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I. Introduction. The study of one-parameter closed motions became an interest-

ing subject in kinematics after the work of Jacob Steiner [4, p. 113-115] and A. Holditch

[4]. During the second half of the nineteenth century there appeared many publications

about Steiner's and Holditch's theorems, for example: C. Leudesdorf [6] and [7], A. B.

Kempe [8], E. B. Elliott [5], [9] and [10]. Elliott wrote about spherical motions, whereas

the others wrote only on planar motions.

In 1948, W. Blaschke defined the Steiner point and the Steiner vector for one-param-

eter closed spherical motions and gave the area formula equivalent to that of Steiner

for the case of a sphere [3]. In order to obtain this, Blaschke integrated the geodesic

curvature of a spherical closed curve in the formula for the Gauss-Bonnet theorem

[2, p. 237]. A recent study in this field has been given in H. R. Miiller's Spharische

Kinematik [1, p. 50-51].

In Sec. IV, -with Theorem 3, we give a necessary and sufficient condition for the

points of a moving sphere which pass around equal areas or draw the same curve on the

fixed sphere K'. Hence, we show the invariants of one-parameter closed spherical motion

using only the Steiner vector. In this way Holditch's and Steiner's well-known theorems

can be proved more elegantly.

In Sec. Ill, Corollaries I, II and, in Sec. IV, their extensions to the spherical case

are original.

II. Basic concepts. A. Spherical motions. A motion of a rigid body about a fixed

point 0 uniquely defines a motion K/K' of the moving unit sphere K with the fixed

center 0 over the fixed unit sphere K' of the same center.

Let {0; e! , e2 , e3} and {0; e[ , e'2 , ~e'3} be two right-handed sets of orthogonal unit

vectors that are rigidly linked to the spheres K and K' respectively, and denote by E,

E' the matrices

E = E' = (1)

We may then write

E = AE' or E' = A~*E = ATE (2)
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where

A = [a,,-] (3)

is a positive orthogonal 3X3 matrix, the exponent — 1 indicates the inverse, and the

superscript T the transpose. The elements a,,- of the matrix A will be regarded as functions

of a real single parameter t, and we will write A = A(t) to indicate that we restrict the

discussion to one-parameter motions..

Definition. If the matrix function A (t) is periodic, say

A(t + 2tt) = A(t), V t (4)

the motion K/K' is closed; otherwise it is open.

During the closed motion K/K', the orbits of the points of K and K' are closed

curves; also the moving and fixed centrodes (polodes) are closed curves.

B. The Pfaffian vector. Since the matrix A is a positive orthogonal matrix we may

write

AAT = I (5)

where I is the unit matrix. This equation, by differentiation 'with respect to t, yields

dA-Ar + A-dAT = 0. (6)

This relation shows that the matrix

fi = dA-AT (7)

is antisymmetric. We may write

0 co3 —OJ2

£2 = —co3 0 cox • (8)

 COj 0

Differentiation of the first of Eqs. (2) with respect to t yields

dE = QE. (9)

The position vector, with respect to K, of a point X of K can be expressed as

X = XTE (10)

and its differential velocity, with respect to K', by

dX = (dX + QTX)TE. (11)

If the point X is a fixed point on K then its differential velocity, with respect to K,

is dXT-E = 0 and (11) reduces to

dX = XtQE. (12)

Now in order to rewrite (12) more meaningfully, we define a new vector u such that its

components col , w2 , co3 are the nonzero elements of the matrix 0; Eq. (12) then becomes

dX = co X X (13)

where the cross denotes the vector product and <3 is called the instantaneous Pfaffian
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(differential) vector of the motion K/K' [1], The Pfaffian vectors at a given instant t of

a one-parameter motion on a sphere is an analogue to the Darboux vector in the dif-

ferential geometry of space curves [2],

The direction of the vector 5 passes through the poles (the instantaneous centers

of rotation) P and P' on the spheres K and K'. Denoting the position vectors of P

and P' by p and p', we have

co = cop or co = cop' (14)

where co = |«[ is the instantaneous angular velocity of the motion K/K'.

C. Steiner vector and Steiner area formula on unit sphere. Let (X) be the trajectory

of an arbitrary fixed point X of K, and imagine this trajectory to be covered by a dis-

tribution of mass with density co = |3| . The centroid of this mass distribution is defined

as the Steiner point; it has the position vector

B. = f "X / <f> co (15)

where the integrations are taken along the closed curve (X) on K'. Similarly, the Steiner

point of the centrode (P) on K is

S„ = (j) CO-p j (J) CO (16)

where the integrations are taken along the closed curve (P). The vector

V = fwp (17)

in (16) will be called the Steiner vector of the orbit (X). Since (17) can be written as

V = Yj<*-pi-~ei = Yj u-Pij-ei ,

the components of V are

7,- = cf co-p, = f co,- (i = 1, 2, 3). (18)

Theorem 1 (W. Blaschke). Let (X) be the orbit, on K', of an arbitrary fixed point X

of K. The spherical area bounded by the closed curve (X) may be calculated from

f. = 2x - V-X - 2r-n. (19)

This theorem has been derived by Blaschke [3] from the Gauss-Bonnet area formula.

