
Received July 20, 2020, accepted August 22, 2020, date of publication August 28, 2020, date of current version September 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3019985

On Code Analysis Opportunities and Challenges
for Enterprise Systems and Microservices

TOMAS CERNY 1, JAN SVACINA 1, DIPTA DAS 1, VINCENT BUSHONG 1,
MIROSLAV BURES 2, PAVEL TISNOVSKY3, KAREL FRAJTAK 2, DONGWAN SHIN 4,
AND JUN HUANG5, (Senior Member, IEEE)
1Department of Computer Science, Baylor University, Waco, TX 76798, USA
2Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University, 121 35 Prague, Czech Republic
3Red Hat Czech, 612 00 Brno, Czech Republic
4Department of Computer Science, New Mexico Tech, Socorro, NM 87801, USA
5School of Computer Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Corresponding author: Tomas Cerny (tomas_cerny@baylor.edu)

This material is based upon work supported by the National Science Foundation under Grant No. 1854049 and a grant from Red Hat

Research https://research.redhat.com.

ABSTRACT Code analysis brings excellent benefits to software development, maintenance, and quality

assurance. Various tools can uncover code defects or even software bugs in a range of seconds. For many

projects and developers, the code analysis tools became essential in their daily routines. However, how can

code analysis help in an enterprise environment? Enterprise software solutions grow in scale and complexity.

These solutions no longer involve only plain objects and basic language constructs but operate with various

components and mechanisms simplifying the development of such systems. Enterprise software vendors

have adopted various development and design standards; however, there is a gap between what constructs the

enterprise frameworks use and what current code analysis tools recognize. This manuscript aims to challenge

the mainstream research directions of code analysis and motivate for a transition towards code analysis

of enterprise systems with interesting problems and opportunities. In particular, this manuscript addresses

selected enterprise problems apparent for monolithic and distributed enterprise solutions. It also considers

challenges related to the recent architectural push towards a microservice architecture. Along with open-

source proof-of-concept prototypes to some of the challenges, this manuscript elaborates on code analysis

directions and their categorization. Furthermore, it suggests one possible perspective of the problem area

using aspect-oriented programming.

INDEX TERMS Code analysis, distributed systems, enterprise architecture, enterprise systems, global

governance, microservice,

I. INTRODUCTION

Code analysis has an extensive history and scope of

research [1]. It can be recognized for benefits, including

automation in areas such as code clone detection, error detec-

tion, malpractice detection, formal verification, security eval-

uation, quality assurance, reverse engineering, etc. However,

in our opinion, the development practices for large enterprise

systems are underrepresented in code analysis research and

deserve special attention. Over the past few decades, many

design best practices and standards have been established

and applied across different enterprise platforms. However,

the mainstream code analysis research focuses on low-level

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaobing Sun .

program aspects that, while essential, cannot assist to many

enterprise challenges introduced by the growing complexity,

standards mentioned above, and practices applied in software

design along with recent design demands for distribution and

cloud computing.

What is commonly seen as an enterprise [2], [3] are large

and complex systems interacting with many users, enforcing

various business constraints or processes. Enterprise software

is thus an application that a business would use to assist

the organization in solving enterprise problems. Enterprise

solutions bring automation into many disciplines, includ-

ing healthcare, transportation, telecommunication, banking,

e-commerce, power grids, and defense systems, among oth-

ers. Without a doubt, modern enterprise software solutions

are drivers for our present and future economy. When we

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 159449

https://orcid.org/0000-0002-5882-5502
https://orcid.org/0000-0002-6958-6455
https://orcid.org/0000-0001-8366-2453
https://orcid.org/0000-0003-0475-4232
https://orcid.org/0000-0002-2994-7826
https://orcid.org/0000-0003-4133-2805
https://orcid.org/0000-0002-2151-3986
https://orcid.org/0000-0001-5165-5080

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

apply ‘‘code analysis’’ instruments into enterprise software,

we receive reports with too low-level information. This is

because current instruments do not aim to understand com-

mon development standards and the direction of enterprise

software design. Let us ask the following question. If we were

to build a large enterprise solution, would we use common

standard edition language to develop it from scratch, or would

we take advantage of enterprise development frameworks?

Most likely, we aim to avoid wheel reinvention, and our

budget is limited; thus, we build on top of existing best

practices and standards to reuse preexisting components and

involve appropriate enterprise architecture [2]. In Section II,

we will look into the background and what a modern enter-

prise architecture looks like and what is the target deployment

environment these days.

This manuscript aims to provide a road map to selected

motivating challenges in enterprise software, which could be

well addressed by code analysis that recognizes enterprise

constructs, components, and standards. This work looks at

both monolithic and distributed solutions, covered in Sec-

tions III and V. The typical analysis techniques are discussed

in Section IV. Besides, this manuscript provides a possible

problem formalizing perspective through distributed Aspect-

Oriented Programming (AOP), which fits well to describe

the problem distributed enterprise application design. This

perspective is detailed in Section VI. This manuscript lists

our preliminary open-source instruments to multiple of the

mentioned challenges offering a proof of concept. In the

Appendix, we also provide links to the open-source repos-

itories to simplify the research initiation. After reading this

manuscript, one will gain a solid overview of current enter-

prise challenges well suitable to be addressed by code analy-

sis. Moreover, the reader should better understand how code

analysis can fit the mainstream industry directions and why

one should pay attention to it.

In grasps, one can expect to learn how to face information

restatement across application layers [2] or redefinition of

concerns when code analysis is given more responsibility to

generate or derive code fragments. Next, it provides a path to

identify inconsistencies and contradictions in security poli-

cies or data constraints. Besides the challenges apparent in

monolith systems, elaborated in Section III, the core focus of

this work is on distributed enterprise solutions. In particular,

we consider the recent mainstream microservice architec-

ture for distributed enterprise solutions. As one will learn

in Section V, this architecture brings interesting challenges.

Since we found it useful in our previous research to apply

AOP for the distributed solution challenges, we dedicated

Section VI to it. The further possible directions implied from

this work are to be described in the concluding section.

II. WHAT IS AN ENTERPRISE ARCHITECTURE

Before we describe enterprise architecture, lets first discuss

what software architecture is and what perspectives we might

want to differentiate. Bass et al. [4] suggest that ‘‘software

architecture of a program is the structure of the system, which

comprises software elements, the externally visible properties

of those elements, and the relationships among them,’’ how-

ever, alternative definitions exist [5]. In their book, they see

system functionality orthogonal to other system properties,

and thus the same functionality can be implemented involving

different software architectures, implying different system

quality attributes. There are many architectures that the sys-

tem can utilize so that enterprise architecture can be seen

as a subset of the possible architectural options. A subset of

architectures that fits the most common enterprise use cases

(e.g., data management).

If we consider another sort of architecture, a building

assembly scheme, electrician experts will most likely look for

different information and detail in the plan than the plumbing

export, kitchen specialist, or the general builder. Similarly,

one may like to have a similar architectural view in software

engineering. Larman [6] suggests using an N+1 view model

to document various architectural perspectives, such as logi-

cal view, processes, data flow, security, etc. Thus, software

architecture might be of interest to different person roles

aiming for different goals.

A significant contribution to the enterprise domain, along

with the best practice, is highlighted by Fowler [2]. In his

book [2] he gives a sense of what is and what is not an enter-

prise architecture providing examples: ‘‘Enterprise applica-

tions include payroll, patient records, shipping tracking, cost

analysis, credit scoring, insurance, supply chain, account-

ing, customer service, and foreign exchange trading. Enter-

prise applications do not include automobile fuel injection,

word processors, elevator controllers, chemical plant con-

trollers, telephone switches, operating systems, compilers,

and games.’’

One could hardly imagine enterprise applications without

processing persistent data kept for a long time or indefinitely.

Such data are typically processed by one or more involved

parties and may change over time. One could see such sys-

tems as data-centric. Data and its specific subsets might be

accessed from different parts of the system by distinct user

roles. Data typically remain even when the system software

upgrades. We can typically expect enterprise applications to

involve databases to manage the data. The integrity rules,

business logic, and knowledge of what to do or how to process

data are encoded in the enterprise application.

We can expect that enterprise applications deal with a

lot of data concurrently. Besides, they provide user inter-

faces or at least endpoints to machine process the data (e.g.,

middleware). We can also expect enterprise applications to

integrate other third-party enterprise application modules,

leading to system integration. Wide heterogeneities might be

expected across particularly involved modules when dealing

with system integration. Perhaps the most critical part of

each enterprise application or a module is its internal knowl-

edge expressed by data scheme and business logic and rules

specifying what is allowed and what is not and what actions

are triggered if some event happens. Fowler [2] ironically

mentions that large systems eventually grow into complex

159450 VOLUME 8, 2020

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

business ‘‘illogic’’ since different people define many rules

and perhaps distributed (non-centralized), and follow differ-

ent implementation approaches. The single basic rule change

may lead to unexpected consequences that demand thorough

testing, evaluation, or verification.

A. ENTERPRISE DEVELOPMENT FRAMEWORKS

Fowler [2] also mapped the existing enterprise application

framework architectures into three layers. These layers have

a specific focus and are common across frameworks until

today. We will use Java Enterprise Edition (EE) terminol-

ogy [7] to describe layers, namely persistence, business, and

presentation layers. The persistence layer typically addressed

the technological incompatibility between object-oriented (or

component-based) design and data storage, often a relational

database. This layer defines data schemes and deals with

core performance services, message systems, and transac-

tions. The business layer defines services on top of the data

schemes. It contains the business logic and constraints along

with security authorization. If the system also provides fron-

tend, then there is data instance mapping in the presentation

layer into presentation frameworks [8], controllers restricting

access control, and management of the presentation logic.

Modern enterprises often separate presentation into client-

based frameworks, such as Angular [9] or React [10], and

the presentation layer reduces to endpoints for the client-

based user interface running and managing the state in web

browsers. It is not intended to describe every edge case of an

enterprise in this background section, but rather to provide an

idea of what is the mainstream direction in design for enter-

prise systems. Clearly, the three-layers architecture greatly

describes what an enterprise application may look like with

recent trends. It applies to particular modules of the overall

system.

Enterprise development frameworks usually provide com-

ponents to speed-up development. Such components might

be extended classes used for specific purposes, typically

accompanied by meaning descriptors. For instance, a persis-

tence component involving annotations or XML descriptor

indicating that given class mirrors to a database involving

object-relational mapping. It is important to note that plain

classes would be very low-level for enterprise design. Frame-

works bring specialized components and constructs, e.g.,

to deal with data persistence, REST services, messaging,

transaction management, security enforcements, input val-

idation, etc. [11]–[19]. This is more or less the case for

enterprise frameworks for various programming languages.

While some of these enterprise standard references might

seem old when we consider their original release date, it must

be noted that they are still in common use as best prac-

tice. For example, the most recent Java enterprise platform

release [7], [11] uses them, and trends show that these stan-

dards will remain current for the foreseeable future. For

other platforms, consider the similar instruments and mech-

anisms, such as Object-Relational Mapping (ORM) in the

.Net platform using an entity framework [17]; Python with

frameworks SQLAlchemy, Django, or Tortoise [18] or PHP

Doctrine [19] and Lavarel [20], and Java Persistence API

(JPA) in Java [21]. If we wanted to understand the module

internals, understanding the involved component and their

constructs is essential. This is the driving force for this arti-

cle, where we aim to motivate the researchers to consider

the recognition of these constructs and their intent for code

analysis. For instance, with ORM constructs, we can easily

recognize which data the system operates with, what is the

data identifier, required fields, etc. With plain code analysis,

this might be more challenging.

B. THE RISE OF MICROSERVICE ARCHITECTURE

All that was described so far in the previous subsection is

quite a standard for almost two decades, and the recent enter-

prise direction pushes towards mass scale, cloud computing,

and distribution. A few years ago, the directions for dis-

tributed system integration were to modularize functionality

to services and use Service-Oriented Architecture (SOA) [22]

involving centralized Enterprise Service Bus (ESB) [23] to

route messages and connect services. The processes and con-

straints could be centralized through the ESB. In case a new

service emerged, it could have been easily integrated into the

existing process flow. However, while initially intended for

distribution, this architecture led to monolithic deployment,

draining many efforts and often using single schema with

canonical data model perspective and centralized manage-

ment. This did not give developers much freedom to evolve

particular modules independently [23]. In literature, it would

be hard to find supporting evidence that SOA was cloud-

friendly [24], which is easy to state for what we mention in

the next paragraph.

For the above drawbacks and several other reasons industry

pushed for novel distributed and cloud-friendly Microservice

Architecture (MSA) [3], [23]. MSA is driven, in large part,

by the demands of scalability and heterogeneous data inte-

gration. MSA based on three principles [25]: ‘‘A program

should fulfill only one task and do it well; programs should

be able to work together, and programs should use a universal

interface.’’ The core difference from SOA is that microser-

vice architecture is a share-as-little-as-possible architecture

pattern that places a heavy emphasis on the concept of a

bounded context. In contrast, SOA is a share-as-much-as-

possible architecture pattern that places heavy emphasis on

abstraction and business functionality reuse [23].

The overall MSA system is divided into multiple hetero-

geneous, self-contained, self-deployable modules interacting

over remote calls or through messaging. This structure pro-

vides many benefits. Multiple teams can work on individ-

ual modules, and they can adopt different languages and

frameworks. Since modules are self-contained, they can be

dependent on different library versions. Still, mostly, they can

be deployed, managed, and evolved individually.Modules are

designed to have limited coupling amongst each other, which

limits global coordination activities, which is easy to do in

VOLUME 8, 2020 159451

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

monolith-like systems. This would have been necessary for

the past using the SOA involving ESB [23], [26].

C. PRODUCTION DEPLOYMENT OF MICROSERVICES

To complicate matters further, big industry players have

various supportive deployment platforms [27]–[30] for cloud-

based container orchestration. These provide scaling func-

tionality, routing, monitoring, etc. Typically, these platforms

provide MSA module isolation within pods, wrapping each

module in a container [27], [30], [31]. Each pod is further

wrapped in a node that includes a load balancer for external

requests. These constructs are not merely overhead; they

directly support scalability. One pod can be easily replicated

into identical pods to adjust to demands elastically, leveraging

cloud computing benefits.

According to the NGINX survey [32], most businesses are

building on top of the MSA, which has become entrenched

as a flexible model for a broad set of industry problems. Sub-

sequently, the market for microservices continues its rapid

growth; by 2023 it could reach $33 billion [33] with an annual

growth rate of 16-17% [34]. Microservice architecture can

take full benefit of cloud computing, enabling rapid scal-

ability and performance. Typically, a mesh of hundreds of

services [35] can exist, providing individual service moni-

toring and recovery, being perfectly elastic towards request

demands, and thus optimizing hardware utilization and per-

formance. In this architecture, individual microservices are

self-contained modules, isolated from one another to enable

independent deployment. The question is no longer how to

scale such systems, but how to assess them from various

perspectives to understand the global picture of the overall

system.

Based on online resources [36], [37], at the end of 2019,

Kubernetes was the first choice among developers for a con-

tainer environment, with 45% usage. According to another

large survey [38], Kubernetes was used in production by

78% of respondents. It has over 60 thousand stars at GitHub.

Tinder uses Kubernetes to run 48,000 containers. Among

other users are Reddit’s, The New York Times, Airbnb, and

Pinterest (with 250 million monthly active users), Pokemon

Go (with 20+ million daily active users), and many others.

The typical organization runs about 14 containers per host

with Kubernetes. In the Azure cloud, approximately 65% of

organizations using containers also ran Kubernetes in 2018.

According to [39], over 80% of companies using containers

also use container orchestration or a service mesh.

