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1. INTRODUCTION

As will be pointed out in Section 2, among the maximal closed subclasses of the
class of all functions over a nonvoid set 4 with |4| = p* (p prime, p* > 3), the maxi-
mal classes of quasilinear functions (i.e. those determined by an elementary Abelian
p-group operation on A) are distinguished by the property of having only countably
many closed subclasses. There is another advantageous property of quasilinear
functions: they have two different representations making them easy to handle,
namely, one as polynomials of a special form over a finite field and the other as
linear functions with coefficients in a matrix ring over a finite prime field (see Theo-
rems 2.2 and 2.3 below).

If the cardinality of the base set A is a prime power p" with n > 2 then a full
description of the closed classes of quasilinear functions is not known. On the other
hand, if 4 is of prime order then the two representations mentioned above coincide
and the maximal closed classes of quasilinear functions have the form

k
L, ={Yax;+a,|k21,a;€Z,(j=0,..,k)},
i=1

where Z, is the p-element prime field. SALoMAA [10] and DEMETROVICS-BAGYINSZKI
[1] have described the closed subclasses of L. In particular, it turned out that L,
contains only finitely many closed subclasses.

The main aim of the present note is to generalize this result to arbitrary finite
fields, i.e. to investigate the class

k
Le={Yax;+ao|k=1,a;eF (j =0,...,k)}
i=1

of linear functions over a finite field F. I am indebted to W. HarRNAU for calling
my attention to this problem. Sections 3 and 4 below are devoted to the study of
closed classes containing L, or being contained in L, respectively. In particular,
we show that Ly is of finite height in the lattice of all closed classes of functions
over F, and contains only finitely many closed subclasses.
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2. PRELIMINARIES

We adopt the terminology of [9]. For any set 4(+0) and every positive integer n,

O will stand for the set of n-ary operations on 4. Set O, = {J 0. An operation

n=1
fe 0 is said to depend on its I’th variable (1 < i < n) if there exist elements a;
(j =1,...,n), ajin 4 such that

flay, ..va,) *+ flag, ... a;_y, ab aiiy, .0 a,).

An operation f e OF is termed idempotent if f(a, ..., a) = a holds for every a € A.
Operations that are not projections will be referred to as non-trivial operations.

A subset Cof O, is called a closed class if together with any operation f, C contains
all operations arising from f by interchanging or identifying its variables, and further-
more, C is closed under composition, i.e. if f, g € C, say f is m-ary and g is n-ary,
then the operation f % g € 09"~ defined by

(f* g) (a17 e am+n-1) __"f(g(alv AR an)7 Ang1s s am+n‘l)
(a;ed,i=1,...om+n—1)

also belongs to C. The closed class generated by a subset H of O 4 is denoted by [H].
Clearly, a closed class containing an at least binary projection contains all projections.
Such a closed class is called a clone. A closed subclass C of O, is termed unary if
every member of C depends on at most one of its variables. The lattice of closed
subclasses of O, will be denoted by &£ 4. Following GAVRILOV [4] (see also Salomaa
[11]), we define the height of a closed class C(=0,) as the length of the longest
finite chain in %, connecting C to O, provided such a chain exists; otherwise, C is
said to be of infinite height.

Due to ROSENBERG [7, 8], we have a complete description of the closed classes
of height 1, i.e. the maximal closed subclasses of O,. To be able to formulate this
theorem, we need some more definitions.

Let A be a nonvoid finite set, k,n = 1, fe O and ¢ < 4*. The operation f is
said to preserve the relation g if ¢ is a subalgebra of the k’th direct power of the
algebra.{A4; f>; in other words, f preserves ¢ if for any n x k matrix with entries
in 4, whose rows belong to ¢, the row of column values of f also belongs to .
Clearly, the set of operations preserving a relation ¢ forms a clone, which will be
denoted by Pol g.

