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Abstract. The scope of the applicability of the feedback Stackelberg
equilibrium concept in differential games is investigated. First, condi-
tions for obtaining the coincidence between the stationary feedback
Nash equilibrium and the stationary feedback Stackelberg equilib-
rium are given in terms of the instantaneous payoff functions of the
players and the state equations of the game. Second, a class of differ-
ential games representing the underlying structure of a good num-
ber of economic applications of differential games is defined; for this
class of differential games, it is shown that the stationary feedback
Stackelberg equilibrium coincides with the stationary feedback Nash
equilibrium. The conclusion is that the feedback Stackelberg solu-
tion is generally not useful to investigate leadership in the frame-
work of a differential game, at least for a good number of economic
applications.
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1. Introduction

Differential games have been used in economics to study the strategic
interdependence among agents in a dynamic framework; see Ref. 1 for
an excellent survey of differential games applications in economics and
management science. Of the numerous economic applications of differen-
tial games, we mention here the ones developed in Refs. 2–5; in these
papers, it is recognized explicitly that the stationary feedback Nash equi-
librium (SFNE) coincides with the stationary feedback Stackelberg equi-
librium (SFSE).

The aim of this paper is to investigate how general this coincidence is,
or in other words to evaluate the scope of the applicability of the feedback
Stackelberg equilibrium concept in differential games. This issue has been
addressed already by Başar and Olsder in Ref. 6, pp. 415–417, although
these authors focus on linear-quadratic games. Here, we extend their anal-
ysis looking for general conditions that yield the coincidence between the
two equilibria. In our analysis, these conditions are defined in terms of
the primitive functions of the game, i.e., the instantaneous payoff functions
and the state equations. Our results show that, when these conditions are
satisfied, the instantaneous reaction functions of the players are orthogo-
nal with respect to the control variables so that the players optimal policy
depends only on the state variable; the first movement advantage disap-
pears yielding the coincidence between the two equilibria. This result is a
consequence of the continuous-time framework in which differential games
are defined. For these games, the variation of the state variable is given
by a differential equation; i.e., the variation is instantaneous so that the
interdependence that appears in the game through this variation cannot
be captured in the first-order conditions (f.o.c.) of the maximization of the
right-hand side Hamilton–Jacobi–Bellman equations. The result is that, if
there does not exist another kind of interdependence in the game, the reac-
tion functions are orthogonal with respect to the control variables.

In order to evaluate how general this coincidence is in economic
applications of differential games, we define a class of differential games
that represents the underlying structure of a good number of economic
applications of differential games; as a corollary of our previous result, we
show that, for this class of differential games, both equilibria are identical
independently of which player is the leader of the game. Thus, our con-
clusion is that the feedback Stackelberg solution cannot generally be used
to investigate leadership in the framework of a continuous-time differen-
tial game. However, this does not mean that leadership cannot be inves-
tigated in a dynamic framework, since the coincidence does not occur in
the global Stackelberg solution or in discrete-time difference games.
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The paper is organized as follows. In Section 2, the SFNE and SFSE
definitions are presented and the conditions for the coincidence of both
equilibria are defined. The stationary global Stackelberg equilibrium con-
cept is also discussed. In Section 3, the scope of the applicability of
the SFSE in economic applications of differential games is addressed.
Section 4 concludes the paper.

2. Coincidence of the Feedback Nash and Stackelberg Equilibria

Let us consider a differential game with two players, h=1,2;uh(t) is
the vector of control variables of player h,uh(t)∈Uh, with Uh⊆Rmh;x(t)
is the vector of state variables, x(t) ∈ L, with L ⊆ Rn. Both players live
infinitely and have strictly concave, twice differentiable utility functions
that depend on the state and control variables, vh(x(t), u1(t), u2(t)), h=
1,2. The dynamics of the state variables is defined by the functions
fi(x(t), u

1(t), u2(t)), i= 1, . . . , n, which are twice differentiable. Then, the
differential game between the two players can be represented by the fol-
lowing pair of interdependent optimal control problems:

max
uh(t)∈Uh

J h=
∫ ∞

0
e−rt vh(x(t), u1(t), u2(t))dt, (1)

s.t. ẋi (t)=fi(x(t), u1(t), u2(t)), xi(0)=xi0, (2)

where r is the players discount rate, h=1,2, and i=1, . . . , n.
For the information structure, we consider a feedback or closed-loop

information structure.3 For this kind of information structure, the control
of player – at each point in time is a function of both the time and the
state of the system x(t) at that time. Thus, we can write the feedback
strategies as uh = uh(t, x(t)), which are defined on [0,∞)× L. However,
given that, for infinite-horizon autonomous differential games, the equilib-
rium strategies are stationary, we work with stationary feedback strategies
uh=uh(x), defined only on L. Formally, we have the following definition.