A service mesh offers automated load balancing, ser-

vice monitoring with automatic metrics and log and trace

management for traffic, discovery, security, and failure han-

dling. To add these supportive features, each MSA module

has a companion sidecar proxy intercepting traffic. Exam-

ple meshes are Knative [40] and Istio [29], which both

build on top of Kubernetes. Service meshes or cloud-based

frameworks are typically monitored. Prometheus [41] is an

example, an open-source monitor. There exist many metrics

exporters for Prometheus from third-party systems that are

also open-source, which simplifies extension and adaptation.

Apart from this, Grafana [42] is an example of open-source

analytics and monitoring solution that can query matrices

from Prometheus and visualize them. The 2019 survey men-

tioned above [38] suggested that 72% of respondents used

Prometheus in production.

D. GENERAL CHALLENGES WITH MICROSERVICES

We cannot expect the industry to change the current main-

stream direction and practice. However, we can expect growth

in complementary or supportive mechanisms. For instance,

excellent complements are serverless functions that pro-

vide finer decomposition granularity than MSA modules.

Serverless functions are an excellent fit for real-time reactive

systems when events are processed on a large scale. Con-

sider a use case for per-user request handling where a user

posts a review, including a video that requires formatting.

As opposed toMSA, serverless functions accommodate small

module features that need to scale separately.

One can expect the growth of new tools to address some

of the significant challenges that arise with this architecture,

stemming from isolated module design and module hetero-

geneity. It is important to note that there are two dimen-

sions of module granularity. The overall system is divided

onto multiple loose-coupled heterogeneous modules, e.g.,

one dealing with user accounts, another dealing with pay-

ments, and a third with orders. Next, there aremodule replicas

where identical modules co-exist to provide better scalability

of module-specific features.

The module coupling is loose but still exists across the

heterogeneous modules since they interact with similar data.

Modules see certain data within their specific bounded con-

text. For instance, multiple modules may operate with a set

of users; however, one module may need a user’s address,

another might require the user’s credit card detail, and another

the user’s email. Since modules evolve individually, there is

a constant emergence of maintenance challenges. A change

in one module can impact other modules with respect to data

structures (e.g., new fields), business constraints (e.g., field

length), or even security enforcement (e.g., restrict method

access). Modules developed by individual teams become het-

erogeneous over time as modules continually evolve, and it

becomes harder to build the global picture.

Software architects who aim to optimize the system as a

whole need to understand each module’s internal characteris-

tics and thus be able to locate important module aspects in the

code, but given the possible mix of languages or frameworks,

it becomes hard to assess the overall system by hand and per-

form global optimization and consistency verification. Even

routine testing becomes a burden [43], [44].

In today’s enterprise environment, the same developer

would rarely develop, deploy, and upgrade all the modules in

a system. Each developer or development team works on its

assigned module, deploying it locally to debug and test. The

production environment is managed by System Operations

(SysOps) personnel who have extensive knowledge about

159452 VOLUME 8, 2020

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

the service mesh and deployment process. The issue is that

SysOps typically are given each module with limited infor-

mation about its specific needs, and thus they would benefit

from easy access to themodule’s salient aspects to understand

deployment specifics. Similarly, developers have a limited

understanding of the deployment infrastructure, which can

result in system dysfunction.

To recognize architectural issues and inconsistencies,

we would first need to understand both the system and the

module’s source code, so that particularly involved structures,

data, and control flow can be identified. Such an assessment

would demand much time when doing it manually. Second,

to make suggestions for the runtime performance, we would

need sufficient monitoring, providing thoughtful details for

particular, observed parts of the system or access to logs to

reconstitute the interaction details from involved modules.

Finally, we would need to have access to system resources

and use statistics, e.g., CPU utilization at a given time, usage

of memory, or network usage for runtime performance opti-

mization. However, performing all these analyses by hand is

cumbersome and time-consuming.

This begs the driving question: How can be the process

of understanding a system or individual modules sped-up?

We argue that this is possible through novel code analysis.

Traditional code analysis [45]–[59] looks at the low-level

program language constructs and thus overelooks impor-

tant enterprise development framework constructs. It fails to

identify important system components. Only few approaches

consider the enterprise details, including our previous work

[60]–[65] which we detail in later Section.

III. CODE ANALYSIS IN MONOLITHIC ENTERPRISES

A. THE MOTIVATION - LESSON FROM THE ORM

The most notable challenge in enterprise systems in the early

days was ORM. Developers had to deal with mapping of

data entities represented as classes to SQL tables in relational

databases. Any time data were retrieved, they were mapped

to objects and back upon persistence. Fowler lists dozen of

patterns for ORM [2]. From today’s perspective, there is a

standard for ORM for Java EE platform [11] JPA [21] recog-

nized more or less by other programming languages as well.

ORM frameworks simplify the mapping so that one does

not even need to manage SQL tables anymore (exaggeration,

since optimization and custom indexing are often needed).

One additional benefit of ORM is that its metadata can

be used for verification purposes. For instance, towards the

database schema. Upon application initialization, the class

setup can be checked towards the tables, columns, or con-

straints in the database schema, and thus any inconsistency

can be detected. If there is an inconsistency found, the appli-

cation initialization fails. Alternatively, we let the ORM per-

form an update of the schema to match the class model.

In order to recognize the class settings, JPA audits each

class involving the class meta-model [66]. In the case of

Java and C#, it is easy to involve introspection since both

languages support reflections [67], [68]. In PHP frameworks

similar mechanism is to use comments [19], alternatively to

use XML class descriptors. In particular, it considers class

name or its annotated properties, each field along with its

data type and properties, and matches particular associa-

tions or even inheritance with appropriate mapping strategy

[2], [69]. ORM solves the technical inconsistency between

Object-Oriented Paradigm and Relational Databases, and

nowadays, framework solutions integrate it with many best-

practice patterns [2], [70] improving the caching, perfor-

mance, type safety and efficiency. With ORM, one can select

a particular relational database and handle the majority of

use cases; for fine-tuning, one may need to introduce custom

optimized queries [71], but from our practice, this is rather

marginal.

Since ORM solves very well the consistency issues across

different paradigms, could it be used elsewhere? Indeed,

however, first, it is essential to note that ORM is not platform-

specific. As long as we involve Object-Oriented design, ORM

is applicable. This can be easily demonstrated by the ability

to map JPA onto UML class diagrams [66], [69]. To do that,

one can involve UML stereotypes and introduce the UML

profile to extend class diagrams. Having ORM described on

the UML level is just a matter of implementation to transform

it into a particular domain. Since the object-oriented design

is the mainstream, it will fit most modern frameworks.

B. USER INTERFACE DERIVATION

Where else could be applied the approach similar to ORM

to bring consistency benefits and a single focal point? One

challenge with enterprise systems actual till these days is

the overhead, coupling, and restatements between application

backend or middleware and the User Interface (UI) part. UI

development in enterprise systems consumes around 50% of

the overall project development time [61], [72]. If we thought

that ORM is a great solution, we might now think that it

helps only with a small portion of what the development of

the overall application involves. The percentage is even more

significant when we talk about adaptive UIs. Besides the high

development efforts for the UI part, there is also a secondary

issue. The issue is the coupling and restatement between the

UI code and lower application layers, mostly the data scheme.

For instance, if we have a person form binding to person

objects, at any time, we change the person’s class, the form

must change as well. Next, if we want to show the form in a

single- or two-column layouts, highly likely, we might need

to develop too separate forms. If we had to support the mobile

version of the system andweb clients, we grow the replication

of forms using distinct native components.

However, there is an additional problem dimension - a

restatement. If a person has a restriction that the email address

field must be an actual email format, the user interface typ-

ically lacks a mechanism to reuse this constraint already

defined at the backend and restate it again in the UI code.

If the backend changes the restriction, there is no mechanism

VOLUME 8, 2020 159453

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

to detect that the UI is inconsistent with the backend. These

UI challenges are quite similar to the ORM problems.

In [60], [61], [63], [66], [72]–[74] authors suggest to derive

UI fragments related to data presentations automatically.

In particular, it uses existing information captured by the

class data model and involves ORMannotations [75]. Besides

ORM annotations, there is also an enterprise standard for

input validation that is also captured on data classes [13].

Also, recently was released security restricting role-based

access control [16]. In this approach to derive UI, the par-

ticular frameworks perform in three stages: inspection, field

template selection, and template population. The initial step

to inspect data classes uses reflection API mechanisms for

introspection. Next, based on each field property, it selects a

particular template, utilizing configured transformation rules.

A UI field template comprises the UI code involving the

target language (e.g., HTML, Angular, React, JSF, etc.) and

markup expressions/variables meant to populate the data-

specific details. The template content is resolved as follows.

The template is parsed, and the expressions are found and

resolved. In particular, the expressions typically reference the

properties of currently processed data class field properties,

such as its structure, ORM settings, or input validation, which

is part of the processed data class/field.

For instance, to derive one form line for a textual data

class field, a template is selected with standard text input.

If the anticipated length is below 255 characters, it selects

standard text input. Otherwise, a text area component tem-

plate would be selected. Next, if there are any constraints,

such as not empty property or required format for the content

(e.g., email), the validation is added to the template based

on an expression in the template (e.g., onBlur JavaScript

listener). This sort of transformation is applied to all the

filed of a given data class. It guarantees always to produce a

formmatching the data class. This process avoids consistency

errors between the backend and frontend of the application.

Once the data class changes, the derived form will reflect the

change. This would not necessarily be the case when done

manually. Unfortunately, a manual approach is still a typical

case in conventional development practice.

C. CONTEXT-AWARE USER INTERFACE DERIVATION

One could argue that derived UI data presentations are too

monotonous, and this could seem to be a limitation or a reason

why it is not used on a large scale by developers. For instance,

what if we wanted to develop a context-specific UI? Such

adaptive or personalized UI fits specific user needs or condi-

tions rather than providing the one-fit-for-all, mostly a partial

fit for all users. In a manual approach, this would lead to the

development of many separate UI fragments of the same data

presentations opening enormous demands for maintenance

and evolution. However, how would the generative approach

fit here? The answer to this question is elaborated in [62],

[63]. It is no longer the case that only reflection is necessary.

To enable adaptive UI, the derivation process must consider

a more generic solution that allows us to effectively deal

with multi-dimensional problems, ideally each in a separate

dimension. AOP well addresses this since it is a cross-cutting

concern. This also means that the derivation process must

extend accordingly.

AOP divides the multi-dimensional problem into multiple

separate dimensions, which are later combined by aspect

weaver. Typically, programs comprise the main/core logic,

which can be further extended as we add the additional

dimensions through aspects. Without AOP, the developer is

the one to do this weaving in the source code, which then

results with a spaghetti-like code that tangles individual prob-

lem dimensions and makes each dimension restated and non-

reusable. Basic object-oriented programming focuses on the

design of an individual situation rather than a generic multi-

dimensional problem. Thus, AOP recognizes objects-design

for the core logic and aspect construct for the additional

dimensions that may extend the core logic. This makes the

addition dimensions reusable and untangles the code. One

specific situation is then not a simple code interpretation as in

object-oriented code but multi-dimensional assembly involv-

ing the core object-oriented code part and separately defined

aspects. This way, each situation is derived based on what

the individual dimension specifies. If one dimension changes,

all the resulting code is influenced, which nicely enforces

those changes to all the system products/parts rather than

asking a programmer to changes the particular dimension

perspective in each developed custom situation that restated

the dimension definition.

In [62], [63] a generic aspect-weaver for UI is introduced.

It differs from the straightforward UI derivation in the flexi-

bility towards customization and the transformation process

stages. In the first step, information from the backend is

collected through code analysis. The overall code is too broad

and detailed; thus, a simplified representation of the code is

derived. In AOP [76], this representation is known as the join

point model. It comprises the structure of recognized data

elements and all their details, including fields, data types, and

annotations. These all can be seen a join points. However, it is

important to note that these are static join points, and this will

not change in application runtime.

Along with these, dynamic join points can be consid-

ered, for instance, the origin of the particular user, time,

data settings, screen size, etc. Dynamic join points are time-

specific and recognized at runtime. The stage of join point

model collection thus partially happens once for the static

join points and at runtime upon request for the dynamic

join points. The typical code transformation would move

forward to populate templates statically. However, the AOP

approach delays the assembly until runtime. It also inserts an

additional stage that determines the UI component templates

based on the join point model and grammar-based expres-

sion rules. The idea here is that developer develops these

mapping rules based on the join points, which act as vari-

ables in the expression language. In [62], [63], Java Unified

Expression Language (JUEL) is used to take advantage of

existing well-recognized language interpret that determines

159454 VOLUME 8, 2020

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

whether a particular expression is met (resolved to true) and

if so a particular UI component template is selected. This is

the code engine for the aspect-weaver. A particular template

that is selected based on the expression rules can be seen

as an AOP advice for the pointcut given by the particular

expression rule when using the AOP terminology [77]. Such

resolution happens for all particular data fields identified

at the particular data entity. The next stage is similar to

conventional UI derivation to resolve the template content.

However, it can base on runtime join points along to the

static ones that are accessible as template variables. Similarly,

to the definitions of template selection rules, the developer

is in charge of making component templates; however, it is

not an exhaustive job. An example enterprise production

system with hundred of data entities, in [63], needs only

seventeen templates that are generally applicable. This can

be seen as an alternative to restated component settings for

almost eight hundred fields. It shows clear benefits through

significant code volume reduction, improving development

speed, maintenance, and consistency with marginal efforts.

The process may also incorporate additional stage weaving

the resolved field templates into a layout template. Again,

the layout might be generic or data entity-specific identify-

ing field positions or order. A particular layout selection is

resolved based on join points (e.g., based on detected screen

size, count of fields, etc.).

D. ADVANCED OPTIONS IN UI DERIVATION

Extended benefits sourcing from the AOP process are dis-

cussed in [62], [64], [78]. When we consider modern but

conventional approaches when one middleware serves multi-

ple different frontends, e.g., web-based, desktops, or mobile,

most likely eachmanaged by a different team, the consistency

issues emerge with the middleware evolution. This is a seri-

ous problem since changes to the middleware done by one

team might not be articulated to other teams responsible for

the frontend, which leads to consistency errors and possible

security issues. With the AOP process to derive UI’s, we can

separate and distribute the weaving process onto platform-

independent and platform-specific parts. This brings signif-

icant benefits and addresses the above-stated problem. In

particular, the middleware can be assessed by the middleware

aspect-weaver, derive the join point representation and pro-

vide it in platform-independent format to the client weavers.

Client weavers feed on the platform-independent joint point

representation. They are platform-specific (web-based, desk-

tops, mobile, using a given framework or platform) and

specify the UI component templates for a given platform

along with templates for layout. When changes are made to

the middleware, the middleware aspect-weaver observes the

changes which ensure that all client weavers reassemble the

UI fragments to preserve perfect consistency.

An energy-related observation is shared in [78]. In client-

server interaction, we typically send the UI in the form of

HTML or JavaScript and CSS. However, it must be noted

that typically when the server provides the User Interface

to clients, it tangles different information concerns together

(e.g., layout, fields, constraints). This increases the replica-

tion in resulting HTML leading to larger transmission vol-

umes (possibly amortized by transfer compression).Whenwe

consider the distributed aspect weaving with middleware and

client-based weavers, then we observe that particular con-

cerns remain untangled throughout the separate delivery. This

facilitates parallelism and also enables us to apply different

caching strategies to particular concerns. This can have even

greater granularity and benefits than client-based technolo-

gies such as Angular or React. Any energy impact assessed

in [78], showed that the aspect-based UI approach is a more

energy-efficient approach when compared to conventional

server-side or client-side UI technologies.

What if another significant system concern could be

added? Such an interesting perspective in enterprise sys-

tems is business rule management. Unfortunately, there is

no unified approach to capture business rules. However,

it is common to capture these rules in the business layer in

service objects. There are interesting rule engines enabling

developers to use domain-specific languages, such as Drools

framework [79]. If one manages to capture business rules

in such a unified approach, it is possible to extract business

rules and consider them for transformation or even the AOP

process for UI fragment derivation. For instance, [80], [81]

shows that it is easy to extract business rules from Drools

and convert them to documentation or even enforce client-

side validation already in the UI. This could be utilized for

knowledge base exchange across smart interacting systems.

