On Co-training Online Biometric Classifiers

Himanshu S. Bhatt, Samarth Bharadwaj, Richa Singh, Mayank Vatsa

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY (IIIT-D), INDIA

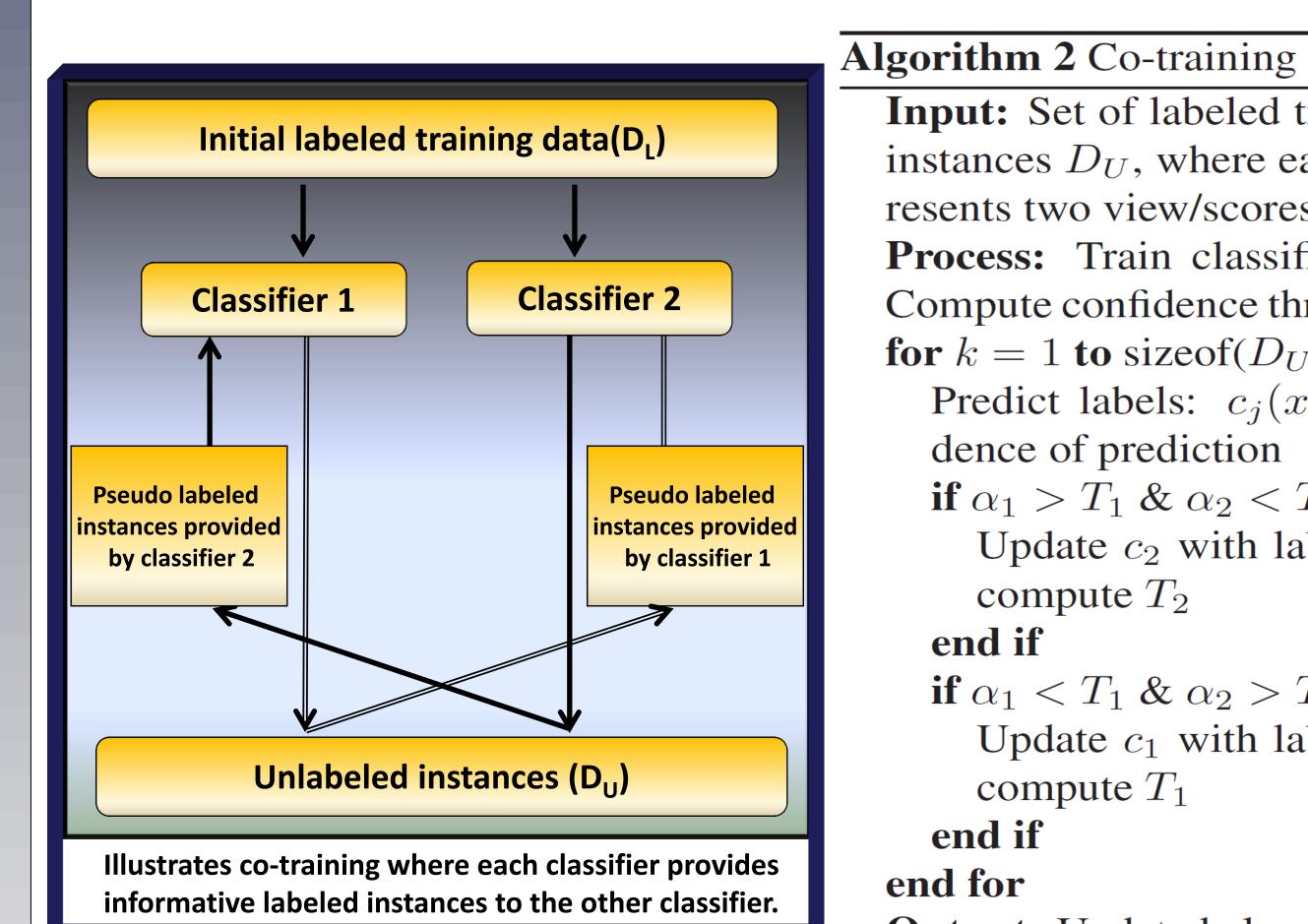
Afzel Noore and Arun Ross WEST VIRGINIA UNIVERSITY, USA

Motivation

In large scale biometric systems, such as UIDAI, US VISIT, and FBI AFIS, thousands of new users are enrolled on a daily basis. To maintain the performance and accommodate variations caused due to new data, biometric systems require frequent re-training.