Definition 2.1. The stationary feedback strategy space for player h is
the set

Sh={uh(x(t)) :uh(x(t)) is continuous in x(t) and uh(x(t))∈Uh}.

3In the traditional differential games literature (Ref. 6), feedback strategies are known as
well as Markov strategies. For expositional simplicity, we consider infinite-horizon auton-
omous problems, although our result is general and works for any kind of differential
game nonautonomous or with a finite-time horizon that satisfies the conditions of Defi-
nition 2.4.
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The feedback strategies describe decision rules that prescribe a value
for the control variable as a function of the observed value of the state
variables.

2.1. Stationary Feedback Nash Equilibrium. It is now straightfor-
ward to present the definition of stationary feedback Nash equilibrium.

Definition 2.2. A stationary feedback Nash equilibrium (SFNE) is a
pair of stationary feedback strategies (u1∗

, u2∗
) ∈ S1 × S2 such that, for

every possible initial condition (t0, x0),

Jh(uh
∗
, uj

∗
)≥Jh(uh, uj∗

),

for every uh ∈Sh, with h, j =1,2, h �= j .
Feedback strategies provide a strongly time consistent (i.e., subgame

perfect) equilibrium.4 Subgame perfectness requires that, for every sub-
game, the restriction of a strategy pair (u1∗

, u2∗
) to the subgame remains

an equilibrium in that subgame.
Next, we explain how the dynamic programming approach can be

used to calculate this equilibrium. For the SFNE, the equilibrium strate-
gies (u1∗

, u2∗
) must satisfy the following Hamilton–Jacobi–Bellman (HJB)

equations5

rV h(x)= max
uh∈Uh

{
vh(x, u1, u2)+

n∑
i=1

∂V h(x)

∂xi
fi(x, u

1, u2)

}
, h=1,2,

(3)

where V h(x) is the value for player h of the game that starts at x. Note
that, although in the general case V h is also a function of t , it can be
shown that, for infinite-horizon autonomous problems, the value functions
do not depend on t ; see Ref. 8, pp. 262–263.

In order to make operative (3), let us introduce the vector of the play-
ers instantaneous reaction functions,

T h(x;uj ,∇V h(x))

=arg max
uh∈Uh

{
vh(x, u1, u2)+

n∑
i=1

∂V h(x)

∂xi
fi(x, u

1, u2)

}
, (4)

4 Usually, open-loop strategies are weakly time consistent in the case of simultaneous play
(Nash) or time inconsistent in the case of sequential play (Stackelberg).

5 In order to simplify the notation, we eliminate t as argument of the state and control
variables.
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where h, j =1,2, h �= j and ∇V h(x)= (∂V h(x)/∂x1, . . . , ∂V
h(x)/∂xn).

The maximization on the right-hand side of the above equation yields

∂vh(x, u1, u2)

∂uhk
+

n∑
i=1

∂V h(x)

∂xi

∂fi(x, u
1, u2)

∂uhk
=0, (5)

where h=1,2 and k=1, . . . ,mh.
This system of m1 +m2 equations defines implicitly the reaction func-

tions (4) of the two players. Let us assume that functions vh and fi
have sufficient properties to find a unique solution to the equation system
defined by (5); then, we can write the stationary feedback strategies as

u1∗ =φ1(x;∇V 1(x),∇V 2(x)), u2∗ =φ2(x;∇V 1(x),∇V 2(x)),

or finally as functions whose arguments are the state variables,6

u1∗ =χ1(x) and u2∗ =χ2(x).