E. SECURITY POLICY ASSESSMENTS

Another interesting issue in enterprise monolith applications

where code analysis can significantly help is security pol-

icy assessment. For instance, Role-Based Access Control

(RBAC) [82] is commonly used, and even standardization

exists [16], [83] for enterprise solutions in the form of anno-

tated endpoint methods restricting selected user roles to per-

form calls. So far, we mentioned a reflection mechanism that

can identify existing structures, annotations, and properties.

However, to perform security assessments and identify incon-

sistencies across system resources or call paths, the reflec-

tion mechanism is insufficient. There are other two greater

approaches, source code analysis and bytecode code analysis

(or binary code analysis). The first approach requires access

to the application source code and uses language parsers com-

monly available for various languages. The second approach

does not require access to source code and utilizes libraries

for reverse engineering or bytecode code manipulation; we

briefly introduce the code analysis strategies in the next

section.

Regards security assessment, both source code analysis,

and bytecode code analysis is equivalent when one wants to

extract control-flow or to identify important system resources

involved in a given control-flow. Typically, we first identify

all system endpoints. This task is rather easy in enterprise

systems, and we detail the process in the next section. For

VOLUME 8, 2020 159455

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

each endpoint can be extracted control-flow graph involv-

ing method calls. Using the identified graphs, one may

identify the graph overlay. Since each path is associated

with a particular user role given by the endpoint, we detect

inconsistent paths that lead to the identification of endpoints

that apply inconsistent security measures to reach certain

parts or resources of a given system. This approach was

evaluated in [84], and lead to the identification of five com-

mon security issues with, e.g., inconsistent roles from differ-

ent endpoints, role hierarchy violations, or even inconsistent

access to data entities as an example resource access. Involv-

ing code analysis extended to recognize enterprise constructs,

we can verify security consistency, and detect security vulner-

ability within the system.

F. OTHER CHALLENGES

If we were not considering enterprise systems, the num-

ber one research topic for code analysis would be code-

clone detection and software error detection. There are

numerous approaches involving source code analysis [59],

[85], [86] or byte code analysis [87]–[89]. However, these

approaches use low language constructs only. If we looked for

approaches recognizing enterprise components, wewould not

find many publications. However, the needs here are great.

For instance, the enterprise components provide more context

to identify the semantics, as suggested by [90]. This could

lead to better identification of semantics clones, which are

usually challenging to detect in low-level code analysis [91],

[92]. These semantic clones are harmful [85], [93] since they

lead to consistency errors during system evolution. Existing

works on semantic clones [94]–[104] are approximations as

it is a formally undecidable problem [59], [105] and thus

additional semantics brought by the enterprise components

and construct can greatly simply the detection, bring new

insights and speed-up the process.

One significant fact was left unaddressed in this section.

Specifically, the fact that most modern enterprise systems are

distributed. An entire Section V is dedicated to distributed

enterprise systems. However, before we move to it, we intro-

duce more details on the different code analysis techniques

mentioned briefly in this section.

IV. CATEGORIZATION FOR ANALYSIS TECHNIQUES

To analyze software systems, we might be interested in tech-

niques and approaches that have been considered previously.

However, it might also be useful to consider some structuring

in these techniques.We provide a basic categorization consid-

ering different kinds of inputs, language types, and analysis

realizations. We also categorize what is typically analyzed in

software systems.

Code analysis typically enables us to recognize par-

ticular constructs such as components, classes, methods,

fields, or annotations and to utilize relationships among

them. There are many different types of components in

enterprise platforms, such as controllers, entities, or ser-

vices. Typically we can involve language parsers that tok-

enize the code and represent it in a graph format. However,

there might be specific information we aim to collect in the

analysis.

A. THE NATURE OF THE INPUT

The first perspective we consider in analysis categorization

is the nature of the input. A software application may consist

of application code or configuration files, and both can be

subject to the analysis. For instance, it is common for modern

applications to consider deployment descriptors or build files

that both can contain important information, such as speci-

fication or remote endpoints, and deployment details related

to the containerization [30] and its dependencies. When we

look at the code, which is the most obvious direction, there

might be a general application code but also code fragments

that use a specific syntax common for a particular task in the

overall system.

B. LANGUAGE DOMAIN SPECIFICITY

To elaborate on this perspective, we can categorize lan-

guages onto General Purpose Languages (GPL), such as

Java, C#, or Python and Domain-Specific Languages (DSL)

[106]. The nature of GPL is a general-purpose, which means

we can do everything but perhaps not most effective for

every task. Assuming that GPL nature and purpose is obvi-

ous, we dedicate more detail to the DSL description. DSL

are languages specific to a particular domain or task. For

instance, in enterprises we can use DSL to describe processes

[106] or rules [79]. It can be business rules [80] or security

rules.Modern frameworks alsomake it possible to define spe-

cific processes using DSL and utilize modeling tools on top

of the DSL [107]. For instance, Java EE [11] specifies Batch

processing that involves DSL, and integrated development

environments providemodels on top of it. Besides, we can use

DSL to define reports through robust templates quickly or use

DSL for the deployment descriptors aiming to simplify the

description process. We can even define our special-purpose

language to simplify specific tasks [108]. DSL is typically

more efficient than GPL for the specific task they target.

However, they have to be interpreted or compiled separately

from the main code. Many DSL bases on XML which makes

the processing simple as many parsers for XML exist. DSL

has its fit within AOP. In particular, it can be a great fit to

describe aspects or advices [63].

C. LANGUAGE STAGE USED FOR THE ANALYSIS

Another perspective we consider is in which language state

is the analysis considered and realized. We consider in which

language stage do we perform the analysis. All languages

have source code that can be subject to the analysis. However,

some languages compile into an output that can be subject to

the analysis. Moreover, some languages contain a mechanism

to describe themselves called introspection and involve meta-

model. There are certain benefits for each of the particular

strategies, and there are use cases when one may fit better

than others.

159456 VOLUME 8, 2020

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

1) INTROSPECTION

Metaprogramming [68] gives a program or a language the

ability to examine or modify both its structure and behavior at

runtime. It can effectively extract information related particu-

lar components. In particular, it is capable of observing object

properties, methods, annotations, or other particles. Many

contemporary, statically-typed programming languages can

describe them, called Reflection [67]. Besides, reflection is

even capable of modifying the behavior. A given object can

be examined by only a subset of the reflection abilities. This

is called introspection [45]–[48], [63], [68].

With introspection, we could effectively extract informa-

tion related to software data schema, endpoints, authoriza-

tion restrictions or input validation [60]–[63], [72], [78],

[81], or even particular types of components given by anno-

tations. The most significant limitation is that introspection,

as offered through reflections, does not provide all pro-

gram details. It does not supply details about the method

body, which carries vital information to derive control-

flow or dependencies. We can find reflections in Java, C#,

PHP, Python, etc. However, in C++, a third party library

would be necessary. For instance, with a preprocessor gen-

erating descriptors for classes, fields, and methods. Another

disadvantage is that any system extraction logic must be part

of the system. Though, this could be solved through the

integration of a generic library [63].

2) BYTECODE ANALYSIS

Another possibility is to analyze code which is in its inter-

mediate representation [45], [47], [48], [50], [60], [61], [63],

[72], [109]. Multiple programming languages compile the

source code into intermediate representation to support vari-

ous platforms, e.g., bytecode. Java, Go, and Python languages

allow performing bytecode analysis [110], [111]. Researchers

have used this approach to generate test scripts [47], [109],

generate testing data [50], extract models to better under-

stand legacy systems [48], to perform formal verification

of low-level programs [46], [51], or to implement defect

detection tools [112]. Bytecode analysis is often used to check

errors or possibly also to detect code-clones [52], [53].

Bytecode analysis [51] needs the compiled code of an

application. Like a reflection, it can uncover components end-

points, authorization policy enforcements, classes, methods,

and another context including data identification, control-

flow, method calls, or even Abstract Syntax Trees (AST) [52],

[53], [113]. Bytecode analysis works well for languages such

as Java or Python. However, the disadvantage is that not all

languages use bytecode.

3) SOURCE CODE ANALYSIS

Source code analysis [54] takes the source code of the system,

parses it, and builds its graph representation. Typically, there

exist parsers for existing programming languages. Parsed

programs are represented as a parse tree or an AST [85],

[114]. The advantage of this category is that we can use it

at any time. Besides, this is the approach to consider for DSL

along or for the build and deployment descriptors.

Source code is commonly parsed and transformed into

graph representation to perform pattern recognition [49],

[50], [55], [57], [115], [116]. It is common to use source

code as the input for quality assurance tools [55], [116].

Besides it is a common analysis used for code clone detection

[49], [54], [117]. Source code analysis can access full details

similar to bytecode analysis. However, there exist situations

when we do not have access to the source code and only

posses the application bytecode (e.g., application deployed

on a production server).

The source code analysis can also be utilized for Min-

ing Software Repository (MSR). This involves accessing

the source code from the version control [115], [118]–[120]

and considers elements such as classes, functions/methods,

data structures, return values, the control-flow, particular

statements, code comments, or version control metadata and

statistics.

D. COMMON ANALYSIS GOALS AND STRATEGIES

Once we identify the right language stage for the analysis,

we continue to identify our concern. Here, we categorize

goals and strategies observed and assessed in existing works.

First, we look into graph representations. Next, we con-

sider the identification of individual components, flows, and

patterns. Certain tasks involve the localization of specific

artifacts in the system. Many analysis techniques consider

metrics, and apart from this, some strategies consider trans-

formations. We want to underline that these categorizations

are not exclusive and are meant to provide a route map to the

analysis techniques.

1) PROGRAM GRAPH REPRESENTATIONS

When we parse source or bytecode, we tokenize it and

derive AST. However, alternative graph representations can

be used. For instance, to represent method calls, what has

been adopted is a call-graph typically a Control-Flow Graphs

(CFG) [50], [121], [122]. However, graphs are also uti-

lized to draw dependencies across artifacts in the code. Pro-

gram Dependency Graphs (PDG) [85], [114] has been used

for such dependencies.

For introspection, we would still derive trees representing

particular perspectives. For instance, in [63], we used a tree to

represent each data entity with its attributes and descriptors.

In our research practice in the enterprise domain, we used

both bytecode analysis and source code analysis to recog-

nize AST, CFG, and PDG. Typically these graphs would be

extended with API method details, various component types,

annotations, etc. We experimented with Java and Python

and considered enterprise framework constructs along with

enterprise standards [11]–[16], [18] to prove feasibility of

utilization of enterprise constructs in code analysis. We like

to highlight that there is no approach superior to others, each

has a good fit to a certain use case, and thus we believe all

approaches have a good justification for co-existence.

VOLUME 8, 2020 159457

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

2) ARTIFACT IDENTIFICATION

Once we derive program representation, we can traverse the

structure to locate various artifacts. These artifacts are either

components or a lower level constructs such as annotation.

To derive components typically involves graph traversal

while checking each vertex to certain proprieties. Most of the

frameworks use descriptors that identify a component, and

each component can be located through a single graph traver-

sal (e.g., breadth-first search). It is also possible to perform

single traversal to hash components or artifacts according to

its type and make them available for fast localization.

The most common components that we recognized to be

searched for are endpoints that identify the system API and

the data entities that match the data schemes. Identification of

these and other components in modern enterprise frameworks

typically happens through annotation descriptors or super-

type identification.

Endpoints are critical components because they identify

the boundary between the system and the outside. On their

own, they identify the black box entries to the system. Typ-

ically, endpoints are the location where processes start, and

they also typically enforce security. They might be the weak

entry points vulnerable to attacks. Broader system analysis

might first identify endpoints and then consider that happens

next through the analysis of the internal structures and calls.

The data entity represents the data with which the system

operates. Data describe the static perspective of the system,

define the domain and scope of the system. If we are looking

for a data breach localization, data entity identification and its

structure are the first points of interest. Besides, when we aim

to utilize data structure for its UI representation, data entities

might be the only components of interest.

Both endpoints and data entities can be recognized by

introspection, source, and bytecode analysis. If we consider

three-layered architecture, identifying these two types of

components is essential. The middle components, such as

services or repositories, can be easily identified as well.

However, when we are interested in more fine-grained

details, introspection might become insufficient. It might

work when identifying interface, component structure, and

component API, but no internal details. For instance, when

we look for a location in the code where we perform a remote

procedure call, send a message to the message queue, or con-

nect to a data source, we can only base on the source and

bytecode analysis. It is similar to the identification of failure

locations, exceptions, or logs message origins.

3) FLOW ANALYSIS

When we consider a broader analysis of the system, we typ-

ically find two strategies: Data-flow and control-flow analy-

sis. In the previous text, we mentioned the identification of

endpoints or data entities, which are typically the first step in

these flow analyses.

Control-flow is typically considered for each endpoint by

tracing the call-graphs of inner methods. Thus, we can easily

derive a forest of trees and identify their overlap since code

design tends to reuse method. This brings excellent benefits

when looking for consistency errors across overlaps, as did in

security analysis in [84].

Endpoints typically accept parameters, and these are trans-

formed into data captured by the system. Tracing the data

through the system, its constrain checks and conversions

involve data-flow analysis. In the end, we know the system

understands data formats defined by the data entities. Data

entities carry other semantic information, such as constraints

on fields or input validation. We know that data from the

endpoint parameter can only be traced down to the data entity

through the control-flow.

We recently observed that most control-flow approaches

work great for explicit invocation, not for implicit invocation.

For instance, is the method call is intercepted, an event is pro-

duced and observed, CFG might not reflect these. It is espe-

cially the case in enterprise systems that use these implicit-

invocation control mechanisms often.

When dealing with data-flow or control-flow analysis,

we might have a specific goal, and it can be transformed onto

and formal specification [123].

4) PATTERN IDENTIFICATION

Another perspective of analysis is recurrent pattern identi-

fication. Patterns can identify a common error, vulnerabili-

ties, or possibly wrong design. Besides, code clone detection

looks for similar patterns [91].

Bug patterns are the main driver for many static analysis

tools, including among many SpotBugs, and PMD. Spot-

Bugs [87] (initially FingBugs) is a Java code tool seeded

in the University of Maryland. It identifies common issues

such as unclosed file handles, infinite loops, missing null

pointer check, and many others. SpotBugs plugins [124]

even identify 135 vulnerabilities, including random gener-

ators, hashes, HTTP headers, SSL, path traversal, various

injections, certificates, XML parsing, input validation, leaks,

cross-site scripting, deserialization, and many others. PMD

[88] is another tool similar to SpotBugs but with support to

multiple platforms. However, a common deficiency for these

tools lacks support for a distributed system.

Similarly, code clone detection is not only an exact match

but also a partial match, which makes the challenge more

complicated and time demanding [91]. It, however, shares the

challenge, the support for distributes systems. Another per-

spective considered in the code is code smells that indicated

poor design [125]. Smells are not necessarily errors but lower

the quality of the system design. smells.

5) METRICS

Static analysis has also been used to assess system quality.

Typically, we can use various metrics [126]. Such metrics

include the Number of Logical Lines of Code (LLOC),

Depth of inheritance tree (DIT), Weighted method per class

(WMC), Coupling between objects (CBO), Number of chil-

dren (NOC), Number of methods (NOM), Lack of cohesion

159458 VOLUME 8, 2020

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

among methods (LCOM), Response for class (RFC), Data

abstraction coupling (DAC),McCabe Cyclomatic complexity

(MVG), and many others. Such metrics can indicate an issue

in component design or the interaction among components.

Similar to code smells, metrics do not necessarily indicate

an error but indicate that refactoring should be performed to

improve maintainability and readability, which may eventu-

ally pay for the efforts.