A k-ary relation g on A is called central if ¢ + A* and there exists a nonempty
subset C of A such that '

(i) <ay, ..., a> € ¢ whenever at least one a;e C (1 £ j < k);

(ii) {ay, ..., a,y o implies <a,,, ..., axy €0 for every permutation n of the
indices 1, ..., k;

(iii) <@y, ..ormy €0 if a; = a; for some i # j (1 < i,j < k).
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Let 2 < k < |4|, with | 4] standing for the cardinality of 4, and m = 1. A family
T = {04, ..., 0,} of equivalence relations on A is termed k-regular if

(iv) each 6; has k equivalence classes (j = 1, ..., m);

(v) the intersection ()¢ of arbitary equivalence classes g;e€8; (i =1,...,m)
i=1
is non-empty.
The relation ¢ determined by T consists of all {ay, ..., a,> € A* having the property
that for each j = 1,..., m at least two elements among ay, ..., a; are equivalent
modulo 6;. Notice that ¢ has the properties (ii) and (iii).

Theorem 2.1 (Rosenberg [7, 8]). For a finite set A(+0), Pol ¢ is a maximal closed
subclass of O, provided ¢ is one of the following relations on A:

() a bounded partial order;

(B) a binary relation {<{a,any|ae A} where m is a permutation of A with
|A|/p cycles of the same prime length p;

(v) a quaternary relation {<ay, a,,as, a,p€A*|a; + ay = a3 + a,} where
{A; +> is an elementary Abelian p-group;

(8) a nontrivial equivalence relation;

() a central relation;

(§) a relation determined by a k-regular family of equivalence relations on A
(k > 2).

Moreover, every proper closed subclass of O, is contained in at least one of the
clones listed above.

Next we discuss in more detail the maximal classes of type (y). Let (F; +, *>
be a finite field. The closed class Ly, ., (S Op) defined in the introduction is easily
seen to be contained in the maximal class of type (y) determined by the additive
group (F; +) of the field (F; +, +). This maximal class will be denoted by Q, 5.
If there is no danger of confusion we write Ly and Qp instead of Ly, .y and Q¢r. 45,
respectively. It is well known that any operation in O is a polynomial over the
field {F; +, *>. Those belonging to Q can be characterized as follows:

Theorem 2.2 (Rosenberg [8]). Given an elementary Abelian p-group {F; +)
of order p" (p prime, n 2 1), for any field {F; +, > we have

k n-1
Qiriey = {ao +‘21 Zoaijx’f |k 21, ag,a;;€ F}.
i=1 j=

Since any elementary Abelian p-group of order p” is isomorphic to {Z7; +), the
following theorem gives another characterization of the maximal classes of type (7).
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Theorem 2.3 (Rosenberg [8]). For any prime number p and n Z 1 we have
k
Qzmss = (Y Adx; +a ] k=1, AjeZ[nxn](i=1,...,k), aeZ}}.
i=1

Here Z,[n x n] stands for the full n x n matrix ring over the field Z,,.

Once we have at hand Rosenberg’s description of the maximal closed subclasses
of 0, (which are finite in number), it is of interest to have a look at the closed classes
contained in a fixed maximal class. In case 3 £ [A] < N, Janov and MucnNik
[14] have shown O to possess 2™° closed subclasses, so it is natural to ask how many
closed subclasses are contained in a fixed maximal class. This question is answered
in the following

Theorem 2.4. Let A be a finite set, |A| = 3. Then in O,

(i) any maximal class of type (y) has countably many closed subclasses;
(ii) any maximal class of type (), (3), (€) or (€) has 2% closed subclasses;
(iii) if |A| > 3 then any maximal class of type (B) has 2%° closed subclasses.

One case remains unsettled:

Open problem: How many closed subclasses are contained in a maximal class
of type (B) if |4| = 37
(It is shown in [3] that there are infinitely many such closed subclasses. )

The first assertion of the theorem follows from a seemingly considerable generaliza-
tion of a recent result of LAU [5]. In fact, however, her proof can be almost literally
repeated to prove the following general result.