Substituting them into (3), we obtain

rV h(x)=vh(x,χ1(x), χ2(x))

+
n∑
i=1

∂V h(x)

∂xi
fi(x,χ

1(x), χ2(x)), h=1,2. (6)

The expression (6) defines a system of two partial differential equa-
tions. By solving this system and finding the value functions (V 1(x),V 2(x)),
we can find also the equilibrium strategies.7 Summarizing, we obtain the
following proposition.

6 We ignore at this stage the constraint uh ∈Uh. A priori, it is difficult to establish the
sufficient conditions that guarantee the existence and uniqueness of the maximization of
the right-hand side of the HJB equation. This difficulty is explained by the presence in
(5) of the partial derivatives ∂V h/∂xi , whose sign is unknown. Nevertheless, the strict
concavity of the player h utility function with respect to the vector uh and the linearity
of the transition equations seems to be sufficient conditions for getting the uniqueness of
the solution.

7 Notice that, as long as the value function of an infinite-horizon autonomous problem
does not depend on the time, the system of equations (5), which defines implicitly
the reaction functions, does not depend on the time either; consequently, the feedback
strategies given by the solution to the partial differential equations (6) are going to be
stationary, i.e., autonomous with respect to the time. Obviously, this in not necessarily
true for nonautonomous problems.
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Proposition 2.1. A stationary feedback Nash equilibrium (SFNE) is
given by a solution of the first-order partial differential equation system
(6) provided that χh(x)∈Uh for all x ∈L and h=1,2.

If χh(x) �∈Uh, for all x ∈L, the constraints are binding and the maxi-
mization problem presents corner solutions. In that case, we have to oper-
ate as follows. First, we have to divide the set L in different subsets, some
of them closed and others open, using the conditions χh(x)∈ Ūh, h=1,2,
which represent the binding constraints on the control variables. Second,
for each of these subsets, a pair of partial differential equations must be
built taking into account the binding constraints. Then, a SFNE is given
by a solution to the set of pairs of partial differential equations originat-
ing by the partition of the set L, which probably would include the pair
of partial differential equations (6).

2.2. Stationary Feedback Stackelberg Equilibrium. Let player 1 be
the leader. Then, the definition of a stationary feedback Stackelberg equi-
librium is the following.8

Definition 2.3. A stationary feedback Stackelberg equilibrium (SFSE),
with player 1 as the leader, is a pair of stationary feedback strategies
(u1∗

, u2∗
)∈S1 ×S2 such that, for every possible initial condition (t0, x0),

u1∗ =arg max
u1∈U1

J 1(u1, T 2(x;u1,∇V 2(x))),

u2∗ =T 2(x;u1∗
, ∇V 2(x)).

Again, this equilibrium is subgame perfect and also dynamically con-
sistent. Then, the equilibrium strategy of the leader must satisfy the fol-
lowing HJB equation:

rV 1(x)= max
u1∈U1

{
v1(x, u1, T 2(x;u1,∇V 2(x)))

+
n∑
i=1

∂V 1(x)

∂xi
fi(x, u

1, T 2(x;u1,∇V 2(x)))

}
. (7)

Thus, the instantaneous Stackelberg solution for the leader is

8 We base our definition on the feedback Stackelberg solution proposed by Başar and
Olsder; see Ref. 6, pp. 413–415. We discuss later the global Stackelberg solution
mentioned also in Ref. 6, pp. 412–413, and more extensively in Ref. 1, pp.134–141.
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u1∗ =arg max
u1∈U1

{
v1(x, u1, T 2(x;u1,∇V 2(x)))

+
n∑
i=1

∂V 1(x)

∂xi
fi(x, u

1, T 2(x;u1,∇V 2(x)))

}
. (8)

The maximization of the right-hand side of the above equation yields

∂v1

∂u1k
+

m2∑
l=1

∂v1

∂u2l

∂T 2l

∂u1k

+
n∑
i=1

∂V 1

∂xi
×
(
∂fi

∂u1k
+

m2∑
l=1

∂fi

∂u2l

∂T 2l

∂u1k

)
=0, k=1, . . . ,m1. (9)

This equation defines implicitly the strategy of the leader. If we assume
that this system of equations has a unique solution, the strategy of the
leader can be written as a function of the state variables, u1∗ =ψ(x). Using
this strategy and the follower reaction functions, the strategy of the fol-
lower can be written as

u2∗ =T 2(x;u1∗
,∇V 2(x))=T 2(x;ψ(x),∇V 2(x))=ω(x).