The formula (19) is the equivalent of the Steiner plane area formula [4] for the case of

the sphere, where X denotes the position vector of the curve (X), the dot (•) indicates

the inner product and n is the number of rotations of the centrode (P) at the point X.

III. Two corollaries of Holditch's theorem for one-parameter closed planar motions.

For one-parameter closed planar motions, Holditch's theorem [4] is as follows:

Theorem 2. Consider a closed planar convex curve (L) and the closed curve (X) de-

scribed by a fixed point X of a straight line segment (MN)~ of constant length, the endpoints

of which are moving along (L). The area f between the curves (L) and (X) is then expressed

by the formula
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f = 7T • (MX) ~ ■ (NX) ~ (20)

where (MX)~ and (NX)~ are the line segments on the segment (MN)~.

It follows that the area f does not depend on the curve (L) but only on the length

of (MN)~ and the position of the point X of (MN)~. Two further results follow from

this theorem.

Corollary I. Consider a one-parameter closed planar motion and a fixed straight

line k on the moving plane. Choosing jour arbitrary fixed points M, N, X, Y on the line k,

let two of them move on the same curve (L), while the other two describe different curves

(X) and (F). If the ring area between (L) and (X) is f, and the area between (L) and (F)

is then the ratio f/f depends only on the relative positions of these four points (Fig. 1).

Proof. Consider another point F on the segment (MN)~ with the orbit ( F) on the

same fixed plane. According to (20), the area f between the curves (L) and (F) is

/' = tt-(MY)--(NY)-. (21)

Then, joining (20) and (21), one can obtain

i

r
(MX)" 12 (MY)~ (NX)-

L (M Y)- J ' (MX) -'(NY)-' K '

This invariant (22) does not depend on the curve (L) and the length of (MN)~; it depends

only on the choice of the points X and F on (MN)~. Since F it follows that (MY~)/

(MX~) ^ 1. Denote X = ((MY)~/(MX)~) ■ ((NX)~/(NY)~)-, X is the cross ratio of the

four points M, N, X, F, i.e. X = (MNXY).

Corollary II. Let M, N, A, B be four points of the moving plane which pass around

equal areas, and let the segments (MN)~, (AB)~ meet in X. Then the necessary and sufficient

condition for M, N, A, B to lie on the same circle of the moving plane is

(MX)~'(NX)~ = (AX)--(BXy. (23)

The center of this circle is the Steiner point of the motion.

Proof. All the segments (MN)~, (AB'f, (MA)~, (NA)~, (MB)~, (NB)~ are constant.
Using Eq. (20), one obtains the following value for /:

f = ir-(AX)-'(BX)~. (24)

Comparison of (24) and (20) yields Eq. (23).

This proposition is a particular case of the Steiner theorem [4, p. 115].

Fig. 1
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IV. Generalizations to spherical motion. During the one-parameter closed motion

K/K', two fixed points M, N of K generally draw two closed curves on the fixed sphere K'.

Let these two curves encircle the spherical areas Fm and Fn respectively. Consider

another fixed point X of K on the arc (MN) of a great circle on K of given length.

During the same motion the point X also draws another closed curve (X) on the sphere

K'. Denote by Fx the area surrounded by (X). In order to simplify the calculations one

can suppose also that the total rotation numbers n of the moving centrode at the points

M, N and X are the same. This can always be achieved by choosing the length of (MN)

sufficiently small. Therefore according to (19)

Fm = 2tt(1 - n) - M-V,

Fn = 2t(1 - ») - N-V, (25)

Fx = 2r(l - n) - X- V,

where the vectors M, N and X are the position vectors of the points M, N and X respec-

tively. On the other hand, since

and

N = M + (MN)~

X = M + (MX)

(25) becomes

Fn = Fm + V-(NMf,

Fx = Fm + V-(XMf = Fn + V-(XNf.
(26)

Thus one obtains

Fs = | • {Fm + F„ + ((XMf + (XN)") -V}. (27)

This is equivalent to the Holditch formula [4]. Two similar formulas had been obtained

by Elliott [5] and Miiller [1, p. 50]. But (27) contains the Steiner vector of the motion

and so it is more useful in obtaining some more extensions.