Let R be a ring and M a faithful left R-module. Consider the following set of
operations on M:

k
Ly={Yrx;+m|kz1,reR(i=1,..k), meMj.
i=1
Clearly, Ly, is a closed subclass of Oy,.

Theorem 2.5. For any finite ring R and finite faitful left R-module M, the number
of closed subclasses of Ly, is denumerable.

In view of Theorem 2.3, Theorem 2.4(i) is indeed a corollary to Theorem 2.5.

The proof of the second assertion is based on the construction of Janov and
Mucnik. They proved that for any three distinct elements a, b, ¢ of the base set 4
(3 £ |4] < N,), the operations g; (i = 2,3, ...) defined by

(x )_ b if {(xy..nxp =L ...,cy or e .6, b0,
IdXLs 0 Xi) =15 otherwise

have the property
gtle|i=23 .., i*k], k=23, ...
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It suffices to show that if ¢ is a relation of type (), (8), (¢) or (), then each g;
belongs to Pol ¢ provided a, b, ¢ are chosen appropriately. According to the type of ¢
they are to be selected as follows:

(o) a the greatest element, ¢ the smallest one and b an element covering ¢ (i.e.
a minimal element);

(8) a + b and ao b, c(=*a, b) arbitrary;

(¢) a e C, the centre of g, while ¢ ¢ C, b(+a, c) arbitrary;

(C) a, b, ¢ arbitrary distinct elements.

We note here that Theorem 2.4 (ii) was also observed by DEMETROVICS and HANNAK
[2].

The third assertion of the theorem follows by combining a theorem of MARCENKOV
[6] with a recent result of Demetrovics and Hannak [3]- In fact, they have proved the
following stronger statement: for any permutation 7 of the set 4 with ’A| =3,
which is not a cycle of the length [4] if |4] < 4, the closed class Pol g, determined
by the binary relation

0. = {<a, an)d | ae A}
has 2%° closed subclasses.
Thus the proof of Theorem 2.4 is complete.

3. CLOSED CLASSES CONTAINING Ly

Consider a finite field F of order p” (p prime, n = 1). A straightforward com-
putation shows that for any factor d of n,
k njd-1

[Lr v {x"1] = {a, +i;1 i;) a; x|k 21, ag,a;;€F} .

This closed class will be denoted by Qf. In particular, for d = 1 and d = n we have
0} = Q (cf. Theorem 2.2) and @} = L. Clearly, the closed classes Qf form a lattice
under the set inclusion which is isomorphic to the lattice of divisors of n.

closed class C with L, = C O, there exists a factor d of n such that C = Q%.

Theorem 3.1. Let F be a finite field of order p" (p prime, n = 1). Then for any

Corollary 3.2. If the canonical factorization of nis n = pi' ... p* then the closed
class Ly is of height ky + ... + k. + 1.
Theorem 3.1 immediately follows from the next two lemmas.

Lemma 3.3. For any finite field F, Qp is the unique maximal clone Ly is contained
in.

Proof. First we show that Ly & Pol ¢ if ¢ is a relation of the type (a), (B), (3), (¢)
or (£). To this end it suffices to construct a non-singular square matrix M, with the
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first row <1, ..., 1> (1 is the identity element of F) and all other rows belonging to ¢.
Indeed, suppose ¢ = F* (k = 1) is an arbitrary relation and M, = (m;;); ;< is the
required non-singular k x k matrix such that my; = 1(j = 0, ..., k — 1). Further-
more, let (mq, ..., my_,;> € F* — g. Denote by aq, ..., a;-; the solution of the
system of linear equations

Y &my=m; (j<k),

i<k
and consider the operation f € Ly defined by

k-1

S oo xpmy) = aq +Zla,vx,-.
&
Then the rows of the (k — 1) x k matrix

belong to g, while the row <{my, ..., m;_,> of column values of f fails to belong
to ¢. Thus f ¢ Pol ¢, consequently, L & Pol ¢.