6) TRANSFORMATIONS

The final perspective we consider includes transformations,

reverse engineering, model derivation, and documentation

extraction.

In particular, analysts do not understand the source code

of enterprise systems and various perspectives, details, and

documents that can be extracted from the code for them. Vice-

versa, analysts may want to influence the system’s business

logic without developer involvement, and thus, the system

needs to integrate DSL scripts comprehensible to analysts and

interpretable within the enterprise system.

Code analysis enables documentation extraction; as men-

tioned earlier, it is fairly common to use the analysis to deter-

mine data scheme and endpoints, and proper transformation

may turn it into UML models or other appropriate structures

[80], [127]. DSL makes it suitable for analysts to focus

on specific system domain, and since these languages are

interpreted, such can be part of the GPL system logic. This,

however, implies that to understand the system holistically

through code analysis, these special DSL documents must be

considered in the analysis, which is also the case for build and

deployment configurations.

V. CODE ANALYSIS IN DISTRIBUTED ENTERPRISES

Modern systems target the scalability and move towards

distribution, in particular to a cloud [26]. In practice, each

module is likely to be developed in separate code repository

[128]. With the insight on code analysis, the first approach to

maintain code quality might be to process multiple reposito-

ries and combine the results. However, this is rarely possible,

especially considering the MSA design [23], which is the

current trend for cloud-computing and enterprise systems.

EachMSAmodule defines its constraints, security roles, data

scheme, business rules, etc. [3]. There is not a centralized

perspective that exits in monolith systems or legacy Service-

Oriented Architectures (SOA) involving Enterprise Service

Bus (ESB) [23], [26].Moreover, multiple languages or frame-

works can be involved across different modules with different

programming styles.

There are very fewmulti-repository quality assurance tools

supporting a centralized dashboard across multiple distinct

projects along with multi-language recognition. This tool is

Fabric8-analytics [128], [129]. However, it does not combine

the module-separated information and distributed knowledge

into a single perspective to draw the global picture of the

overall system. The global perspective here is the key since it

would enable us to identify inconsistencies across modules,

determine and optimize the distributed processes, and their

performance. Access to a global perspective would allow us

to be more efficient when testing the system, considering

change impact, or finding overlapping functionality.

Typically all the responsibilities and rules are evident when

we design the system from scratch, but since each module is

managed and evolved by a separate team, the evolution might

turn it a wrong direction and the preventive detection mecha-

nisms indicating a problem are currently missing. Moreover,

the current practice in system integration is that developers

typically know other modules only from the high-level per-

spective and recognize some of its endpoints or API, but not

the actual implementation. The situation is far more difficult

as developers design and implement the MSA modules, but

then pass them to SysOps who know to deploy modules to the

cloud infrastructure but have no detailed idea of the particular

module specifics to optimize the deployment.

We could continue to enumerate implied problems; how-

ever, where do we see a possible solution direction to all

these kinds of problems? In code analysis. Nevertheless, there

are multiple obstacles to applying code analysis to enterprise

MSA-based solutions, and we identify these next in the fol-

lowing text along with our prototypical experiments.

A. VIRTUAL CENTRALIZED INFORMATION OVERLAY

We mentioned earlier that each MSA module defines its

knowledge, including constraints, business rules, and data

schemes. Each module operates in its bounded context rather

than in a global context. Each module encapsulates the

domain knowledge from other system modules, and thus,

other modules have no internal knowledge besides its scope.

However, we would like to derive the overall picture and use

it to assist with consistency checking. Thus we can analyze

each module code to identify its data schemes and combine

them to derive what is called a context map [25].

However, combining data schemes from multiple modules

is not trivial since the same data entity might have a dif-

ferent name and a subset of properties on one side or even

inconsistent data types or field constraints. In our experi-

mental prototype code analyzer, called Prophet,1 we use text

similarity algorithms to bind entities across modules. This

brings a virtual overview to the canonical model, identi-

fies data dependencies and coupling across modules. Next,

it helps to identify which control-flow paths could be cross-

checked across modules for consistencies. For instance, for

each module, we can identify methods operating with the

particular data entity and backtrace the control-flow to the

endpoints. This way, we identify all intra- and inter-module

endpoints that are dependent on the particular data entity

and its constraints. Currently, we experimented with Java and

Python heterogeneous projects involving both source code

and bytecode, and our onlinewebsite of Prophet demonstrates

1Prophet is available online at https://cloudhubs.ecs.baylor.edu/prophet/#/
with open sources at https://github.com/cloudhubs

VOLUME 8, 2020 159459

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

the applications on a third-party MSA testbed introduced

in [130].

Another perspective that is worth considering involves call

graphs. It identifies all system endpoints along with inter-

module calls towards these endpoints. This enables additional

tracing of control-flow and possible inter-module dependen-

cies for consistency checking. Even though the precise iden-

tification of interacting modules can be resolved at runtime

[131], [132], static possible module interaction is sufficient

as it reveals possible interaction combinations that could

realistically happen upon the deployment. Prophet1 considers

this approach on the same MSA testbed [130].

B. ACCESS TO CONTAINERS

While the information centralizing approaches from the pre-

vious subsection work well on projects deployed locally, in a

practical setting, we need to access the modules deployed

in a cloud infrastructure [27] or a service-mesh [29]. Such

modules are typically wrapped into a container, e.g., Docker

[30], [31]. Thus, to apply the approach for the direct benefit

of SysOps or deployed systems, it is necessary to access con-

tainers. Here multiple libraries exist for monitoring purposes

[41] and provide the necessary access along with the ability

to instrument deployed systems.

Since in Prophet, we considered information extraction

from both the source code and bytecode, it can be directly

integrated into frameworks building on the top of Docker

using the existing libraries for [41]. With this accomplish-

ment, it becomes possible to fabricate a centralized system

overview to SysOps.

C. DEPLOYMENT/BUILD CONFIGURATION ANALYSIS

Source code analysis cannot determine broad details about

deployment and build dependencies, especially when we

wrap modules in containers. Typically, enterprise software

projects contain build-files and deployment configuration

files. These files contain details that enable automated con-

tainerization, and this information is beneficial to analyze.

For instance, Ibrahim et al. [133] use a project’s Docker

files. In their research, they analyze these files to derive

system topology. In particular, they extract information from

Docker Compose files to generate an attack graph showing

how a security breach of containers could propagate through

a microservice mesh. Analysis of deployment descriptors

allows creating, to some extent, the interdependence of mod-

ules. However, in their approach, they do not extend the

analysis to the source code. Thus, it cannot identify security

flaws in the program deployed in the containers, only flaws

with the images themselves.

Using deployment artifacts for containers, particularly

Docker Compose files and build scripts, support identifying

the architecture of amicroservice system [134]. It can identify

remote endpoints and services and dependencies. In [135],

authors used docker files for architectural reconstruction and

highlighted that these files represent valuable analysis targets.

If we only analyzed deployment and build files, we would

know nothing about module internal details, features, and

specifics, including details about utilized data, control flow,

restrictions constraints, etc. Therefore, a microservice sys-

tem’s general structure can be recreated with static code

analysis if deployment descriptors are involved. Information

extracted from the individual microservices through code

analysis can be augmented with the architectural information

from deployment artifacts, which inherently describes the

system as a whole. The individual and overall information

can be combined to create a more useful analysis. This can

be helpful, especially in distributed environments.

In addition to generating attack graphs and reconstruct-

ing the system’s architecture, deployment scripts can be

analyzed to detect possible security violations. Containers,

unlike VMs, share the kernel with the host which provides

lightweight virtualization [136]. However, this might lead to

potential kernel security issues such as privilege escalation

[136] facilitated by additional permissions in deployment

scripts. While these permissions may be essential for some

containers, end-users need to be cautious while deploying

third party containers to avoid unintended approval of addi-

tional permissions. By investigating deployment scripts it

is possible to detect and mitigate these security issues, for

instance, there exists an approach [137] to eliminate privi-

lege escalation by analyzing Dockerfiles and Kubernetes pod

specifications.

D. ON DISTRIBUTED SYSTEM VERIFICATION

The ability to fabricate a virtual centralized system overview

opens the distributed MSA systems to broader verification.

For instance, one can consider consistency checking along

the call-graphs for data constraints. If two modules apply

different constraints, the inconsistency is reported. One can

also trace security consistencies. Enterprise systems typically

apply Role-Based Access Control (RBAC) over the endpoints

[16], [82], [83], [138], [139] to protect the system from

intruders. Each user is then assigned a particular access role

that activates in a particular context. Nowadays, the best prac-

tice [16], [83], [139] is to annotate endpoints with allowed

user roles.

In [84], we considered consistency checking in a single

module involving control-flow graphs. Each endpoint was

traversed down to data persistence. Throughout the traversal,

it assigned the intermediate methods a virtual role identified

by a particular endpoint. Since systems are implemented

using structural decomposition, the methods and components

are often reused. Thus, we could notice if there existed

a method or resource on two or more paths from various

endpoints with a different security policy and report the

inconsistency. This leads to multiple possible outcomes, such

as inconsistent roles, inconsistent role hierarchy, method

exposed to the public, unknown role, or even inconsistent

security policy applied to a particular resource or method,

e.g., persistence or access involving a particular data entity.

159460 VOLUME 8, 2020

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

With the centralizing overview fabrication, this approach

can be applied globally. This, however, brings one challenge

that requires role mapping. Since modules apply their knowl-

edge, one cannot assume that the same role name in distinct

modules has an equivalent meaning and impact. The role

access-resolver needs to be taken into account, or a manual

role mapping can be supplied.

E. FINDING CODE SMELLS

In the [125], the authors identify code smells in MSA. These

smells include improper module interaction, modules with

too many responsibilities, and often a misunderstanding of

the architecture. For instance, there might be SOA-based

ESB-like modules to pass messages between modules. There

might be too many standards involved across discrete teams

of developers when a single standard should be established

for consistency across the modules.

On the communication, there might exist a wrong cut to

layers. There might be a missing manager for connections

between MSA modules (API gateway), and direct commu-

nication is involved. For instance, there might be hard-coded

endpoints with IP addresses and ports.

Regarding the development and design process practice,

there might exist no API versioning, or there are too many

MSA modules for small purposes. Another issue to find

is shared persistence using the same database rather than

involving individual data storage. Similarly, inappropriate

service intimacy might exist when one module access encap-

sulated data of another service, which is similar to shared

libraries or a cyclic call dependency.

These smells can be detected manually, requiring assess-

ment and a basic understanding of the system demanding

considerable effort. However, with code analysis instruments,

these smells are natural to discover almost instantly with no

previous system knowledge. Such internal audit can be part of

a broader quality evaluation, regular iterative milestone deliv-

erable audit, etc. In particular, intra-module recognition of

enterprise components allows us to recognize abstract struc-

tures, and draw the interaction patterns. Together with inter-

module communication and canonical data model, we can

further recognize high-level interconnection, compare large

to small module responsibilities, their dependencies, used

resources, internal knowledge, or involved bad coding prac-

tice. We have developed such a tool for MSA systems called

MSANose.2 It can detect all eleven bad smells defined by

[125].

VI. THE ASPECT-ORIENTED PERSPECTIVE

One possible perspective we could look into distributed sys-

tems is the perspective of AOP [76]. Each module consists

of particular concerns—for instance, persistence, security,

data constraints with input validation, or business rules. In

monoliths like systems or individual, distributed modules,

we aim to involve proper design that separates concerns

2https://github.com/cloudhubs/msa-nose

[140]. Modern development frameworks enable reasonable

concern separation through method interception [141] and

annotation descriptors.

However, there is no reasonable concern separation when

it comes to the overall distributed system. Each module

redefines the concerns. Moreover, no centralized concern

view exists. One has to assess each module to combine the

scattered concern to get the whole picture. If we consider

the module assessment as one stage and information con-

solidation as the second, centralizing stage, we could draw

a similarity with distributed AOP [26]. The code analysis can

be utilized to assess modules for concerns, and thus, be the

first part of the distributed aspect weaving. Involving such

analysis, we can obtain module-specific details and use them

for weaving into a global concern perspective.

Great example is security concern [16], [83]. Here we

define an access role, bind it to an annotation intended to

augment an endpoint, and specify authorizer for the particular

role in a given context. If we want to authorize a particular

method, we annotate it with given role annotation. This leads

to a rather clean separation of concerns. The role annotation

acts as a join point. The authorizer consists of the authoriza-

tion logic reusable for all locations in the code space using

given role annotation.We can archive a rather solid separation

of concerns in single code space. However, the MSA design

direction goes in a reverse direction. Since each module is

self-contained, it contains its concern definitions. This means

that if one module uses a certain access policy, another mod-

ule cannot reuse it. It has to reinvent it.

Separating the concern to a third component would, how-

ever, be a code smell leading back to SOA and ESB, even

though it is rather a common research direction in distributed

AOP [26], [142]–[157]. Thus, the most straight forward

direction, to maintain module independence in MSA, is to

develop replicas of concerns for each module. These then

scatter across the overall system, making it difficult to see

the overall concern span or to maintain consistency. Existing

distributed AOP techniques [26], [142]–[157] target remote

point-cuts, which leads to MSA any-pattern [125]. However,

when we look at the original AOP intention introduced in

[76], there are multiple phases in the AOP weaving process;

thus, if we consider building a distributed overlay join point

model involving individual modules, we could combine it to

receive a virtual view on a particular concern. From there,

we can easily verify the consistency of repeated concerns

definitions.

When we consider the security concern mentioned earlier

in the previous section, we can detail the assessed parts.

First, the module-specific concern is identified by the access

role authorizers identifying user roles. Next, the role anno-

tations indicate the join points with the code logic, typically

endpoints. We can further perform traversal of the control-

flow from the endpoints, which will derive the overlapping

paths. Taking into account the endpoint security policies,

we can identify conflicts. Since we can combine modules

either through the bounded-context merge into a canonical

VOLUME 8, 2020 159461

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

FIGURE 1. Code analysis use to centralize concerns scattered across distributed system modules.

model or through the module remote call interaction, we can

combine both inter- and intra- module traversal paths to dis-

cover fundamental consistency issues that are hard to discover

otherwise. However, the authorizer merging is currently the

subject of our research and experiments.

This approach is not concern-specific, and we used secu-

rity as a concern example. We can centralize data schemes,

constraints, and input validation. Moreover, if the business

rules are captured in readable form, as suggested in [80], [81]

one can easily combine and formally verify the consistency

of business rules from the overall system.

Besides, this process of concern centralization can provide

access to the up-to-date system documentation, which is

currently difficult to access since modules change often, and

the documentation easily gets out-dated. Similarly, there is a

notable delay in co-evolution between the system source code

and tests [158], which further facilitates the introduction of

errors, not to mention that current integration test approaches

resort to only consider the high-level module interaction [43],

[44] due to the complexity and difficulties related to accessing

system details. We highlight the centralization for concerns

scattered across distributed system modules in Figure 1.

VII. CONCLUSION

This study presents selected challenges in enterprise systems

and microservices. The manuscript intends to motivate the

community to broaden the research interest in code analysis

targeting these systems. Many of the highlighted problems

remain the bottleneck in current mainstream development.

We believe that code analysis considering the enterprise sys-

tem development practice can provide an efficient instru-

ment for what is currently tedious and error-prone manual

work. In particular, we demonstrate two techniques we use to

merge microservice modules into a virtual overlay perspec-

tive, allowing us to apply various types of verification above

the scope of a single code-centered module. The approach

is platform-independent since current development standards

remain similar across different platforms; however, we only

verified this on Java and Python platforms. We presented

possible categorization of code analysis target directions.

Besides, we presented an AOP perspective recognizing the

issue of scattered concerns in distributed system modules.

In the appendix, we present provides a list of open-source

tools that might be useful to researchers willing to challenge

this field. Furthermore, since one may face the difficulty

of finding useful benchmarks for their approach evaluation,

we share a list of microservice applications previously used

by researchers for evaluation of their approaches.