The most important special case of Holditch's theorem is the case of Fm = Fn .

Now let us discuss the necessary and sufficient conditions for this case. In this special

case, the ends M and N pass round equal areas or they draw the same curve (T) on K'.

For this case, according to the first equality of (26), one can write

V-(MN'f = 0. (28)

Hence there is the theorem below:

Theorem 3. During the one-parameter closed motion K/K', V-(MN) = 0 is the

necessary and sufficient condition that the two ends M, N oj the moving arc go around either

the same spherical curve or two curves of equal area.

Now, more generally, one can ask for the locus of all the points of K which pass round

either the same spherical curve or different spherical curves of equal area. According

to Theorem 3, for each pair of points of this sort, the directions are orthogonal to the

Steiner vector V of the motion K/K'. Therefore all of these points must lie on the same

plane whose normal is V or, in other words, the locus required for any given value of
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area is a circle whose spherical center is located on the Steiner vector V. Therefore

there is the following theorem, equivalent to Steiner's theorem in the extended form

in Miiller's book [1, Theorem 21, p. 51].

Theorem 4. Consider the areas surrounded by different points of the moving sphere K

that are not all on the same great circle; for the equality of these areas the necessary and

sufficient condition is that these points must lie on the same plane whose normal is the

Steiner vector V of the motion K/K'.

This theorem contains also the generalization of the Corollary II in case of planar

motion to the spherical case. In the case of Fm = Fn , let two ends M, N of a moving

arc (MN) go around the same spherical closed curve (r) of K'. Then the spherical

ring area F between the closed curves (r) and (X) can be expressed as follows:

F = Fn - Fx or F = Fm - Fx

and, according to (26),

F = V ■ (NX'f or F=V'(MX)~. (29)

This, the spherical analogue of (20), shows that the ring area on the sphere depends

on the Steiner vector V or the closed curve (r) of K'. In spite of this, Corollary I can be

mentioned for the spherical case. In order to show this invariant property of the motion

K/K', let us rewrite (29) analytically. For this we can choose any special rectangular

coordinate system in K because (29) is an inner product, and an inner product is inde-

pendent of coordinate transformations. For example, let (MN) be on the great circle

of (XiOXjj) and M = (1, 0, 0). Then the central angles of (MX) , (XN) and (MN)

are pL , p2 and p3 respectively. Thus X = (cos pi , 0, sin pi) and N = (cos p, 0, sin p).

Hence (29) reduces to

(30)
sin (p/2)

And, since sin (pi/2) = (MX)~/2, sin (p2/2) = (NX)'/2, and sin (p/2) = (MN)'/2,

(30) becomes

(MX)'-(NX)~F~ (MN)' 'V* (31)

where V3 has been defined in (18).

Now, consider another point Y on the arc (MN) , such that while the point X draws

its orbit (X), Y draws another orbit (Y) on the same sphere K'. The area F' between

the curves (r) and (Y), according to (31), can be expressed as follows

(MYY-(NYTF ~ (MN)' -V>- (31)

Then, (31) and (31') give

F_ = I" (MX)'
F' I (MYy

(MY)'-(NX)-'(MX)'-(NY)' K '

where n = (MY)' ■ (NX)'/(MX)~ ■ (NY)~ can be expressed another way: let the bi-

sectors of the angles (XMY) , (XNY) met (XY)~ at the points M', N' respectively.

Since (XMY) = (XNY) (Fig. 2) (MM')' and (NN')~ meet on the great circle arc
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Fig. 2

(MN)~. Hence ft = (M'N'XY), is the cross ratio of the collinear points M', N', X, Y.

Therefore (32) becomes

F_ f (MX)'
F' L MY

Hence one can give the following theorems:

Theorem 5. Let the two ends M, N of a moving arc (MN) with constant length go

around the same convex simple curve (r) on K'. If one chooses a fixed point X on the arc

(MN) , X describes a closed curve (X) on the same sphere, while M and N move on the

curve (r). The spherical ring area F between the two closed curves (r) and (X) can be ex-

pressed by (31).

Theorem 6. For all closed curves of K' which have the same component V3 = J>"u3 ,

the ring area F only depends on the length of (MN)~ and the position of the point X on

(MN)".

Theorem 7. Consider a one-parameter closed spherical motion K/K' and a fixed

great circle on the moving sphere K. Choosing four arbitrary fixed points M, N, X, Y on

this great circle, let two of them move on the same curve (r), while the other two describe

different curves (X) and (Y). If the ring area between (r) and (X) is F, and the area between

(r) and (F) is F', then the ratio F/F' depends only on the relative positions of these four

points M, N, X, F.
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