It remains to describe the matrices M, corresponding to the relations of types
(), (B), (8), (g) and (§). If ¢ is of type (o), (B) or (8) then there exist elements

m, m’ € F such that m + m’ and (m, m’) € ¢. Then the matrix

11
m m’
satisfies our requirements. If ¢ is a unary central relation, the matrix (1) is appropriate.

Finally, if ¢ is a k-ary relation of type (&) or ({) with k = 2 or 3, respectively,
then the k x k matrix

11 ...1 1.
m m' m
m m m m
m m m m'

meets our requirements provided m, m' € F, m + m’ and m’ belongs to the centre
of g if ¢ is of type (¢).

From the foregoing argument and Theorem 2.1 we can infer that L ;.. ., € Polg
for a relation of type (v). We show that Polg = Q... Let (F; @) be the
Abelian group determining ¢. Clearly, for any elements m;e F (i = 1,2, 3), the
rows of the matrix

m; m, m, my
m, m, m, m,
m, my m, my

belong to ¢, so that the column values of the ternary operation x; — X, + X3 €
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€ Lp,+ > must also belong to g. This means that
{my, my, miy, My — M, + My e, ie.
m Om,®my=m —m, +my (mePF, i=1273).

Hence ¢ coincides with the relation of type (y) determined by (F; + ), implying
that Pol ¢ = Q. , which was to be proved.

Lemma 3.4. Let F be a finite field of order p” (p prime, n = 1). Then for any

closed class C with Ly = C < Qp, there exists a factor d of n such that C = Qf.

Proof. First we show that whenever ) ax® e C and j < n such that a; # 0,
: i<n
then x?’ & C. We do this by eliminating successively all nonzero coefficients a;
with I & j (I < n). One step consists in constructing, for any k # j (k < n) with
a, #+ 0, a function Y, b.x" e C with the properties

i<n

(i) b; =1land b, = 0;
(i1) b; = O whenever a; = 0.

Select a generator a of the multiplicative group of F. Then for any a’, a” € F the
operation _
a'y ax® +a"y afax)” =Y afa’ + a"a") x"

i<n i<n i<n

belongs to C and its coefficients b; = aa’ + a”'a”) have the property (ii). On the
other hand, since the matrix

a, aa™

(a ;a ja”j>

is non-singular (by the choice of a), there exist a’ and a” such that (i) is satisfied as
well.
Now let us introduce the following notation:
I={jlo<j<n, x"'eC}, d=minl.
(Notice that we take x?" instead of x.) In the previous paragraph we proved that
(1) C=[L,u{x"|jel}].
Since for the greatest common divisor (i, j) of any two elements i,j € there exist
positive integers g, r, s such that (i, j) + ns = iq + jr, implying that
xPCD (x(p")s PN yptio e plarir (x(p‘)q)(p’)" e [xp” xpf]
therefore I is closed under taking the greatest common divisors of its members.

Hence d divides the elements of I, in particular, it divides n. Thus x?’ & [x”d] for any
jel, so that

[ =[x [jel] =[],
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i.e., by (1) and by the definition of Qf.

C=[Lv{x]=0%,
completing the proof.

4. CLOSED SUBCLASSES OF L,

Let F be a finite field and E a subfield of F; in symbols: E < F. A subset of F
will be called an affine E-subspace of F if it is closed with respect to the operations

Equivalently, S < F is an affine E-subspace of F iff S = V + a for an element
a € F and a subspace V of F, considered as a vector space over E. Denote by & the
family of affine E-subspaces of F. Furthermore, put €} = {SeS;|0€e S}, i.e. &}
is the family of E-subspaces of F. For S € G and S° € &9, set

k k
ax;; k=21, a;eE(i=1,..,k), Ya=1.
& i=1

&
I(E,S) = {_;aix,. +:10|k 21, a,€eE(i=1,..,k) and
ag=s—(>a)s forsome s,5 €S}

i=1

and

k
T(E,S°)={Yax;+ao|kz21, a,eE(i=1,...k),
i=1

™=

a;=1and aoeS5°.

I

i=1

A straightforward computation shows that I(E, S) and T(E, S°) are subclones of Oj.
Notice that I(E, S) consists of those operations in I(E, F) under which S is invariant.