A. FUTURE CHALLENGES AND OPPORTUNITIES

Code analysis can bring automation to various enterprise

tasks, including verification, code to code transformation,

documentation, or information extraction for non-developers

that understand the code. Code analysis provides excellent

opportunities for testing and can help with the derivation

of test-cases. We see an opportunity to reduce the testing

time by employing code analysis. Besides, useful reports

can be provided to developers, SysOps, or other users on

code quality, code clones, smells, bug patterns found in the

code or metrics for audits or quality analysis. However, many

other opportunities come with challenges.

Among many other challenges in the field, one could con-

sider log analysis of interacting modules. With access to the

system code, the log can provide essential information to rec-

ognize the runtime issues and anomalies, leading to possible

near-future system failure, vulnerability, or an ongoing attack.

Moreover, it has the potential to straighten quality assurance

practice. Log to code mapping or generally program slicing

[159] is another active field of research where more research

is necessary.

Code analysis can be directly connected with repository

mining [115], [118]–[120], where a new code repository push

is assessed from the module perspective. It has the advan-

tage of providing quick feedback to the responsible devel-

oper or quality assurance specialist [125]. This all can happen

even without module deployment to the test environment.

However, for the context of enterprise distributed systems,

it is necessary to assess the impact of changes from the holis-

tic system perspective. With such ability, we would be able

to address new types of errors that are hard to find manually

by distributes system assessments. The evident challenge is

to derive the holistic system view automatically [135], given

the circumstances of possible heterogeneity across modules.

159462 VOLUME 8, 2020

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

TABLE 1. Available open source tools that can be utilized in this research.

With an automated approach to derive the overall system

perspective, SysOps could benefit from a better understand-

ing of the underlying modules with detailed knowledge of

their salient aspects. This would bring great opportunities. For

instance, one could quickly extract up-to-date documentation

for the overall system [135]. SysOps are not developers,

so their knowledge about particular modules is limited to the

assessment of deployment descriptors, but important module

specifics can be missed, which brings another opportunity.

Moreover, such an approach would bring benefits from the

system quality perspective allowing for distributed code smell

detection [160] or distributed code clone detection [91], [92].

However, automated derivation of the overall distributed sys-

tem perspective remains a challenge and deserves attention.

If we could overcome the current challenge of lacking

tools extracting the knowledge of module-specific details,

fine-modularity of inter-module dependencies, and spe-

cific concern scattering, besides the new mechanisms to

assess systems, we gain many new opportunities for further

research. We could develop novel monitoring and debug-

ging tools basing on concern-scattering. This could lead to

concern-inversion debugging, which would enable system

debugging/logging based on a selected concern in the overall

system no matter where it is defined rather than based on

explicit knowledge of lines and components where a specific

module defines the assessed concern, which is the current

practice and something SysOps cannot adequately perform.

Furthermore, access to an automatically derived central-

ized perspective of a distributed system could provide an

oracle to testers, analysts, and software architects. It would

simplify system testability and lead beyond a basic high-level

module interaction evaluation used these days [43], [44]. For

instance, a black-box approach when checking on process

flow [161] or message exchange [162]–[164] might provide

limited results as opposed to a white-box approach. However,

currently, the white-box testing demands efforts and costs.

With an automated approach to derive the global perspectives

of the distributed systems, we could quickly access details;

the tests could be designed from the white-box perspective

without increased efforts.

Similar concepts proven to be perspective in the field of

Combinatorial [165] and Constrained [166] Interaction Test-

ing (CIT). Studies suggest good capability to generate CIT-

based test cases from the actual state of code [167]–[169], and

this concept is mostly applicable in automated generation of

unit tests, where also alternatives have been suggested [170],

[171]. Not only is CIT employed in automated generation

of tests from source code, as another example, the mutation

testing approach can also be used [172]. The capability to

generate unit tests from the source code is potentially applica-

ble in the case of distributed systems as well, as no principal

differences in the context may impact such an application.

Furthermore, automated test case generation could better

target selected system aspects or the global system charac-

teristics rather than optimizing the per-module perspective.

Another direction where enterprise code analysis can be

instrumental involves penetration testing or just pen-testing.

The span of pen-testing ranges from the network and oper-

ating system security through application security, includ-

ing code analysis. We showed one interesting approach

related to attack graph generation from container deployment

descriptor [133] where container vulnerabilities and their

propagation across modules can be assessed. Assessment of

found vulnerabilities helps to uncover systemweaknesses and

flaws. Considering the current testing practice of distributed

systems, one can expect rather poor results with respect to

weak security points [176], [177]. Various analysis tools [87],

[88], [124], [178]–[181] help with pen-testing. They involve

system code and pattern matching or examining the run-

ning state to indicate issues. The automation involving code

analysis can range from encryption detection, an indication

of back doors (hardcoded roles and passwords), unhandled

situations, exceptions, or incorrect settings (e.g., limiting

cross-site scripting). Existing tools typically address the top

OWASP vulnerabilities [182]. However, the distributed per-

spective remains an open challenge [128].

VOLUME 8, 2020 159463

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

TABLE 2. Identified microservice benchmarks.

This kind of testing involving static analysis is sometimes

referred to as Static Application Security Testing (SAST)

[181]. It can be applied in early application development

without the time constraints and delayed feedback of man-

ual testing, which is a great advantage. Pen-testing can use

details exposed or analyzed by SAST, and using bothmethods

increases productivity. SAST is likely to reduce the number

of security issues and vulnerabilities.

Still, it does not consider the existence of enterprise

development standards and commonly used frameworks for

application design. Inclusion of these could improve the

assessment precision and quality. Also, SAST functions for

modules in isolation. It does not support a comprehensive

assessment of distributed systems as if they were a monolith

solution without module boundaries and possible hetero-

geneity in modules. With static analysis from the holistic

perspective, the module interdependence could be detected.

Existing tools could take the opportunity to utilize methods

to for interdependence detection to better vulnerability prop-

agation [133] or to focus on possible fragile parts of the com-

munication chain. Besides, such a perspective would open

new opportunities to perform RBAC policy cross-checking

of interacting methods [84] to identify consistency errors.

To summarize, current trends in enterprise systems open

many interesting challenges to the research communities to

fill the open gaps. Utilizing code analysis of enterprise sys-

tems can bring opportunities to improve the efficiency of

the processes, speed them up, address the current extended

efforts or provide new perspectives so far addressedmanually.

Code analysis of enterprise systems is an auspicious direction

to address the current challenges to provide practical oppor-

tunities.We believe it deserves a much broader research inter-

est. To support our peers in this research direction, we share

our open-source tools that can be used and extended to per-

form further experiments and tool development. Apart from

this, we also share a list of microservice-based applications

previously used as evaluation testbeds.

APPENDIX A

REFERENCE OPEN-SOURCE TOOLS

In the manuscript are mentioned various challenges. To some,

we provided references to tools trying to address them.

Table 1 provides summary references to related open source

tools. In the first column it provides the tool name, the next

column explains what is the tools meant for and the third

column contains HTTP link to the tool.

APPENDIX B

LIST OF MICROSERVICE BENCHMARKS

Researchers typically need to test their approaches [183].

For a long time there was a lack of available microservice

benchmarks [173] and references are often hard to find. For

these reasons we include a list of benchmarks we identified

across literature and sources we assessed [130], [133], [173]–

[175], [184]. Table 2 provides a reasonable list of microser-

vice benchmark references which can be used to test new

tools and approaches. In the first column it provides the

benchmark name, the next column lists the programming

language, the third column contains HTTP link to the tool

and the finally a reference to the citing paper.

159464 VOLUME 8, 2020

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

REFERENCES

[1] M. E. Fagan, ‘‘Design and code inspections to reduce errors in program

development,’’ IBM Syst. J., vol. 15, no. 3, pp. 182–211, 1976.

[2] M. Fowler, Patterns of Enterprise Application Architecture. Boston, MA,

USA: Addison-Wesley, 2002.

[3] K. Finnigan, Enterprise Java Microservices. Shelter Island, NY, USA:

Manning Publications, 2018. [Online]. Available: https://books.google.

com/books?id=KaSNswEACAAJ

[4] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,

3rd ed. Reading, MA, USA: Addison-Wesley, 2012.

[5] OMG, Unified Modeling Language (OMGUML), Infrastructure (Version

2.2), Object Manage. Group (OMG), Needham, MA, USA, Jan. 2009.

[Online]. Available: https://www.omg.org/spec/UML/2.2/About-UML/

[6] C. Larman, Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and Iterative Development, 3rd ed.

Upper Saddle River, NJ, USA: Prentice-Hall, 2004.

[7] A. Tijms. (2019). Jakarta EE 9—Release Plan. Accessed: Jul. 16, 2020.

[Online]. Available: https://eclipse-ee4j.github.io/jakartaee-platform/

jakartaee9/JakartaEE9ReleasePlan

[8] (2015). Primefaces User Interface Framework. Accessed: Jul. 16, 2020.

[Online]. Available: http://primefaces.org

[9] (Apr. 2015). AngularJS Documentation. Accessed: Jul. 16, 2020.

[Online]. Available: http://angularjs.org

[10] T. Abel, ReactJS: Become a Professional in Web App Development.

Scotts Valley, CA, USA: CreateSpace Independent Publishing Platform,

2016.

[11] L. DeMichiel and W. Shannon. (2016). JSR 366: Java Platform, Enter-

prise Edition 8 Spec. Accessed: Jul. 16, 2020. [Online]. Available: https://

jcp.org/en/jsr/detail?id=342

[12] L. DeMichiel. (Nov. 2009). JSR 317: JavaTM Persistence API, Version

2.0. Accessed: Jul. 16, 2020. [Online]. Available: http://jcp.org/en/jsr/

detail?id=317

[13] E. Bernard. (Nov. 2009). JSR 303: Bean Validation.

Accessed: Jul. 16, 2020. [Online]. Available: http://jcp.org/en/jsr/detail?

id=303

[14] G. King. (2017). JSR 299: Contexts and Dependency Injection for

the Java EE Platform. Accessed: Jul. 16, 2020. [Online]. Available:

https://jcp.org/en/jsr/detail?id=299

[15] R. Grigoriadi. (2017). JSR 222: Java Architecture for XML Binding

(JAXB). Accessed: Jul. 16, 2020. [Online]. Available: https://jcp.org/en/

jsr/detail?id=222

[16] W. Hopkins. (Nov. 2009). JSR 375: Java EE Security API.

Accessed: Jul. 16, 2020. [Online]. Available: https://jcp.org/en/jsr/detail?

id=375

[17] Microsoft. (2019). Net Entity Framework Documentation.

Accessed: Jul. 16, 2020. [Online]. Available: https://docs.microsoft.com/

en-us/ef/

[18] M. Makai. (2019). Object-Relational Mappers (ORMS).

Accessed: Jul. 16, 2020. [Online]. Available: https://www.fullstack

python.com/object-relational-mappers-orms.html

[19] J. H.Wage. (2019). The Doctrine Project (PHP). Accessed: Jul. 16, 2020.

[Online]. Available: https://www.doctrine-project.org

[20] Laravel, LLC. (2019). Laravel PHP Framework. Accessed: Jul. 16, 2020.

[Online]. Available: https://laravel.com/docs/5.8/authorization

[21] L. Jungmann. (2020). JSR: Java Specification Requests JSR 338:

JavaTM Persistence 2.2. Accessed: Jul. 16, 2020. [Online]. Available:

https://jcp.org/en/jsr/detail?id=338

[22] H. Buelow, M. Deb, J. Kasi, D. LHer, and P. Palvankar, Getting Started

With Oracle SOA Suite 11G R1 A Hands-On Tutorial. Birmingham, U.K.:

Packt, 2009.

[23] T. Cerny, M. J. Donahoo, and M. Trnka, ‘‘Contextual understand-

ing of microservice architecture: Current and future directions,’’ ACM

SIGAPP Appl. Comput. Rev., vol. 17, no. 4, pp. 29–45, Jan. 2018,

doi: 10.1145/3183628.3183631.

[24] N. Kratzke and P.-C. Quint, ‘‘Understanding cloud-native applications

after 10 years of cloud computing—A systematic mapping study,’’

J. Syst. Softw., vol. 126, pp. 1–16, Apr. 2017. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0164121217300018

[25] E. Wolff, Microservices: Flexible Software Architectures. Scotts Valley,

CA, USA: CreateSpace Independent Publishing Platform, 2016. [Online].

Available: https://books.google.com/books?id=X7YzjwEACAAJ

[26] T. Cerny, ‘‘Aspect-oriented challenges in system integration with

microservices, SOA and IoT,’’ Enterprise Inf. Syst., vol. 13, no. 4,

pp. 467–489, Apr. 2019, doi: 10.1080/17517575.2018.1462406.

[27] Google. (2018). Kubernetes: Automated Container Deployment, Scaling,

and Management. [Online]. Available: https://kubernetes.io
[28] R. Hat. (2018). OpenShift: Container Application Platform. [Online].

Available: https://www.openshift.com
[29] ISTIO. (2018). ISTIO, An Open Platform to Connect, Manage, and

Secure Microservices. Accessed: Jul. 16, 2020. [Online]. Available:

https://istio.io
[30] F. Soppelsa and C. Kaewkasi, Native Docker Clustering With Swarm.

Birmingham, U.K.: Packt, 2017.
[31] D. Merkel, ‘‘Docker: Lightweight linux containers for consistent devel-

opment and deployment,’’ Linux J., vol. 2014, no. 239, p. 2, Mar. 2014.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241
[32] NGINX. (Nov. 2015). The Future of Application Development and

Delivery Is Now Containers and Microservices Are Hitting the Main-

stream. Accessed: Jul. 16, 2020. [Online]. Available: https://www.nginx.

com/resources/library/app-dev-survey/
[33] (Jun. 2018). Microservices Architecture Market Research Report-

Global Forecast 2023. Accessed: Jul. 16, 2020. [Online]. Available:

https://www.marketresearchfuture.com/reports/microservices-

architecture-market-3149
[34] (Nov. 2017). Microservice Architecture Market, 2023. Accessed:

Jul. 16, 2020. [Online]. Available: https://globenewswire.com/news-

release/2017/11/03/1174391/0/en/Microservice-Architecture-Market-

2023.html
[35] B. Gracely. (2018). Understanding Service Meshes. [Online]. Available:

https://blog.openshift.com/podcast-podctl-basics-understanding-service-

meshes/
[36] P. Belagatti. (May 2019). How Big Companies are Using Kubernetes.

Accessed: Jul. 16, 2020. [Online]. Available: https://jaxenter.com/big-

companies-using-kubernetes-159007.html
[37] Datadog. (Dec. 2018). 8 Emerging Trends in Container Orches-

tration. Accessed: Jul. 16, 2020. [Online]. Available: https://www.

datadoghq.com/container-orchestration/
[38] CNCF Survey. (Aug. 2019). CNCF Survey 2019: Deployments are

Getting Larger as Cloud Native Adoption Becomes Mainstream.

Accessed: Mar. 10, 2020. [Online]. Available: https://www.cncf.io/wp-

content/uploads/2020/03/CNCF_Survey_Report.pdf
[39] Kaitlyn Barnard. (Aug. 2018). CNCF Survey: Use of Cloud Native Tech-

nologies in Production Has Grown Over 200%. Accessed: Nov. 10, 2019.

