimator is indistinguishable from CRLB(β1).
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Similarly, using (27) and (37), the normalized difference
between PBp(β0) and CRLB(β0) can be shown to be

PBP (β0) − CRLB(β0)
CRLB(β0)

=
β2

1B2(2NA− C2 − NK)
(2NA− C2) (NK − β2

1B2)
(45)

=
γ · β2

1B2

2NA− C2
(46)

where γ
Δ= (2NA− C2 − NK)/(NK − β2

1B2) is the normal-
ized difference between PBp(β0) and CRLB(β0) in (38). With
T1,i = iH and T3,i = iG, it is shown in Appendix B that
β2

1B2/(2NA− C2) can be written in the form of (47), shown
at the bottom of the page.

Therefore, putting (47) back into (46), we have

PBP (β0) − CRLB(β0)
CRLB(β0)

< γ · 3(N + 1)(β1H + G)2

2(N − 1) (β2
1H2 + G2) + 3(N + 1)(β1H + G)2

<
3(N + 1)(β1H − G)2

2(N−1) (β2
1H2+G2)+3(N+1)(β1H+G)2

. (48)

With the same reason previously stated, (β1H − G) is small;
therefore, the normalized difference between PBp(β0) and
CRLB(β0) is close to zero. For example, supposing β1 =
0.95, H = 25, G = 30, and N = 6, the normalized difference
computed using (48) is 0.0109. Thus, we can conclude that
the proposed estimator for clock offset β0 has almost the same
performance limit as that of MLE, and this is further verified by
simulation results.

B. CRLB and Performance Bound of the
Generalized MLLE PBg

Putting T1,i = iH and T3,i = iG into (26) and (29), and after
some straightforward manipulations, the normalized difference
between the performance bound PBg(β1) of the generalized
MLLE and CRLB(β1) is computed as

PBg(β1) − CRLB(β1)
CRLB(β1)

=
[
α2 +

6β2
1σ2

β2
1H2 + G2

]−1

×
[
N(N2 − 1)
6(N − α)

− α2 − 2N − 3α

N − α

2β2
1σ2

β2
1H2 + G2

]
. (49)

To gain more insight, we examine the high-SNR scenario (i.e.,
σ2 is small), and the normalized difference becomes

PBg(β1) − CRLB(β1)
CRLB(β1)

=
N(N2 − 1)
6α2(N − α)

− 1. (50)

Moreover, in the high-SNR scenario, the optimal α that min-
imizes PBg(β1) is given by α∗ = 2k + 
j/2�, where k and

j are related to N by N = 3k + j, with k ∈ {0, 1, 2, 3, . . .}
and j ∈ {0, 1, 2}. For N = 2 and N = 3, the optimal α is 1
and 2, respectively. In addition, the normalized difference is
zero in these two cases. Otherwise, the normalized difference
(assuming that N is a multiple of 3 for simplicity, and therefore,
α∗ = 2N/3) can be shown to be 0.125 − 1.125/N2. Therefore,
for a large N , PBg(β1) will be at least 10% larger than
CRLB(β1). Simulation results in Section VII further verify that
the manipulation of time stamps used in the generalized MLLE
causes performance loss and degrades the performance bound
of β1 with respect to CRLB(β1).

Before comparing the performance bound of the generalized
MLLE PBg(β0) with CRLB(β0), we first note the following
relationships:

CRLB(β0) = CRLB(β1) ·
β2

1(2NA− C2)
4N2

(51)

PBg(β0) =
σ2β2

1

2N
+

PBg(β1)
4N2

(
β4

1B2 + Nσ2
)
. (52)

Therefore, with η
Δ= (PBg(β1) − CRLB(β1))/CRLB(β1), the

normalized difference between PBg(β0) and CRLB(β0) is

PBg(β0) − CRLB(β0)
CRLB(β0)

=
ηβ4

1B2 + (η + 1)Nσ2

β2
1(2NA− C2)