Theorem 4.1. For any finite field F, the non-unary closed subclasses of Ly are the
following: I(E,S) with EXF and Se@;, and T(E,S°) with E<F and
S°e&).

Remark. The closed classes listed above are pairwise different; moreover, for
any subfields E; of F and for any S; e S, S7 € G} (i = 1, 2), we have

I(E,, S,) < I, S,) iff E,<E, and S, <5,,
T(E,, S}) = T(E,,S3) if E,<E, and S <= S3,
T(E, SY) = I(E,,S,) iff E,<E, and S{SS,-S,,
I(E\, S;) < T(E,,S9) never holds.

In

Corollary 4.2. For any finite field F, the closed class Ly has finitely many closed
subclasses.
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Proof. In view of Theorem 4.1, Ly has finitely many non-unary closed subclasses.
As regards the unary closed subclasses of Ly, they are uniquely determined by their
semigroups of unary operations and by their having or not having a binary constant
operation or a binary projection. Hence L possesses only finitely many unary
closed subclasses.

Now we turn to the proof of Theorem 4.1. As a preparation we establish two
lemmas. In the first one we formulate a more general statement than is actually needed
in this note. In this form it is a slight improvement of [12; Theorem 3].

Let R be a ring with 1 and M a faithful unitary left R-module. For any unitary
subring T of R and any T-submodule N of T x M we define a closed subclass, in fact,
a subclone of Ly, (see the definition in Section 2) as follows:

k k
KTN)={Yrx;+m|lk=1,reT(i=1,....k), {1 =Y r,myeN}.
, =1 i=1

Lemma 4.3. Let M be a faithful unitary left module over a ring R with identity.
Then for any closed subclass C of Ly containing the operation x; — X, + X3,
there exists a unique subring T of R and a unique T-submodule N of T x M such
that C = K(T, N).

Proof. Uniqueness is an immediate consequence of the definition, so we can
confine ourselves to the proof of existence. Let C be a closed class satisfying the hypo-
theses of Lemma 4.3. Clearly, Cis a subclone of Ly,. Put

T={reR|rx, +(1 —r)x,eC},
N={rmy|(l =r)x, + meC}.
Suppose r, ' € T, {r;,, m;> e N (i = 1,2). Then
Ix; + 0xy = x; — X, + x,6C,
(r=r)xy+ (A =r+r)x,=0x; + (1 —r)x)) = (rxs + (1 = 1) xy) + x,€C,
rrxg 4+ (L =) x, =r(r'xy + (1 =) x)) + (1 = r)x, € C,
implying that Tis a unitary subring of R. Furthermore,
rxg+ (M =r)x, =@ =r)xa+m) = (1 =r)x;, + m) +x,€C,
(A =ry+r)xy+my —my =
=((1=r)x; +m) = (L =ry)xy + my) +x,€C
and
(A=rr)x; +rm=r((1 —r)x; +m)+(1-r)x, eC,
sothat N & T x M is in fact a T-submodule.
We show that C = K(T,N). Asskume first ilr,‘xi + me C. Then

(Yr)x +meC
i=1
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and foranyj=1,...,k,

k k
rxe A+ (1= r)xp = (X vy +m) = (Zl’ixx + 7%, + m) + x,€C,
i=1 i=
k i*j k .
whence (1 = Y r,myeN and rjeT (j=1,... k), ie. Y rx; + meK(T.N).
i=1 k i=1 k

Conversely, let Y rox; + m e K(T, N). Then, by definition, (Zl r)x, + meC
and rx, + (1 —l:jl) x,6C (j=1,..., k). Since x; — x; + x3 elHC by induction
on n it follows that =, =.i 1ox;—(n— 1) x,+1 € C. Consequently, substituting
inkn'kJrl the operation r,-xli—-:- (1 = r) x4(€C) for x; (i = 1,.... k), the operation

(X r:) xy + m(eC) for xy+q and x, for x4, We get that
i=1 k k k

Srxi+m=Y(rx;+(1 = r)x)+(2r)x +m—kx eC,
i=1 i=1 i=1

concluding the proof of Lemma 4.3.
Lemma 4.4. For any finite field F, the non-unary closed subclasses of Ly contain
the ternary operation x; — X, + X3.