[Online]. Available: https://www.cncf.io/blog/2018/08/29/cncf-survey-

use-of-cloud-native-technologies-in-production-has-grown-over-200-

percent/
[40] (2018). Knative: Building Blocks That Simplify How You Deploy and Run

Functions a Top Kubernetes and Istio. On Any Cloud. [Online]. Available:

https://www.openshift.com
[41] Prometheus Authors. (2019). Prometheus Monitoring. Accessed:

Nov. 10, 2019. [Online]. Available: https://prometheus.io/
[42] Grafana Labs. (2019). Grafana: The Open Observability Platform Mon-

itoring. Accessed: Nov. 10, 2019. [Online]. Available: https://grafana.

com/
[43] M. Camilli, C. Bellettini, and L. Capra, ‘‘Design-time to run-time ver-

ification of microservices based applications,’’ in Software Engineering

and Formal Methods, A. Cerone and M. Roveri, Eds. Cham, Switzerland:

Springer, 2018, pp. 168–173.
[44] M. Camilli, C. Bellettini, L. Capra, and M. Monga, ‘‘A formal framework

for specifying and verifying microservices based process flows,’’ in Proc.

Int. Conf. Softw. Eng. Formal Methods. Cham, Switzerland: Springer,

2017, pp. 187–202.
[45] G. Ebner, S. Ullrich, J. Roesch, J. Avigad, and L. de Moura, ‘‘A metapro-

gramming framework for formal verification,’’ in Proc. ACM Program.

Lang. (ICFP), vol. 1, Aug. 2017, pp. 34:1–34:29, doi: 10.1145/3110278.
[46] A. Chlipala, ‘‘The bedrock structured programming system: Combining

generative metaprogramming and hoare logic in an extensible program

verifier,’’ ACMSIGPLANNotices, vol. 48, no. 9, pp. 391–402, Nov. 2013,

doi: 10.1145/2544174.2500592.
[47] H. Cho, ‘‘Using metaprogramming to implement a testing framework,’’

in Proc. 47th Annu. Southeast Regional Conf. (ACM-SE), New York, NY,

USA, 2009, p. 55, doi: 10.1145/1566445.1566519.
[48] P. E. Papotti, A. Prado, and W. L. de Souza, ‘‘Reducing time and effort in

legacy systems reengineering to mdd using metaprogramming,’’ in Proc.

ACM Res. Appl. Comput. Symp., Oct. 2012, pp. 348–355.
[49] V. R. L. Mendonca, C. L. Rodrigues, F. A. A. MN Soares, and

A. M. R. Vincenzi, ‘‘Static analysis techniques and tools: A systematic

mapping study,’’ in Proc. 8th Int. Conf. Softw. Eng. Adv. (ICSEA), 2013,

pp. 72–78.

VOLUME 8, 2020 159465

http://dx.doi.org/10.1145/3183628.3183631
http://dx.doi.org/10.1080/17517575.2018.1462406
http://dx.doi.org/10.1145/3110278
http://dx.doi.org/10.1145/2544174.2500592
http://dx.doi.org/10.1145/1566445.1566519

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

[50] J. C. B. Ribeiro, F. F. de Vega, and M. Zenha-Rela, ‘‘Using dynamic

analysis of java bytecode for evolutionary object-oriented unit testing,’’

in Proc. 25th Brazilian Symp. Comput. Netw. Distrib. Syst. (SBRC), 2007,

pp. 143–156.
[51] E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla, ‘‘Verification

of java bytecode using analysis and transformation of logic programs,’’

in Practical Aspects of Declarative Languages, M. Hanus, Ed. Berlin,

Germany: Springer, 2007, pp. 124–139.
[52] I. Keivanloo, C. K. Roy, and J. Rilling, ‘‘SeByte: Scalable clone

and similarity search for bytecode,’’ Sci. Comput. Program., vol. 95,

pp. 426–444, Dec. 2014. [Online]. Available: http://www.sciencedirect.

com/science/article/pii/S0167642313002773
[53] I. Keivanloo, C. K. Roy, and J. Rilling, ‘‘Java bytecode clone detection

via relaxation on code fingerprint and semantic Web reasoning,’’ in

Proc. 6th Int. Workshop Softw. Clones (IWSC), Piscataway, NJ, USA,

Jun. 2012, pp. 36–42. [Online]. Available: http://dl.acm.org/citation.

cfm?id=2664398.2664404
[54] G. Chatley, S. Kaur, and B. Sohal, ‘‘Software clone detection: A review,’’

Int. J. Control Theory Appl., vol. 9, pp. 555–563, Jan. 2016.
[55] Z. P. Reynolds, A. B. Jayanth, U. Koc, A. A. Porter, R. R. Raje, and

J. H. Hill, ‘‘Identifying and documenting false positive patterns generated

by static code analysis tools,’’ in Proc. 4th Int. Workshop Softw. Eng.

Res. Ind. Pract. (SER&IP). Piscataway, NJ, USA: IEEE Press, 2017,

pp. 55–61, doi: 10.1109/SER-IP.2017.20.
[56] F. Elberzhager, J. Münch, and V. T. N. Nha, ‘‘A systematic mapping study

on the combination of static and dynamic quality assurance techniques,’’

Inf. Softw. Technol., vol. 54, no. 1, pp. 1–15, Jan. 2012.
[57] A. G. Bardas, ‘‘Static code analysis,’’ J. Inf. Syst. Oper. Manage., vol. 4,

no. 2, pp. 99–107, 2010.
[58] I. J. Davis and M. W. Godfrey, ‘‘From whence it came: Detecting source

code clones by analyzing assembler,’’ in Proc. 17th Work. Conf. Reverse

Eng., Oct. 2010, pp. 242–246.
[59] D. Rattan, R. Bhatia, and M. Singh, ‘‘Software clone detection: A sys-

tematic review,’’ Inf. Softw. Technol., vol. 55, no. 7, pp. 1165–1199,

Jul. 2013. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0950584913000323
[60] R. Kennard and J. Leaney, ‘‘Towards a general purpose architecture for

UI generation,’’ J. Syst. Softw., vol. 83, no. 10, pp. 1896–1906, Oct. 2010,

doi: 10.1016/j.jss.2010.05.079.
[61] R. Kennard, E. Edmonds, and J. Leaney, ‘‘Separation anxiety: Stresses

of developing a modern day separable user interface,’’ in Proc. 2nd Conf.

Hum. Syst. Interact. Piscataway, NJ, USA: IEEE Press, May 2009,

pp. 225–232. [Online]. Available: http://portal.acm.org/citation.

cfm?id=1689359.1689399
[62] T. Cerny, M. Macik, M. Donahoo, and J. Janousek, ‘‘On distributed

concern delivery in user interface design,’’Comput. Sci. Inf. Syst., vol. 12,

no. 2, pp. 655–681, 2015.
[63] T. Cerny, K. Cemus, M. J. Donahoo, and E. Song, ‘‘Aspect-driven, data-

reflective and context-aware user interfaces design,’’ Appl. Comput. Rev.,

vol. 13, no. 4, pp. 53–65, 2013.
[64] T. Cerny and M. J. Donahoo, ‘‘On separation of platform-independent

particles in user interfaces,’’ Cluster Comput., vol. 18, no. 3,

pp. 1215–1228, Sep. 2015, doi: 10.1007/s10586-015-0471-7.
[65] T. Cerny,M. Trnka, andM. J. Donahoo, ‘‘Towards shared security through

distributed separation of concerns,’’ in Proc. Int. Conf. Res. Adapt.

Convergent Syst. (RACS), New York, NY, USA, 2016, pp. 169–172,

doi: 10.1145/2987386.2987394.
[66] T. Cerny and E. Song, ‘‘Model-driven rich form generation,’’ Int. Inf.,

vol. 15, no. 7, pp. 2695–2714, 2012.
[67] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,

Pattern-Oriented Software Architecture: A System of Patterns. New York,

NY, USA: Wiley, 1996.
[68] I. R. Forman and N. Forman, Java Reflection in Action (In Action Series).

Greenwich, CT, USA: Manning, 2004.
[69] A. Torres, R. Galante, and M. S. Pimenta, ‘‘Towards a UML profile for

model-driven object-relational mapping,’’ in Proc. 23rd Brazilian Symp.

Softw. Eng., Oct. 2009, pp. 94–103.
[70] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-oriented Software. Boston, MA, USA:

Addison-Wesley, 1995.
[71] C. Bauer and G. King, Hibernate Action (In Action Series). Greenwich,

CT, USA: Manning, 2004.
[72] R. Kennard and R. Steele, ‘‘Application of software mining to automatic

user interface generation,’’ in Proc. Int. Conf. Softw. Methods Tools.

Amsterdam, The Netherlands: IOS Press, 2008.

[73] T. Cerny and E. Song, ‘‘A profile approach to using UMLmodels for rich

form generation,’’ in Proc. Int. Conf. Inf. Sci. Appl., 2010, pp. 1–8.
[74] R. Pawson and R. Matthews, ‘‘Naked objects: A technique for designing

more expressive systems,’’ SIGPLAN Not., vol. 36, no. 12, pp. 61–67,

2001.
[75] L. DeMichiel and M. Keith. (May 2006). JSR 220: Enterprise Javabeans

Version 3.0. Java Persistence API. Accessed: Jul. 16, 2020. [Online].

Available: http://jcp.org/en/jsr/detail?id=220
[76] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,

J.-M. Loingtier, and J. Irwin, ‘‘Aspect-oriented programming,’’ in Proc.

Object-Oriented Program. (ECOOP), 1997, pp. 220–242.
[77] R. Laddad, AspectJ in Action: Enterprise AOP With Spring Applications,

2nd ed. Greenwich, CT, USA: Manning, 2009.
[78] T. Cerny and M. J. Donahoo, ‘‘On energy impact of Web user interface

approaches,’’ Cluster Comput., vol. 19, no. 4, pp. 1853–1863, Dec. 2016.
[79] M. Bali, Drools JBoss Rules 5.0 Developer’s Guide. Birmingham, U.K.:

Packt, 2009.
[80] K. Cemus, F. Klimes, and T. Cerny, ‘‘Aspect-driven context-aware ser-

vices,’’ in Proc. Federated Conf. Comput. Sci. Inf. Syst., Sep. 2017,

pp. 1307–1314.
[81] K. Cemus, F. Klimes, O. Kratochvil, and T. Cerny, ‘‘Separation

of concerns for distributed cross-platform context-aware user inter-

faces,’’ Cluster Comput., vol. 20, no. 3, pp. 2355–2362, Sep. 2017,

doi: 10.1007/s10586-017-0794-7.
[82] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-Based Access

Control. Norwood, MA, USA: Artech House, Inc., 2003.
[83] Pivotal. (2019). Spring Security. Accessed: Jul. 16, 2020. [Online]. Avail-

able: https://spring.io/projects/spring-security
[84] A. Walker, J. Svacina, J. Simmons, and T. Cerny, ‘‘On automated

role-based access control assessment in enterprise systems,’’ in Infor-

mation Science and Applications 2019. Cham, Switzerland: Springer,

Dec. 2019.
[85] C. K. Roy, J. R. Cordy, and R. Koschke, ‘‘Comparison and evaluation

of code clone detection techniques and tools: A qualitative approach,’’

Sci. Comput. Program., vol. 74, no. 7, pp. 470–495, May 2009,

doi: 10.1016/j.scico.2009.02.007.
[86] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, ‘‘Sourcer-

ercc: Scaling code clone detection to big-code,’’ in Proc. 38th Int.

Conf. Softw. Eng. (ICSE), New York, NY, USA, 2016, pp. 1157–1168,

doi: 10.1145/2884781.2884877.
[87] 2019. Spotbugs. Accessed: Jul. 16, 2020. [Online]. Available: https://

spotbugs.github.io
[88] (2019). PMD: An Extensible Cross-Language Static Code Analyzer.

Accessed: Jul. 16, 2020. [Online]. Available: https://pmd.github.io
[89] B. Pugh. (2015). Findbugs. Accessed: Jul. 16, 2020. [Online]. Available:

http://findbugs.sourceforge.net
[90] J. Svacina, J. Simmons, and T. Cerny, ‘‘Semantic code clone detection for

enterprise applications,’’ in Proc. 35th Annu. ACM Symp. Appl. Comput.,

Mar. 2020, pp. 1–3.
[91] A. Walker, T. Cerny, and E. Song, ‘‘Open-source tools and bench-

marks for code-clone detection: Past, present, and future trends,’’

SIGAPP Appl. Comput. Rev., vol. 19, no. 4, p. 28–39, Jan. 2020,

doi: 10.1145/3381307.3381310.
[92] A. Walker and T. Cerny, ‘‘On cloud computing infrastructure for existing

code-clone detection algorithms,’’ ACM SIGAPP Appl. Comput. Rev.,

vol. 20, no. 1, pp. 5–14, Apr. 2020, doi: 10.1145/3392350.3392351.
[93] C. K. Roy, M. F. Zibran, and R. Koschke, ‘‘The vision of software

clone management: Past, present, and future (Keynote paper),’’ in Proc.

IEEE Conf. Softw. Maintenance, Reeng., Reverse Eng. (CSMR-WCRE),

Feb. 2014, pp. 18–33, doi: 10.1109/csmr-wcre.2014.6747168.
[94] V. Bauer, T. Völke, and S. Eder, ‘‘Comparing TF-IDF and LSI as ir

technique in an approach for detecting semantic re-implementations

in source code,’’ Technical University Munchen, Munich, Germany,

Tech. Rep., 2015. [Online]. Available: https://mediatum.ub.tum.de/

attfile/1281127/incoming/2015-Nov/626613.pdf and https://scholar.

google.com/scholar?as_q=COMPARING+TF-IDF+AND+LSI+AS+

IR+TECHNIQUE+IN+AN+APPROACH+FOR+DETECTING+

SEMANTIC+RE-IMPLEMENTATIONS+IN+SOURCE+CODE&as_

occt=title&hl=en&as_sdt=0%2C31
[95] M. Gabel, L. Jiang, and Z. Su, ‘‘Scalable detection of semantic clones,’’

in Proc. 30th Int. Conf. Softw. Eng. (ICSE), New York, NY, USA, 2008,

pp. 321–330, doi: 10.1145/1368088.1368132.
[96] H. Kim, Y. Jung, S. Kim, and K. Yi, ‘‘MeCC: Memory comparison-based

clone detector,’’ in Proc. 33rd Int. Conf. Softw. Eng. (ICSE), New York,

NY, USA, 2011, pp. 301–310, doi: 10.1145/1985793.1985835.

159466 VOLUME 8, 2020

http://dx.doi.org/10.1109/SER-IP.2017.20
http://dx.doi.org/10.1016/j.jss.2010.05.079
http://dx.doi.org/10.1007/s10586-015-0471-7
http://dx.doi.org/10.1145/2987386.2987394
http://dx.doi.org/10.1007/s10586-017-0794-7
http://dx.doi.org/10.1016/j.scico.2009.02.007
http://dx.doi.org/10.1145/2884781.2884877
http://dx.doi.org/10.1145/3381307.3381310
http://dx.doi.org/10.1145/3392350.3392351
http://dx.doi.org/10.1109/csmr-wcre.2014.6747168
http://dx.doi.org/10.1145/1368088.1368132
http://dx.doi.org/10.1145/1985793.1985835

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

[97] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, ‘‘Semantics-based

obfuscation-resilient binary code similarity comparison with applica-

tions to software plagiarism detection,’’ in Proc. 22Nd ACM SIGSOFT

Int. Symp. Found. Softw. Eng. (FSE), New York, NY, USA, 2014,

pp. 389–400, doi: 10.1145/2635868.2635900.

[98] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, ‘‘Semantics-based

obfuscation-resilient binary code similarity comparison with applications

to software and algorithm plagiarism detection,’’ IEEE Trans. Softw. Eng.,

vol. 43, no. 12, pp. 1157–1177, Jan. 2017.

[99] F.-H. Su, J. Bell, K. Harvey, S. Sethumadhavan, G. Kaiser, and T. Jebara,

‘‘Code relatives: Detecting similarly behaving software,’’ in Proc. 24th

ACM SIGSOFT Int. Symp. Found. Softw. Eng. (FSE), New York, NY,

USA, 2016, pp. 702–714, doi: 10.1145/2950290.2950321.

[100] T. Kamiya, ‘‘Agec: An execution-semantic clone detection tool,’’ in Proc.