Challenges

Re-training with existing and new information in batch-mode requires large



Co-training Algorithm

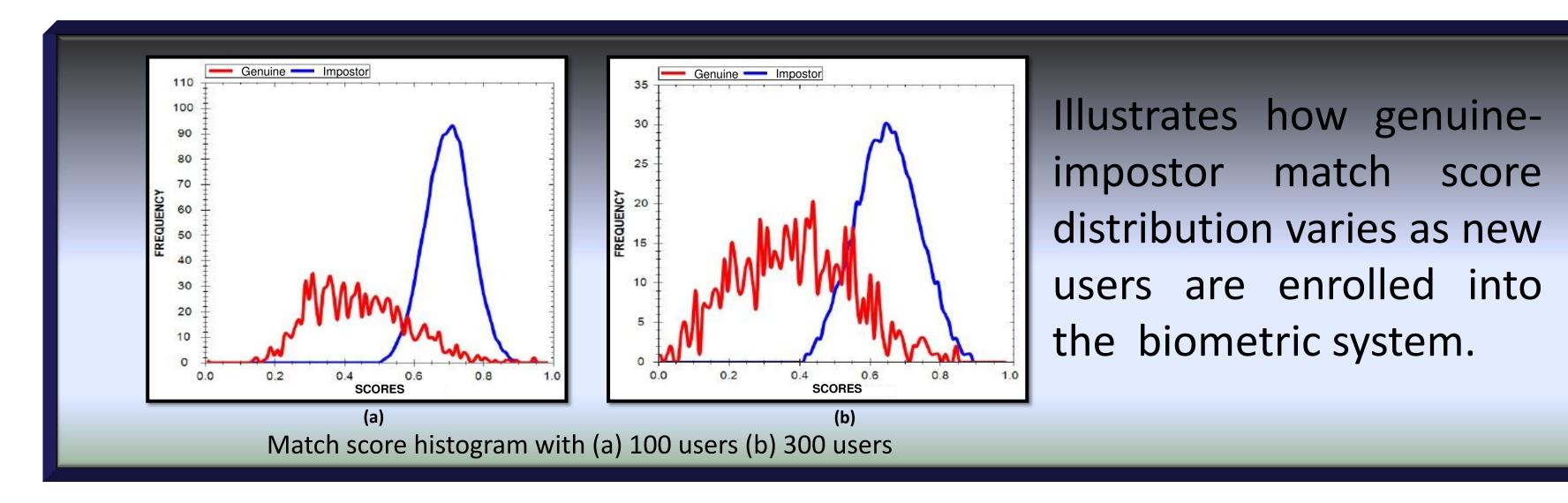
Input: Set of labeled training data D_L , set of unlabeled instances D_U , where each instance $\mathbf{u}' = (x_{i,1}, x_{i,2})$ represents two view/scores.

Process: Train classifier c_j on separate views of D_L . Compute confidence threshold T_j , where j = no of viewsfor k = 1 to sizeof (D_U) do

Predict labels: $c_j(x_i) \rightarrow y_{i,j}$; α_j represents confidence of prediction

amount of time.

• Obtaining large number of labeled data is quite expensive. However, large number of unlabeled data is easily available



Problem Statement

Design a framework that enables biometric classifiers to continuously adapt to the variations in data distribution. The framework utilizes both labeled and unlabeled data to maintain the recognition performance.

Proposed Approach

if $\alpha_1 > T_1 \& \alpha_2 < T_2$ then Update c_2 with labeled instance $\{x_{i,2}, y_{i,1}\}\}$ & recompute T_2 end if if $\alpha_1 < T_1 \& \alpha_2 > T_2$ then Update c_1 with labeled instance $\{x_{i,1}, y_{i,2}\}\}$ & recompute T_1 end if end for