Proof. Suppose F is a field of order p" (p prime, n = 1). We have to prove
that for any operation f € L, depending on at least two of its variables, the closed
class [ f] generated by f contains the operation X; — X, + x3. First we show that [ f]
contains a nontrivial idempotent operation. Let fe L, n OF, k = 2,

k
F(xXgs conxy) = Y aix; + ag
k i=1
and, say, a;,a, £ 0. Set a = Z a;. We can assume that a * 0, for a = 0 implies
i=1
the sum of the coefficients of f* f to be —a,(*0). Thus ax, + a,e[f] and by
induction on m it follows that

a™; + (@™ '+ .. +a+Dae[f].

In particular, this holds for m = p* — 2, too, so that since " !

= 1, the operation
k
a” (Y ax;+ap)+ (@4 +a+ 1)aoe[f]

i=1

depends on at least two of its variables and has coefficients whose sum is 1, i.e. we
have an operation

k k
Ziugxi+a§,e[f] with Y a;=1, aj,a,+0.
i= i=1

However, then x, + ag € [f], hence x, + maj € [f] for m = 1,2, ..., in particular,
for m = p — 1, too, whence

k k
Za;x‘.z(Zagx,- +a('))+(P" l)a{,)
i=1 i=1

is a nontrivial idempotent operation in [ f ]

507



Once this is established, our result follows immediately from the description in
[13] of the idempotent closed subclasses of L, for any finite unitary module M.
Here we present a direct proof.

- We have to prove that the ternary operation x; — x, + x3 belongs to [f] for any
nontrivial idempotent operation fin L. Let fe L, n O¥, k = 2,

k
Sl oox) =Y ax;, a;eF, Ya =1.
i=1

=1
We may suppose a; & 0(i = 1,...,k). Ifa; = 1 forall i = 1,..., kand p = 2 then,
clearly, k is odd and x; — x, + x3 € [f]. Otherwise, [f] contains a nontrivial
binary idempotent operation (a;x; + (1 — a;)x, if a; + 1 or 2x, — x, if a; = 1
for all i). It suffices to prove that x; — x, + x; € [ax; + (1 — a) x,] whenever
a € F with a(1 — a) = 0. Let us denote the closed class [ax; + (1 — a) x,] by C(a).
By induction on m it is easy to verify that
a"xy + (1 = a")x, = al@" 'x; + (1 — a" V) x,) + (1 = a) x, € C(a)
(m=1,2.)

and, similarly,

Q- =a)x; +(1 —a)"x,eCla) (m=1,2,..).
Thus, taking into consideration that a”~! = (1 — a)”"~" = 1 holds in F, we have

Xy = X + x3 = a(a” *x; + (1 — a”"" %) x;) +

+(t=a){(1 =1 —a" )x, + (1 — a)" *x;) e C(a).

This completes the proof of the lemma.

Proof of Theorem 4.1. Lemmas 4.3 and 4.4 immediately imply that for any
non-unary closed subclass C of Ly there exist a subfield E of F and an E-subspace V
of the vector space E x F (over E) such that C = K(E, V). We show that K(E, V)
coincides with one of the closed classes listed in the theorem.

Let us introduce the following notation:

Vi ={ueE|{u,v)eV for some veF},
Vo[e] = {veF|<e,vDeV} (ecE).