. (53)

In the high-SNR region, σ is small, and we can further simplify
(53) as

PBg(β0) − CRLB(β0)
CRLB(β0)

=
η · β2

1B2

2NA− C2
. (54)

Moreover, with T1,i = iH and T3,i = iG, it is shown in
Appendix B that

β2
1B2

2NA− C2
>

3
5
. (55)

Therefore, combining (54) and (55), the normalized difference
between PBg(β0) and CRLB(β0) is lower bounded by

PBg(β0) − CRLB(β0)
CRLB(β0)

>
3
5
η. (56)

That is, for N = 2 and N = 3, we have η = 0, and the nor-
malized difference between PBg(β0) and CRLB(β0) is zero
from (54). On the other hand, for N > 3, by assuming that
N is a multiple of 3, for simplicity, we have η = 0.125 −
1.125/N2, and the normalized difference (56) is lower bounded
by 0.077 − 0.675/N2, which indicates that PBg(β0) will be
at least 7% larger than CRLB(β0) for a large N . Simulation
results in Section VII further verify these analyses.

β2
1B2

2NA− C2
=

3(N + 1)2(β1H + G)2

2(N2 − 1) (β2
1H2 + G2) + 3(N + 1)2(β1H + G)2 + 24σ2β2

1

(47)



188 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 1, JANUARY 2010

TABLE I
COMPLEXITY COMPARISON

Fig. 2. Performance bound PBg(β1) of the estimated clock skew β̂1 using
the generalized MLLE with different α’s. The “x” indicates the value of α
calculated by (32), i.e., α∗ = 2k + �j/2�, where k and j are related to N by
N = 3k + j, with k ∈ {0, 1, 2, 3, . . .} and j ∈ {0, 1, 2}.

VI. COMPLEXITY COMPARISONS

To compare the complexity of the three estimators, their
number of operations are shown in Table I. The symbol L(Q)
has been used to indicate that the calculation of parameter L
depends on the precalculated parameter Q. As shown in Table I,
for the MLE, β0 and β1 have to be calculated based on the
value of d, whereas the calculation of d takes complexity order
O(N3). On the other hand, the other two estimators do not have
to calculate d, and the complexity order for the estimation of β1

and β0 is only O(N).

VII. SIMULATION RESULTS AND DISCUSSIONS

Simulations are carried out to compare the performances of
the three estimators. The parameters used in the simulation
are d ∈ (0, 10], β1 ∈ [0.9, 1.1], and β0 ∈ [−10, 10]. In each
simulation run, d, β1, and β0 are uniformly drawn from their
respective ranges. The time stamps at the two nodes are set
as T1,i = iH + 
i and T3,i = iG + νi, where 
i and νi are
independent normal random variables with zero mean, and
their variances are equal to 0.3H and 0.3G, respectively. The
setting for T1,i and T3,i indicates that the message exchange in
the simulation follows an unequally spaced transmission. Ten
thousand simulation runs were performed to obtain the average
performance of each point in the figures.

Fig. 2 shows the performance bound PBg(β1) of the
generalized MLLE for β1 versus different α’s at SNR =
0, 15, and 30 dB, where the SNR is defined as 10 log[(H2 +

Fig. 3. MSE of estimated clock offset β̂0 with respect to the number of time
stamps N .

G2)/σ2]. The closed-form optimal α for the high-SNR scenario
in (32) is also shown in the figure as an “x.” It can be seen
from the figure that, even when the variation of the gap between
neighboring time stamps is as high as 30%, (32) can still
provide the optimal α. Moreover, the value of α calculated by
(32) successfully predicts the optimal α not only in the high-
SNR scenario but in the low-SNR scenario as well. Since the
optimal α for β1 estimation is also optimal for β0 estimation,
the corresponding figure for β0 is not shown here.