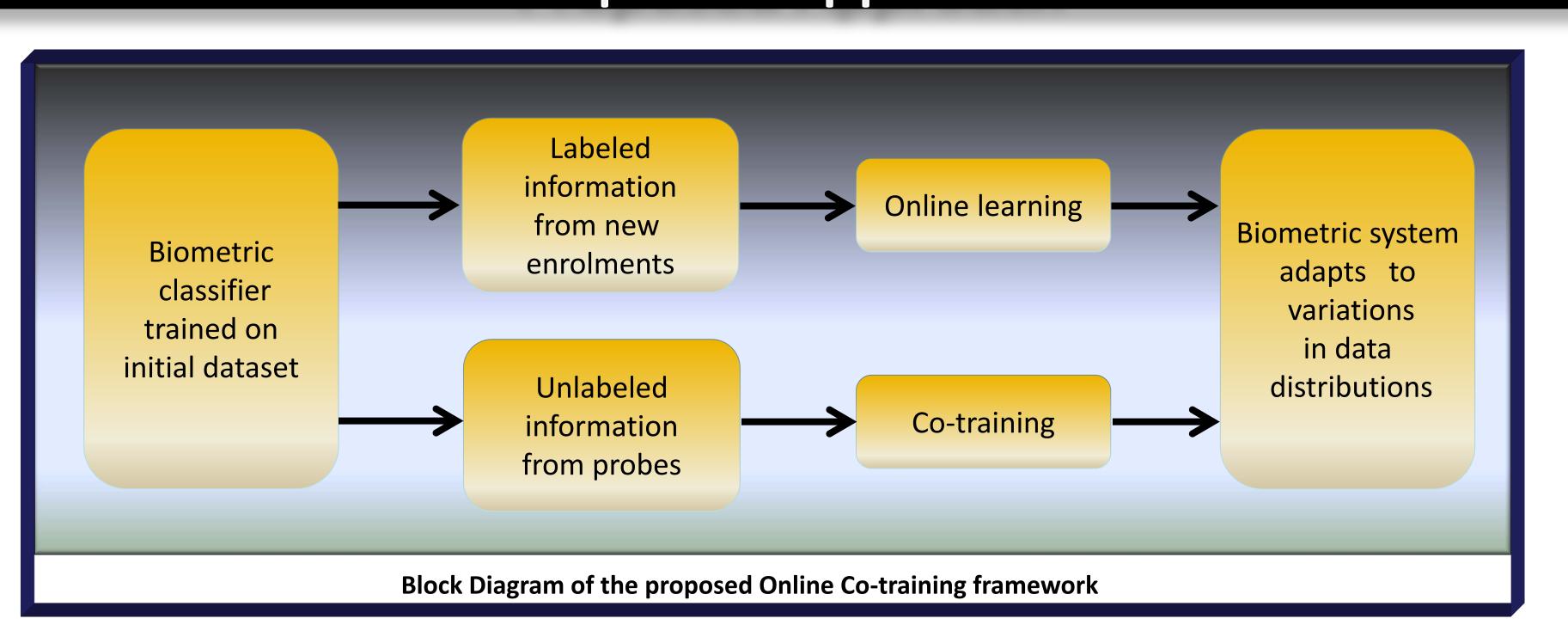
Output: Updated classifier c_1 and c_2 .

Database and Results

Case Study: Multi-classifier SVM based face verification

Database used in this research						
Database	Number of subjects	Number of images				
AR	119	714				
WVU Multimodal	270	3482				
MBGC v.2	446	5468				
Caspeal	711	5658				
CMU Multi-PIE	287	4828				
Total	1833	20150				

Experimental protocol						
Training						
Training on 1833						
Initial training on 600	Online learning on 1233					
Initial training on 600	Co-training on 1833					
Training on 1833	Co-training on 1833					
	Training Training on 600 Initial training on 600					



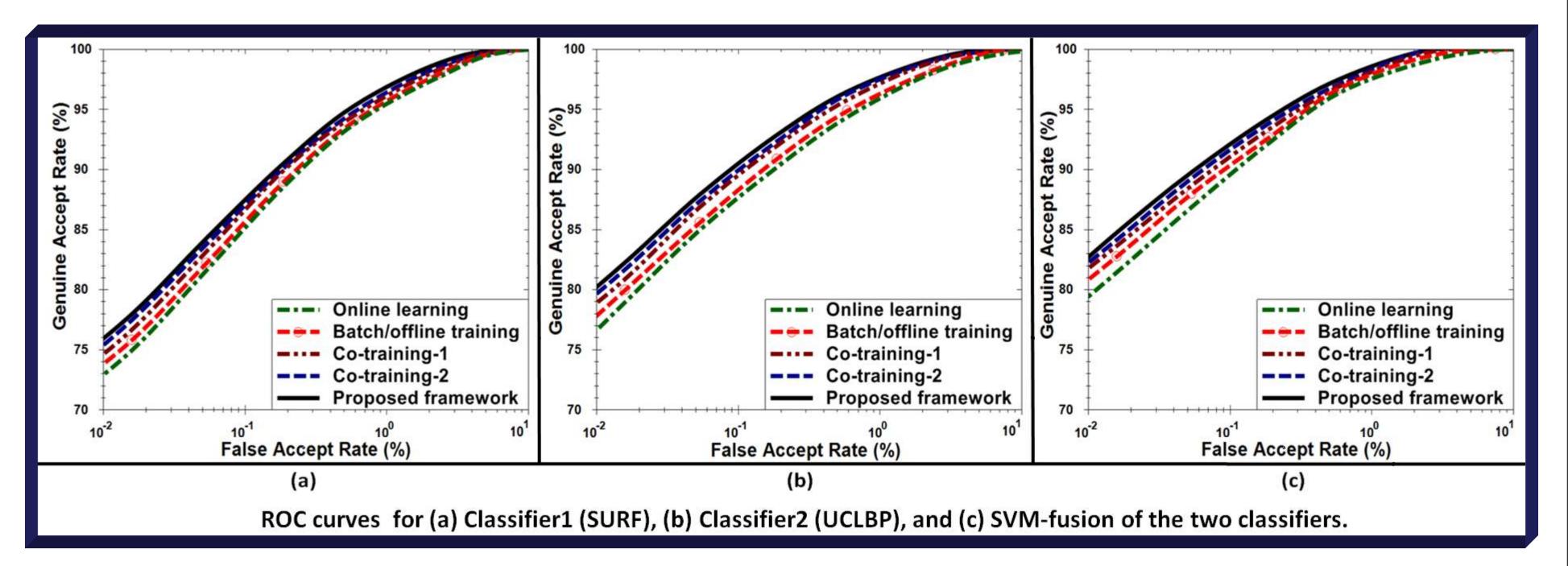
Seamlessly use online learning and co-training for updating the classifier using both labelled enrolment data as well as unlabeled probe data as and when they arrive.