Since Vis an E-subspace of E x F, V; is an ideal of E and V,[e] e & for every
e € E. Thus the following two cases are to be considered.

k
Case 1. If V; = E then K(E, V) = I(E, V,[1]). Indeed, an operation ) a;x; + dq
i=1

k
belongs to K(E,V) if and only if a;eE (i=1,...,k) and (1 — ) a;, ap)eV.
k i=1

On the other hand, ) a;x; + a, e I(E, V,[1]) if and only if a,€E (i = 1,..., k)
k i=1
and a, = v — Y. a’ for some v, v’ € V;[1]. Now,

i=1
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k k k
A =Yana) =<l,ag+Yavy-Yall,vyeV
i=1 i=1 i=1
k
for some v' € V,[1]if and only if ay + Y a’ = ve V,[1], which proves the required
identity. i=1

Case 2. If ¥, = {0} then V = {0} x V,[0] and, clearly, ¥,[0] € &}. Thus the
identity K(E, V) = T(E, V,[0]) follows immediately from the definitions.

The proof of the theorem is complete.

Finally, we note that the inclusion properties formulated in the Remark after
Theorem 4.1 can be derived from the definitions, taking into consideration that for
a constant operation ¢, with value s(eF), ¢, € I(E, S) iff s e S, while for a translation
x; +s(seF),x, +seT(E, Siff seS°

References

{1] J. Demetrovics - J. Bagyinszki: The lattice of linear classes in prime-valued logics, Banach
Center Publications, to appear.

[2] J. Demetrovics - L. Hanndk: The cardinality of closed sets in pre-complete classes in k-valued
logics, Acta Cybernetica, 4 (1979), 273—277.

[3] J. Demetrovics - L. Hanndk: On the cardinality of self-dual closed classes in k-valued logics,
MTA SZTAKI Kozlemények, 22 (1979), 7—18.

[4] I'. II. I'agpuros: O MOILHOCTH MHOXECTB 3aMKHYTBIX K/IACCOB KOHEYHOM BBICOTHL B Py,
O.AH. CCCP, 158 (1964), 504—506.

[51 D. Lau: Uber die Anzahl von abgeschlossenen Mengen linearer Funktionen der n-wertigen
Logik, EIK, 14 (1978), 567—569.

[6] C. C. Mapuenxos: O 3aMKHYTBIX KJaccaX aBTOAYa/iHBIX (QYHKUMA B k-3HAYHBIX JIOTHKaX,
HpoGnemsr Kubepueruxu, 36 (1979), 5~ 22.

[7] 1. G. Rosenberg: La structure des fonctions de plusieurs variables sur un ensemble fini,
C.R. Acad. Sci. Paris Ser A, 260 (1965), 3817—19.

[8] 7. G. Rosenberg: Uber die funktionale Vollstindigkeit in dem mehrwertigen Logiken (Struk-
tur der Funktionen von mehreren Verinderlichen auf endlichen Mengen), Rozpravy Cs.
Akademie Véd. Ser. Math. Nat. Sci., 80 (1970), 3—93.

[9] I. G. Rosenberg: Completeness properties of multiple-valued logic algebras; in: Computer
Science and Multiple-valued Logic. Theory and Applications (ed. D. C. Rine), North
Holland, Amsterdam— New York— Oxford, 1977.

[10] A. A. Salomaa: On infinitely generated sets of operations in finite algebras, Ann. Univ. Turku
Ser. A, 74 (1964), 1--12.

[11] 4. A. Salomaa: On the heights of closed sets of operations in finite algebras, Ann. Acad. Sci.
Fenn. Ser. A, 363 (1965), 1—12.

[12] A. Szendrei: On affine modules, in: Contribution to Universal Algebra, Collog. Math. Soc.
J. Bolyai, vol. 17, 457—464; North Holland (1977). )

[131 A. Szendrei: 1dempotent reducts of modules I—II, in: Universal Algebra, Colloq. Math.
Soc. J. Bolyai, vol. 23, to appear.

[14] FO. H. Anoe - A. A. Myunux: O CylIeCTBOBARUM A-3HAYHBIX 3aMKHYTBIX KJ1aCCOB, HE HMEOLLMX
koseuroro 6asuca, JJAH CCCP, 127 (1958), 44—46.

Author’s address: Bolyai Intézet, Szeged, Aradi vértanuk tere 1, H-6720 Hungary.

509