21st Int. Conf. ProgramComprehension (ICPC), May 2013, pp. 227–229.

[101] R. Tekchandani, R. Bhatia, andM. Singh, ‘‘Semantic code clone detection

for Internet of Things applications using reaching definition and live-

ness analysis,’’ J. Supercomput., vol. 74, no. 9, pp. 4199–4226, 2018,

doi: 10.1007/s11227-016-1832-6.

[102] T. Wang, K. Wang, X. Su, and P. Ma, ‘‘Detection of semantically similar

code,’’ Frontiers Comput. Sci., vol. 8, no. 6, pp. 996–1011, 2014.

[103] J. Richenhagen, B. Rumpe, A. Schloßer, C. Schulze, K. Thissen, and

M. von Wenckstern, ‘‘Test-driven semantical similarity analysis for soft-

ware product line extraction,’’ in Proc. 20th Int. Syst. Softw. Product Line

Conf. (SPLC), 2016, pp. 174–183.

[104] P. Schugerl, J. Rilling, and P. Charland, ‘‘Reasoning about global clones:

Scalable semantic clone detection,’’ in Proc. IEEE 35th Annu. Comput.

Softw. Appl. Conf., Jul. 2011, pp. 486–491.

[105] R. Elva. (2013). Detecting Semantic Method Clones in Java Code

Using Method IOE-Behavior. [Online]. Available: https://stars.library.

ucf.edu/etd/2620

[106] J. Andersen, P. Bahr, F. Henglein, and T. Hvitved, ‘‘Domain-specific

languages for enterprise systems,’’ in Leveraging Applications of For-

mal Methods, Verification and Validation. Technologies for Mastering

Change, T. Margaria and B. Steffen, Eds. Berlin, Germany: Springer,

2014, pp. 73–95.

[107] M. Ozkaya and F. Erata, ‘‘Understanding Practitioners’ challenges on

software modeling: A survey,’’ J. Comput. Lang., vol. 58, Jun. 2020,

Art. no. 100963. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S259011842030023X

[108] M. Voelter, J. Warmer, and B. Kolb, ‘‘Projecting a modular future,’’ IEEE

Softw., vol. 32, no. 5, pp. 46–52, Sep. 2015.

[109] P. Tonella, ‘‘Evolutionary testing of classes,’’ SIGSOFT Softw. Eng. Notes,

vol. 29, no. 4, pp. 119–128, Jul. 2004, doi: 10.1145/1013886.1007528.

[110] S. Chiba, ‘‘Javassist—A reflection-based programming wizard for Java,’’

in Proc. ACM OOPSLA Workshop Reflective Program. C++ Java,

Oct. 1998, p. 21.

[111] J. Wu, L. Huang, and D. Wang, ‘‘ASM-based model of dynamic service

update in OSGI,’’ SIGSOFT Softw. Eng. Notes, vol. 33, no. 2, pp. 8:1–8:8,

Mar. 2008, doi: 10.1145/1350802.1350815.

[112] A. Habib and M. Pradel, ‘‘How many of all bugs do we find? A study

of static bug detectors,’’ in Proc. 33rd ACM/IEEE Int. Conf. Automated

Softw. Eng. (ASE), 2018, pp. 317–328, doi: 10.1145/3238147.3238213.

[113] D. Lau. (2018). An Abstract Syntax Tree Generator From Java Byte-

code. Accessed: Jul. 16, 2020. [Online]. Available: https://github.com/

davidlau325/BytecodeASTGenerator

[114] G. M. K. Selim, K. C. Foo, and Y. Zou, ‘‘Enhancing source-based clone

detection using intermediate representation,’’ in Proc. 17th Work. Conf.

Reverse Eng., Oct. 2010, pp. 227–236.

[115] C. C. Williams and J. K. Hollingsworth, ‘‘Automatic mining of source

code repositories to improve bug finding techniques,’’ IEEE Trans. Softw.

Eng., vol. 31, no. 6, pp. 466–480, Jun. 2005.

[116] T. Muske, R. Talluri, and A. Serebrenik, ‘‘Repositioning of static analysis

alarms,’’ in Proc. 27th ACM SIGSOFT Int. Symp. Softw. Test. Anal.

(ISSTA), 2018, pp. 187–197, doi: 10.1145/3213846.3213850.

[117] A. A. Elkhail, J. Svacina, and T. Cerny, ‘‘Intelligent token-based

code clone detection system for large scale source code,’’ in Proc.

Conf. Res. Adapt. Convergent Syst., New York, NY, USA, Sep. 2019,

doi: 10.1145/3338840.3355654.

[118] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer, ‘‘Study-

ing the co-evolution of production and test code in open source and

industrial developer test processes through repository mining,’’ Empirical

Softw. Eng., vol. 16, no. 3, pp. 325–364, Jun. 2011, doi: 10.1007/s10664-

010-9143-7.

[119] H. Kagdi, ‘‘Improving change prediction with fine-grained source code

mining,’’ in Proc. 22nd IEEE/ACM Int. Conf. Automated Softw. Eng.

(ASE), 2007, pp. 559–562, doi: 10.1145/1321631.1321742.
[120] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, ‘‘Boa:

Ultra-large-scale software repository and source-code mining,’’ ACM

Trans. Softw. Eng. Methodology, vol. 25, no. 1, pp. 1–34, Dec. 2015,

doi: 10.1145/2803171.
[121] K. S. Kumar and D. Malathi, ‘‘A novel method to find time complexity

of an algorithm by using control flow graph,’’ in Proc. Int. Conf. Tech.

Advancements Comput. Commun. (ICTACC), Apr. 2017, pp. 66–68.
[122] M. M. Syaikhuddin, C. Anam, A. R. Rinaldi, and M. E. B. Conoras,

‘‘Conventional software testing using white box method,’’ Kinetik,

Game Technol., Inf. Syst., Comput. Netw., Comput., Electron., Control,

vol. 3, no. 1, pp. 65–72, 2018. [Online]. Available: http://kinetik.umm.

ac.id/index.php/kinetik/article/view/231
[123] J. Smits and E. Visser, ‘‘FlowSpec: Declarative dataflow analysis specifi-

cation,’’ in Proc. 10th ACM SIGPLAN Int. Conf. Softw. Lang. Eng. (SLE),

2017, p. 221, doi: 10.1145/3136014.3136029.
[124] H. Shahriar, A. B. M. K. Islam Riad, M. A. I. Talukder, H. Zhang, and

Z. Li, ‘‘Automatic security bug detection with findsecuritybugs plugin,’’

Kennesaw State Univ., Kennesaw, GA, USA, Tech. Rep., Oct. 2019.

[Online]. Available: https://digitalcommons.kennesaw.edu/cgi/view

content.cgi?article=1103&context=ccerp
[125] D. Taibi and V. Lenarduzzi, ‘‘On the definition of microservice bad

smells,’’ IEEE Softw., vol. 35, no. 3, pp. 56–62, May 2018.
[126] L. Kumar, S. K. Rath, and A. Sureka, ‘‘Using source code metrics

and multivariate adaptive regression splines to predict maintainability of

service oriented software,’’ in Proc. IEEE 18th Int. Symp. High Assurance

Syst. Eng. (HASE), 2017, pp. 88–95.
[127] K. Cemus, T. Cerny, and M. J. Donahoo, ‘‘Automated business rules

transformation into a persistence layer,’’ Procedia Comput. Sci., vol. 62,

pp. 312–318, Jan. 2015.
[128] A. Walker, M. Coffey, P. Tisnovsky, and T. Cerny, ‘‘On limitations of

modern static analysis tools,’’ in Information Science and Applications.

Cham, Switzerland: Springer, Dec. 2019, pp. 577–586.
[129] R. Hat. (2019). Fabric8-Analytics. Accessed: Jul. 16, 2020. [Online].

Available: http://fabric8.io/faq/
[130] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao, ‘‘Bench-

marking microservice systems for software engineering research,’’ in

Proc. 40th Int. Conf. Softw. Eng., Companion, May 2018, pp. 323–324,

doi: 10.1145/3183440.3194991.
[131] S. Esparrachiari, T. Reilly, and A. Rentz, ‘‘Tracking and controlling

microservice dependencies,’’ Queue, vol. 16, no. 4, pp. 10:44–10:65,

Aug. 2018, doi: 10.1145/3277539.3277541.
[132] J. Thalheim, A. Rodrigues, I. E. Akkus, P. Bhatotia, R. Chen,

B. Viswanath, L. Jiao, and C. Fetzer, ‘‘Sieve: Actionable insights

from monitored metrics in distributed systems,’’ in Proc. 18th

ACM/IFIP/USENIX Middleware Conf., Dec. 2017, pp. 14–27, doi: 10.

1145/3135974.3135977.
[133] A. Ibrahim, S. Bozhinoski, and A. Pretschner, ‘‘Attack graph generation

for microservice architecture,’’ in Proc. 34th ACM/SIGAPP Symp. Appl.

Comput., Apr. 2019, p. 1235, doi: 10.1145/3297280.3297401.
[134] N. Alshuqayran, N. Ali, and R. Evans, ‘‘Towards micro service architec-

ture recovery: An empirical study,’’ in Proc. IEEE Int. Conf. Softw. Archit.

(ICSA), Apr. 2018, pp. 4709–4747.
[135] F. Rademacher, S. Sachweh, and A. Zündorf, ‘‘A modeling method for

systematic architecture reconstruction of microservice-based software

systems,’’ inEnterprise, Business-Process and Information SystemsMod-

eling, S. Nurcan, I. Reinhartz-Berger, P. Soffer, and J. Zdravkovic, Eds.

Cham, Switzerland: Springer, 2020, pp. 311–326.
[136] Z. Jian and L. Chen, ‘‘A defense method against docker escape attack,’’

in Proc. Int. Conf. Cryptogr., Secur. Privacy (ICCSP), 2017, pp. 142–146,

doi: 10.1145/3058060.3058085.
[137] B. T. Linetskyi Artem, ‘‘Eliminating privilage escalation to root

in containers running on kubernetes,’’ Sci. Practical Cyber Secur.

J., vol. 4, no. 1, pp. 87–92, Mar. 2020. [Online]. Available:

https://journal.scsa.ge/papers/eliminating-privilage-escalation-to-root-

in-containers-running-on-kubernetes/ and https://journal.scsa.ge/issue/

march-2020/
[138] N. Qamar, J. Faber, Y. Ledru, and Z. Liu, ‘‘Automated reviewing of

healthcare security policies,’’ in Foundations of Health Information Engi-

neering and Systems, J. Weber and I. Perseil, Eds. Berlin, Germany:

Springer, 2013, pp. 176–193.
[139] D. Gordon. (2019). A Security Framework for Python Applica-

tions. Accessed: Jul. 16, 2020. [Online]. Available: https://github.com/

YosaiProject/yosai

VOLUME 8, 2020 159467

http://dx.doi.org/10.1145/2635868.2635900
http://dx.doi.org/10.1145/2950290.2950321
http://dx.doi.org/10.1007/s11227-016-1832-6
http://dx.doi.org/10.1145/1013886.1007528
http://dx.doi.org/10.1145/1350802.1350815
http://dx.doi.org/10.1145/3238147.3238213
http://dx.doi.org/10.1145/3213846.3213850
http://dx.doi.org/10.1145/3338840.3355654
http://dx.doi.org/10.1007/s10664-010-9143-7
http://dx.doi.org/10.1007/s10664-010-9143-7
http://dx.doi.org/10.1145/1321631.1321742
http://dx.doi.org/10.1145/2803171
http://dx.doi.org/10.1145/3136014.3136029
http://dx.doi.org/10.1145/3183440.3194991
http://dx.doi.org/10.1145/3277539.3277541
http://dx.doi.org/10.1145/3135974.3135977
http://dx.doi.org/10.1145/3135974.3135977
http://dx.doi.org/10.1145/3297280.3297401
http://dx.doi.org/10.1145/3058060.3058085

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

[140] E. W. Dijkstra, A Discipline of Programming. Upper Saddle River, NJ,

USA: Prentice-Hall, Oct. 1976. [Online]. Available: http://www.amazon.

com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/013215871X
[141] L. DeMichiel. (2017). JSR 318: Enterprise Javabeans 3.1/Interceptors

1.2. Accessed: Jul. 16, 2020. [Online]. Available: http://jcp.org/en/

jsr/detail?id=318
[142] S. Soares, E. Laureano, and P. Borba, ‘‘Implementing distribution and

persistence aspects with ASPECTJ,’’ SIGPLAN Not., vol. 37, no. 11,

pp. 174–190, Nov. 2002, doi: 10.1145/583854.582437.
[143] M. Nishizawa, S. Chiba, andM. Tatsubori, ‘‘Remote pointcut: A language

construct for distributed AOP,’’ in Proc. 3rd Int. Conf. Aspect-oriented

Softw. Develop. (AOSD), 2004, pp. 7–15, doi: 10.1145/976270.976274.
[144] R. Pawlak, L. Seinturier, L. Duchien, G. Florin, F. Legond-Aubry, and

L. Martelli, ‘‘JAC: An aspect-based distributed dynamic framework,’’

Softw., Pract. Exper., vol. 34, no. 12, pp. 1119–1148, Oct. 2004. [Online].

Available: https://hal.inria.fr/inria-00000042
[145] L. D. B. Navarro, M. Südholt, W. Vanderperren, B. De Fraine, and

D. Suvée, ‘‘Explicitly distributed aop using awed,’’ in Proc. 5th Int. Conf.

Aspect-oriented Softw. Develop. (AOSD), New York, NY, USA, 2006,

pp. 51–62, doi: 10.1145/1119655.1119665.
[146] E. Tanter and R. Toledo, ‘‘A versatile kernel for distributed aop,’’ in

Distributed Applications and Interoperable Systems, F. Eliassen and

A. Montresor, Eds. Berlin, Germany: Springer, 2006, pp. 316–331.
[147] B. Lagaisse and W. Joosen, ‘‘True and transparent distributed com-

position of aspect-components,’’ in Proc. ACM/IFIP/USENIX Int.

Conf. Middleware (Middleware). New York, NY, USA: Springer-

Verlag, 2006, pp. 42–61. [Online]. Available: http://dl.acm.org/citation.

cfm?id=1515984.1515989
[148] R. Mondéjar, P. García-López, C. Pairot, and L. Pamies-Juarez, ‘‘Damon:

A distributed AOP middleware for large-scale scenarios,’’ Inf. Softw.

Technol., vol. 54, no. 3, pp. 317–330, Mar. 2012. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0950584911002138
[149] A. O. Al-Zaghameem, ‘‘Supporting distributed aspects by extending

object teams model into distributed environments,’’ Technical Univer-

sity of Berlin, Berlin, Germany, Tech. Rep., 2011. [Online]. Available:

http://cogprints.org/7373/1/ICICS.paper/9.pdf
[150] F. Yang, H. Masuhara, T. Aotani, F. Nielson, and H. R. Nielson, ‘‘Aspec-

tke: Security aspects with program analysis for distributed systems,’’

in Proc. 9th Workshop Aspects, Compon., Patterns Infrastruct. Softw.

(ACP4IS), vol. 10, 2010, pp. 27–31.
[151] N. Tabareau, ‘‘A theory of distributed aspects,’’ in Proc. 9th Int. Conf.

Aspect-Oriented Softw. Develop. (AOSD), New York, NY, USA, 2010,

pp. 133–144, doi: 10.1145/1739230.1739246.
[152] W. B., S. J., and D. J., ‘‘DCAM: A distributed aspectual middleware,’’

Int. J. Digit. Content Technol. Appl., vol. 4, no. 8, pp. 65–78, Nov. 2010.