Online Learning Algorithm

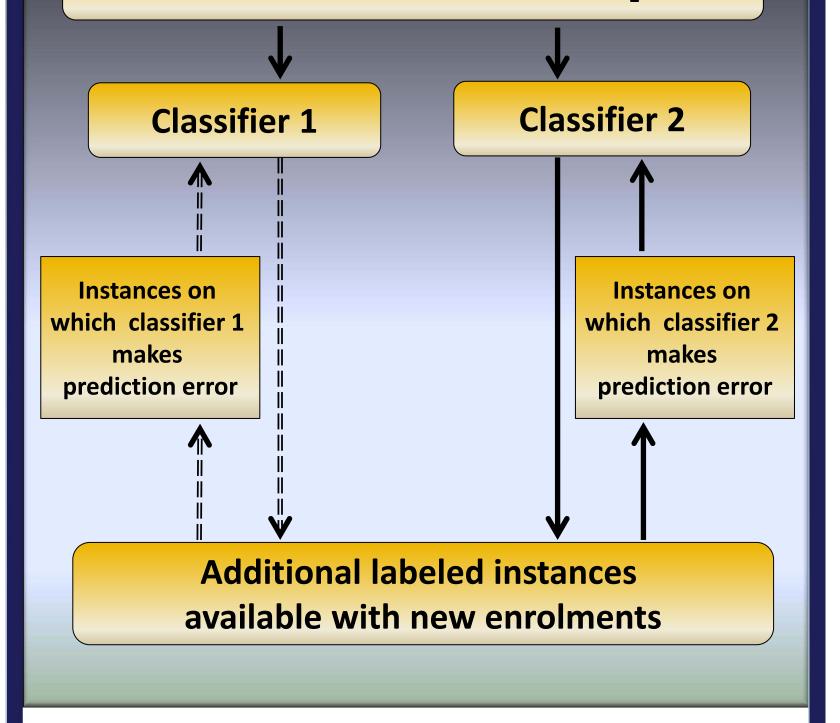
Initial labeled training data(D₁)

Algorithm 1 Online Classifier Update

Results:



Verification accuracy and training time of the classifiers trained using different modes								
	Verification	Verification accuracy at 0.01% FAR (%)			Training Time (Minutes)			
Training Mode	Classifier1	Classifier2	SVM Fusion	Classifier1	Classifier2			
Batch/Offline training	73.82	77.88	80.78	98.62	110.84			
Online learning	72.96	76.58	79.42	24.32	32.42			
Co-training-1	74.64	78.92	81.86	28.25	36.18			
Co-training-2	75.48	79.62	82.24	114.75	128.56			



Illustrating the online learning process where each classifier learns from the incorrectly classified instances.

Input: Initial labeled enrolment training data D_L , a set of additional labeled instances $\{u_i, z_i\}$ due to enrolments, i = 1, 2, ..., N, where N is the number of additional instances. Each instance $u_i = (x_{i,1}, x_{i,2})$ represents two views (or scores).

Iterate: j=1 to number of views (number of classifiers) Process: Train classifier c_j on j^{th} views of D_L for k = 1 to N do Predict labels: $c_j(x_{i,j}) \rightarrow y_i$

if $y_i \neq z_i$ then Update c_j with labeled instance $\{x_{i,j}, z_i\}$

end if

end for

End iterate

Output: Updated classifier c_1 and c_2 .

Proposed framework 76.02 80.28 82.78 45.61 54.05

Conclusion

- Updating a biometric classifier is posed as a semi-supervised learning task.
- Proposed framework improves the performance both in terms of verification accuracy and computational time.

References

- A.Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In *Proceedings of Conference on Computational Learning Theory*, pages 92–100, 1998.
- G. Cauwenberghs and T. Poggio. Incremental and Decremental Support Vector Machine Learning. In Proceedings of Advances in Neural Information Processing Systems, pages 409–415, 2000.
- N. Poh, R. Wong, J. Kittler, and F. Roli. Challenges and research directions for adaptive biometric recognition systems. In *Proceedings of International Conference on Advances in Biometrics*, pages 753–764, 2009.

International Joint Conference on Biometrics (IJCB), 2011