Fig. 3 shows the MSE for the estimation of the clock offset
β0 using different estimators versus different N ’s with SNR =
30 dB. In the figure, “GE” stands for the generalized MLLE.
In addition, when α = N − 1, it corresponds to the original
MLLE proposed by Noh et al. [15]. As shown in the figure,
the performance of the original MLLE significantly deteriorates
from the CRLB. When α takes the optimal value, the perfor-
mance of the generalized MLLE improves but still slightly
departs from the CRLB. On the other hand, the proposed
estimator achieves the best performance as the MLE, and its
performance bound overlaps with CRLB(β0). Fig. 4 shows the
corresponding results for the estimation of the clock skew β1.
The same conclusions as in Fig. 3 can be drawn.

VIII. CONCLUSION

Clock synchronization for WSNs in the presence of un-
known Gaussian delay has been discussed based on the two-
way message-exchange mechanism. The MLE for the joint
estimation of clock skew, clock offset, and fixed delay has
first been derived. The MLE achieves good performance, but
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Fig. 4. MSE of estimated clock skew β̂1 with respect to the number of time
stamps N .

its complexity is high. Then, two low-complexity estimators
have been derived. One is the generalization of the MLLE by
Noh et al. [15], and the other is a newly proposed estimator.
By comparing their performance bounds with the CRLB, it
has been found that the proposed low-complexity estimator can
achieve CRLB, whereas the generalized MLLE suffers perfor-
mance degradation. The optimal α for the generalized MLLE
has also been derived, and by using the proposed optimal
α, the performance degradation can significantly be reduced.
Therefore, the generalized MLLE with optimal α proposed in
this paper and the newly proposed estimator represent attractive
time synchronization algorithms in terms of computational
complexities and performances.

APPENDIX A
PROOF OF PROPOSITION 1

With the assumption T1,i = iH and T3,i = iG, where H and
G are the gap between neighboring time stamps in T1,i and T3,i,
respectively, and using (1) and (2), the performance bound for
β1 (29) can explicitly be expressed as

PBg(β1) =
2σ2β4

1

(β2
1H2 + G2) (−α3 + Nα2) + 6(N − α)β2

1σ2

Δ=
2σ2β4

1

Φ(α)
. (57)

Finding the optimal α that minimizes PBg(β1) is equivalent to
solving the following optimization problem:

α∗ = arg max
α

Φ(α)

s.t. α ∈ {1, . . . , N − 1}. (58)

First, let us consider a relaxed version of (58), i.e.,

α∗
r = arg max

αr

Φ(αr)

s.t. 1 ≤ αr ≤ N − 1 (59)

with αr being a real number. To solve (59), we look at the
convexity/concavity property of the continuous function Φ(αr)

by computing its second derivative, i.e.,

∇2Φ(αr) =
(
β2

1H2 + G2
)
(2N − 6αr).

Since β1, H , and G are all positive, it is easy to find that Φ(αr)
is convex upward for αr ∈ [1, 1/3N ] and concave downward
for αr ∈ [1/3N,N − 1].

For αr ∈ [1/3N,N − 1], the maximum of Φ(αr) can be
found by setting the first derivative ∇Φ(αr) to zero, and the
optimal solution α∗c

r in the concave part is given by

α∗c
r =

1
3
N +

√
1
9
N2 − 2β2

1σ2

β2
1H2 + G2

.

For αr ∈ [1, 1/3N ], the maximum of Φ(αr) is achieved at
either αr = 1 or αr = 1/3N . When N = 3, these two points
overlap; therefore, α∗

r = 1/3N in this case. Otherwise, since
Φ(1) = (N − 1)(β2

1H2 + G2 + 6β2
1σ2) and Φ(1/3N) =

2/27N3(β2
1H2 + G2) + 4Nβ2

1σ2, it can be shown that Φ(1)
is larger than Φ(1/3N) as long as σ2 > λTh, where λTh

Δ=
(2/27N3 − N + 1)(β2

1H2 + G2)/[2β2
1(N − 3)]. Therefore,

the optimal solution α∗v
r in the convex part is given by

α∗v
r =

{
1
3N, σ2 ≤ λTh or N = 3
1, σ2 > λTh and N = 3.