[Online]. Available: http://www.aicit.org/jdcta/ppl/JDCTA0408_07.pdf
[153] R. Mondejar, P. Garcia, C. Pairot, P. Urso, and P. Molli, ‘‘Design-

ing a distributed AOP runtime composition model,’’ in Proc. ACM

Symp. Appl. Comput. (SAC), New York, NY, USA, 2009, pp. 539–540,

doi: 10.1145/1529282.1529395.
[154] R. Mondéjar, P. García, C. Pairot, and A. F. G. Skarmeta, ‘‘Building a

distributed AOP middleware for large scale systems,’’ in Proc. Workshop

Next Gener. Aspect OrientedMiddleware (NAOMI), New York, NY, USA,

2008, pp. 17–22, doi: 10.1145/1408620.1408624.
[155] N. C. Narendra, K. Ponnalagu, J. Krishnamurthy, and R. Ramkumar,

‘‘Run-time adaptation of non-functional properties of composite Web

services using aspect-oriented programming,’’ in Proc. Int. Conf. Service-

Oriented Comput. Cham, Switzerland: Springer, 2007, pp. 546–557.
[156] B. Verheecke, W. Vanderperren, and V. Jonckers, ‘‘Unraveiling crosscut-

ting concerns in Web services middleware,’’ IEEE Softw., vol. 23, no. 1,

pp. 42–50, Jan. 2006.
[157] B. Surajbali, G. Coulson, P. Greenwood, and P. Grace, ‘‘Aug-

menting reflective middleware with an aspect orientation support

layer,’’ in Proc. 6th Int. Workshop Adapt. Reflective Middleware

Held ACM/IFIP/USENIX Int. Middleware Conf. (ARM), 2007, pp. 1–6,

doi: 10.1145/1376780.1376781.
[158] S. Levin and A. Yehudai, ‘‘The co-evolution of test maintenance and code

maintenance through the lens of fine-grained semantic changes,’’ 2017,

arXiv:1709.09029. [Online]. Available: http://arxiv.org/abs/1709.09029
[159] H. Zhang, S. Jiang, and R. Jin, ‘‘An improved static program slicing algo-

rithm using stack trace,’’ in Proc. IEEE 2nd Int. Conf. Softw. Eng. Service

Sci., Jul. 2011, pp. 563–567, doi: 10.1109/ICSESS.2011.5982378.
[160] I. Pigazzini, F. A. Fontana, V. Lenarduzzi, and D. Taibi, ‘‘Towards

microservice smells detection,’’ in IEEE/ACM Int. Conf. Tech. Debt

(TechDebt), 2020, pp. 1–5.

[161] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar,

‘‘Gremlin: Systematic resilience testing of microservices,’’ in Proc. IEEE

36th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2016, pp. 57–66,

doi: 10.1109/ICDCS.2016.11.
[162] A. Panda, M. Sagiv, and S. Shenker, ‘‘Verification in the age of microser-

vices,’’ in Proc. 16th Workshop Hot Topics Oper. Syst., New York, NY,

USA, May 2017, pp. 30–36, doi: 10.1145/3102980.3102986.
[163] K. Claessen, M. Palka, N. Smallbone, J. Hughes, H. Svensson, T. Arts,

and U. Wiger, ‘‘Finding race conditions in erlang with quickcheck and

pulse,’’ ACM Sigplan Notices, vol. 44, no. 9, pp. 149–160, 2009.
[164] C. Scott, V. Brajkovic, G. Necula, A. Krishnamurthy, and S. Shenker,

‘‘Minimizing faulty executions of distributed systems,’’ in Proc. 13th

USENIX Symp. Netw. Syst. Design Implement. (NSDI). Santa Clara,

CA, USA: USENIX Association, Mar. 2016, pp. 291–309. [Online].

Available: https://www.usenix.org/conference/nsdi16/technical-sessions/

presentation/scott
[165] C. Nie and H. Leung, ‘‘A survey of combinatorial testing,’’ ACMComput.

Surveys, vol. 43, no. 2, pp. 1–29, Jan. 2011.
[166] B. S. Ahmed, K. Z. Zamli, W. Afzal, and M. Bures, ‘‘Constrained

interaction testing: A systematic literature study,’’ IEEE Access, vol. 5,

pp. 25706–25730, 2017.
[167] B. S. Ahmed, A. Gargantini, K. Z. Zamli, C. Yilmaz, M. Bures, and

M. Szeles, ‘‘Code-aware combinatorial interaction testing,’’ IET Softw.,

vol. 13, no. 6, pp. 600–609, Dec. 2019.
[168] M. Bures and B. S. Ahmed, ‘‘On the effectiveness of combinatorial

interaction testing: A case study,’’ in Proc. IEEE Int. Conf. Softw. Qual.,

Rel. Secur. Companion (QRS-C), Jul. 2017, pp. 69–76.
[169] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,

M. Harman, M. J. Harrold, P. Mcminn, A. Bertolino, J. J. Li, and H. Zhu,

‘‘An orchestrated survey of methodologies for automated software test

case generation,’’ J. Syst. Softw., vol. 86, no. 8, pp. 1978–2001, Aug. 2013.
[170] A. Arcuri, G. Fraser, and J. P. Galeotti, ‘‘Automated unit test generation

for classes with environment dependencies,’’ in Proc. 29th ACM/IEEE

Int. Conf. Automated Softw. Eng. (ASE), 2014, pp. 79–90.
[171] S. Wang and J. Offutt, ‘‘Comparison of unit-level automated test gen-

eration tools,’’ in Proc. Int. Conf. Softw. Test., Verification, Validation

Workshops, 2009, pp. 210–219.
[172] G. Fraser and A. Zeller, ‘‘Mutation-driven generation of unit tests and

oracles,’’ IEEE Trans. Softw. Eng., vol. 38, no. 2, pp. 278–292, Mar. 2012.
[173] G. Márquez and H. Astudillo, ‘‘Identifying availability tactics to sup-

port security architectural design of microservice-based systems,’’ in

Proc. 13th Eur. Conf. Softw. Archit. (ECSA), New York, NY, USA:

Association for Computing Machinery, vol. 2, 2019, pp. 123–129,

doi: 10.1145/3344948.3344996.
[174] T. Cerny. (2019). Microservice Testbed for Texas Teacher Examina-

tion. Accessed: Jul. 16, 2020. [Online]. Available: https://bitbucket.org/

advseproject/documentation/
[175] M. I. Rahman, S. Panichella, and D. Taibi, ‘‘A curated dataset of

microservices-based systems,’’ in Proc. Joint Inforte Summer School

Softw. Maintenance Evol. (CEUR-WS), vol. 2520, 2019, pp. 1–9.
[176] L. B. Othmane, P. Angin, H. Weffers, and B. Bhargava, ‘‘Extending

the agile development process to develop acceptably secure software,’’

IEEE Trans. Dependable Secure Comput., vol. 11, no. 6, pp. 497–509,

Nov. 2014.
[177] H. Oueslati, M. M. Rahman, and L. B. Othmane, ‘‘Literature review of

the challenges of developing secure software using the agile approach,’’

in Proc. 10th Int. Conf. Availability, Rel. Secur., Aug. 2015, pp. 540–547.
[178] Veracode. (2019). Veracode—Penetration Testing Tool. Accessed:

Jul. 16, 2020. [Online]. Available: https://www.veracode.com/security/

penetration-testing
[179] Tenable. (2019). Tenable—Penetration Testing Tool. Accessed:

Jul. 16, 2020. [Online]. Available: https://www.tenable.com/products/

nessus/nessus-professional
[180] PortSwigger. (2019). Portswigger—Web Vulnerability Scanner.

Accessed: Jul. 16, 2020. [Online]. Available: https://portswigger.net
[181] Checkmarx. (2019). Checkmarx Software Exposure Platform.

Accessed: Jul. 16, 2020. [Online]. Available: https://www.checkmarx.

com
[182] OWASP Foundation. (2020). The OpenWeb Application Security Project.

[Online]. Available: https://owasp.org
[183] A. Majd, M. Vahidi-Asl, A. Khalilian, A. Baraani-Dastjerdi, and

B. Zamani, ‘‘Code4Bench: Amultidimensional benchmark of codeforces

data for different program analysis techniques,’’ J. Comput. Lang., vol. 53,

pp. 38–52, Aug. 2019.

159468 VOLUME 8, 2020

http://dx.doi.org/10.1145/583854.582437
http://dx.doi.org/10.1145/976270.976274
http://dx.doi.org/10.1145/1119655.1119665
http://dx.doi.org/10.1145/1739230.1739246
http://dx.doi.org/10.1145/1529282.1529395
http://dx.doi.org/10.1145/1408620.1408624
http://dx.doi.org/10.1145/1376780.1376781
http://dx.doi.org/10.1109/ICSESS.2011.5982378
http://dx.doi.org/10.1109/ICDCS.2016.11
http://dx.doi.org/10.1145/3102980.3102986
http://dx.doi.org/10.1145/3344948.3344996

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

[184] D. Taibi. (2020). A Curated List of Open Source Projects Developed With

a Microservices Architectural Style. Accessed: Jul. 16, 2020. [Online].

Available: https://github.com/davidetaibi/Microservices_Project_List

TOMAS CERNY was an Assistant Professor

of computer science with the Czech Technical

University, FEE, Prague, Czech Republic, from

2009 to 2017. In 2017, he held a postdoctoral

position at Baylor University, TX, USA. In 2017,

he continued as an Assistant Professor with the

concentration on software engineering. He is cur-

rently a Professor. He has authored nearly 100 pub-

lications mostly related to code analysis and aspect

oriented programming.

Dr. Cerny served over ten years as the lead developer for the Interna-

tional Collegiate Programming Contest Management System. He received

the Outstanding Service Award ACM SIGAPP 2018 and 2015 or the

2011 ICPC Joseph S. DeBlasi Outstanding Contribution Award. In the past

few years, he chaired multiple conferences, including ACM SAC, ACM

RACS, or ICITCS. He led special issues and track on code analysis and

enterprise applications.

JAN SVACINA received the bachelor’s degree

from the Department of Computer Science, Fac-

ulty of Electrical Engineering, Czech Technical

University. He is currently pursuing degree in com-

puter science with Baylor University. His research

interests include software engineering, microser-

vice security, and code analysis. In 2020, he

received the Outstanding Graduate Student Award

from Baylor University.

DIPTA DAS received the bachelor’s degree from

the Department of Computer Science and Engi-

neering, Chittagong University of Engineering and

Technology, Chittagong, Bangladesh. He is cur-

rently pursuing degree in computer science with

Baylor University. His research interests include

software engineering, microservice security, and

code analysis.

VINCENT BUSHONG received the bachelor’s

degree from Evangel University, Springfield, MO,

USA. He is currently pursuing degree in computer

science with Baylor University. His research inter-

ests include microservices and code analysis.

MIROSLAV BURES was a Visiting Researcher

with Abertay University, U.K., in 2018. He leads

the Software Testing IntelLigent Lab (STILL),

Department of Computer Science, Faculty of Elec-

trical Engineering, Czech Technical University,

Prague. In 2010, he was appointed at the Czech

Technical University in Prague, where he is cur-

rently an Associate Professor of computer sci-

ence. He leads several projects in the field of test

automation for software and the Internet of Things

systems, covering the topics of automated generation of test scenarios as

well as automated execution of the tests. He has authored over 60 research

publications and wrote two books on software testing and web technologies.

His research interests include quality assurance and reliability methods,

model-based testing, path-based testing, combinatorial interaction testing

and test automation for software, the Internet of Things, and mission-critical

systems.

Prof. Bures is a member of the Czech Chapter of ACM, the Czech and

Slovak Testing Board, and the ISTQB Academia Committee.

PAVEL TISNOVSKY received the Ph.D. degree

from the Brno University of Technology, Czech

Republic.

He was an Assistant Professor, from 1999 to

2005. He is currently a Principal Quality Engi-

neer with Red Hat, Inc., with over ten years of

experience. He is a programming language enthu-

siast and the author of many articles and series at

Linux magazine ROOT.cz. He holds one software

patent on testing and currently works on tools for

OpenShift.io—open development services for creating, building, and testing

container applications.

KAREL FRAJTAK received the master’s and Ph.D.

degrees from the Faculty of Electrical Engineer-

ing, Czech Technical University, Prague.

Since 2017, he has been a Lecturer and a

Researcher with the STILL Group. He is currently

a Lecturer and a Researcher with the Software

Testing IntelLigent Lab (STILL), Department of

Computer Science, Faculty of Electrical Engineer-

ing, Czech Technical University, Prague. He has

over 15 years’ experience in software development

in the industry and is currently applying this experience in the academic

world. His lectures and area of research focus on the software testingmethods

and test automation approaches. He has authored or coauthored publications

published in peer-reviewed journals.

VOLUME 8, 2020 159469

T. Cerny et al.: On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices

DONGWAN SHIN received the master’s and

Ph.D. degrees in computer science from the Uni-

versity of North Carolina at Charlotte, in 1999 and

2004, respectively. He is currently an Associate

Professor with the Computer Science and Engi-

neering Department, New Mexico Tech. His pri-

mary research interests include the areas of system

and software security. In 2005, he joined the

Computer Science and Engineering Department,

New Mexico Tech, where he has been extensively

involved in a variety of research and educational projects funded by various

government agencies, national labs, and industry partners on cybersecurity.

The research results have been successfully presented and published at

leading conferences and journals. He has been leading efforts in different

roles to organize many ACM and IEEE conferences and workshops, such

as ACM SAC, SACMAT, CCS, and CloudApp. He was a recipient of the

ACM SIGAPP Distinguished Service Award and the Outstanding Service

Awards in the past. He has led departmental efforts in developing a successful

cybersecurity program at New Mexico Tech, which resulted in New Mexico

Tech as a national Center of Academic Excellence in Information Assurance

Education and Research (CAE and CAE-r) designated by NSA and DHS. He

is currently the point of contact of the center. He was named the Orr Endowed

Chair of the Computer Science and Engineering Department while serving

as the Department Chair from 2015 to 2018.

JUN HUANG (Senior Member, IEEE) received

the Ph.D. degree (Hons.) from the Institute of Net-

work Technology, Beijing University of Posts and

Telecommunications, China, in 2012.

He was a Visiting Scholar with the Global Infor-

mation and Telecommunication Institute, Waseda

University, a Research Fellow with the Electri-

cal and Computer Engineering Department, South

Dakota School of Mines and Technology, a Vis-

iting Scholar with the Computer Science Depart-

ment, The University of Texas at Dallas, and a Guest Professor with the

National Institute of Standards and Technology. He is currently a Full

Professor of computer science with the Chongqing University of Posts

and Telecommunications. He received the Best Paper Award from EAI

Mobimedia 2019, the Outstanding Service Award from ACM RACS 2017,

2018, and 2019, the Best Paper Nomination from ACM SAC 2014, and

the Best Paper Award from AsiaFI 2011. He has authored over 120 pub-

lications, including papers in prestigious journal/conferences, such as the

IEEE TWireless, NetMag, ComMag, WCM, VTM, the IEEE TRANSACTIONS

ON INTELLIGENT TRANSPORTATION SYSTEMS, TBC, IEEE TRANSACTIONS ON

VEHICULAR TECHNOLOGY, the IEEE TRANSACTIONS ON EMERGING TOPICS IN

COMPUTING, TNSM, TSUSC, IoTJ, TCC, TCCN, IWQoS, SCC, ICCCN,

GLOBECOM, ICC, ACM SAC, and RACS. He is an Associate Editor

of IEEE ACCESS and the KSII Transactions on Internet and Information

Systems. He guest-edited several special issues on IEEE journals, such as the

IEEE NETWORK, the IEEE Communications Magazine, the IEEE INTERNET OF

THINGS JOURNAL, and IEEE ACCESS. He also chaired and co-chaired multiple

conferences in the communications and networking areas and organized

multiple workshops at major IEEE and ACM events. His current research

interests include network optimization and control, device-to-device com-

munications, and the Internet of Things.

159470 VOLUME 8, 2020