When σ2 ≤ (2/27N3 − N + 1)(β2
1H2 + G2)/[2β2

1(N −
3)] is satisfied, it is easy to see that α∗c

r always exists and that
the inequality 1/3N < α∗c

r always holds. Since Φ(αr) is con-
tinuous, we have Φ(1/3N) < Φ(α∗c

r ); therefore, considering
the whole range for αr, the optimal solution α∗

r of (59) is

α∗
r =

⎧⎨
⎩ 1

3N +
√

1
9N2 − 2β2

1σ2

β2
1H2+G2 , σ2 ≤ λTh or N = 3

1, σ2 > λTh and N = 3.
(60)

Going back to the original problem (58), since the parameter
α can only take integer values, the solution of (58) is then
given by

α∗ = arg max
α=�α∗

r	,
α∗
r�

Φ(α). (61)

Since PBg(β0) depends on α only through PBg(β1), as shown
in (31), the optimal α for the estimation of β1 must also be
optimal for the estimation of β0. Therefore, (60) and (61) give
the optimal α.

Apparently, α∗
r in (60) depends on σ2 and β1, which are

difficult or impossible to obtain beforehand. To give a practical
solution, we note that, in the high-SNR region (i.e., σ2 is small),
α∗

r is given by α∗
r = 2/3N . Expressing N = 3k + j, where

k ∈ {0, 1, 2, 3, . . .} and j ∈ {0, 1, 2}, if j = 0, we have �α∗
r	 =


α∗
r� = 2k; thus, α∗ = 2k. Otherwise, j ∈ {1, 2}, and we have

�α∗
r	 = 2k + j − 1 and 
α∗

r� = 2k + j. It can be shown that

Φ(�α∗
r	)−Φ(
α∗

r�)=
(
β2

1H2+G2
)[

(j−1)2+k(2j−3)
]

(62){
< 0 j = 1
> 0 j = 2.

(63)
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Therefore, the optimal value for α is given by

α∗ =

{ 2k, j = 0
2k + j, j = 1
2k + j − 1, j = 2.

(64)

In summary, the optimal α can compactly be expressed as α∗ =
2k + 
j/2� in the high-SNR region.

APPENDIX B
PROOF OF (47) AND (55)

Under the assumption T1,i = iH and T3,i = iG, we have

β2
1B2 =

1
4β4

1

[N(N + 1)(β1H + G) + 2(β1d − β0)]
2

(65)

2NA− C2 =
1

6β4
1

N2(N2 − 1)
(
β2

1H2 + G2
)

+
1

4β4
1

[N(N + 1)(β1H + G) + 2(β1d − β0)]
2

+
2N2σ2

β2
1

. (66)

Comparing the two terms N(N − 1)(β1H + G) and
2(β1d − β0), since the first term includes a factor on the
order N2, the second term 2(β1d − β0) is much smaller than
N(N + 1)(β1H + G) and can be neglected. Computing the
ratio between β2

1B2 and 2NA− C2, we have (47).
Moreover, in the high-SNR scenario, σ is small; thus, we can

further neglect the term 24σ2β2
1 in (47) and have the following

equality:

β2
1B2

2NA−C2
=

3
3+2(N−1)(β2

1H2+G2)/[(N+1)(β1H+G)2]
.

(67)

Since N − 1 < N + 1 and (β2
1H2 + G2) < (β1H + G)2, the

following inequality always holds:

N − 1
N + 1

· β2
1H2 + G2

(β1H + G)2
< 1. (68)

Therefore, in the high-SNR scenario, we have

β2
1B2

2NA− C2
>

3
5
. (69)
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