Substituting then into the HJB equations, we get

rV h(x)=vh(x,ψ(x),ω(x))+
n∑
i=1

∂V h(x)

∂xi
fi(x,ψ(x),ω(x)), h=1,2.

(10)

The expression (10) defines a system of two partial differential equations
different from the one defined by (6). By solving it, the value functions
(V 1(x),V 2(x)) are found, which allow us to calculate the equilibrium
strategies.9 Summarizing, we present the following result.

Proposition 2.2. A stationary feedback Stackelberg strategy (SFSE) is
given by a solution of the first-order partial differential equation system
(10) provided that ψ(x)∈U1 and ω(x)∈U2 for all x ∈L.

9 As happens for the SFNE, the reaction functions of the follower do not depend explicitly
on time; then, as equation (9), which defines implicitly the strategy of the leader u1,
does not depend on the time, the feedback strategies given by the solution to the partial
differential equations (10) are going to be stationary as occurs for the SFNE.
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At this point, we deal with corner solutions as we did for the SFNE.
Next, we investigate under what conditions the two equilibria coin-

cide. In order to progress in this investigation, we give the following
definition.

Definition 2.4. A differential game with orthogonal (instantaneous)
reaction functions is such that the first derivatives ∂vh/∂uhk and ∂fi/∂u

hk

are independent of uj for h, j=1,2, h �=j, k=1, . . . ,mh, and i=1, . . . , n.10

Then, it is straightforward to show that the following proposition
holds.

Proposition 2.3. For the class of differential games with orthogonal
reaction functions, the leader first movement advantage disappears. Then,
if the SFNE exists, there is no difference between that equilibrium and the
SFSE independently of which player acts as the leader.

Proof. As we have seen, the stationary feedback Nash strategies
must satisfy the conditions (5) which we can be rewritten as

∂v1(x, u1, u2)

∂u1k
+

n∑
i=1

∂V 1(x)

∂xi

∂fi(x, u
1, u2)

∂u1k
=0, (11)

∂v2(x, u1, u2)

∂u2l
+

n∑
i=1

∂V 2(x)

∂xi

∂fi(x, u
1, u2)

∂u2l
=0, (12)

where k=1, . . . ,m1 and l=1, . . . ,m2. But, if the conditions of Definition
2.4 are fulfilled, the subsystem (11) is independent of the vector u2 of the
control variables of player 2 and the subsystem (12) is independent of the
vector u1 of the control variables of player 1. This means that the reac-
tion functions defined by each subsystem of equations depends only on
the state variables; in other words, the reaction functions coincide with the
stationary feedback Nash strategies. Thus, from (11), we obtain

u1∗ =T 1(x;∇V 1(x))=φ1(x;∇V 1(x))=χ1(x),

and from (12),

10 The term orthogonal is used in this definition in the sense that the intersection point
of the reaction functions in a graph when Uh = R+ defines a right angle as if two
orthogonal vectors were being represented.
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u2∗ =T 2(x;∇V 2(x))=φ2(x;∇V 2(x))=χ2(x).

Now, let player 1 be the leader again. Using u2∗ =T 2(x;∇V 2(x)), we
obtain that the m1 ×m2 matrix Du1T 2(x;∇V 2(x)) is the zero matrix; i.e.,
all the terms ∂T 2l/∂u1k in the system of equations (9) are zero. Then,
(9) is identical to (11), which implies that ψ(x)= χ1(x); as the reaction
functions of the follower do not depend on the control variables of the
leader, we establish that ω(x)=χ2(x) from (12). The result is that there is
no difference between the systems of partial differential equations (6) and
(10); consequently, the SFSE coincides with the SFNE.

The same kind of argument applies when player 2 is the leader.
Using now u1∗ = T 1(x;∇V 1(x)), we obtain that the m2 × m1 matrix
Du2T 1(x;∇V 1(x)) is the zero matrix. The same argument applies also for
nonautonomous problems. The only difference is that, in that case, the
feedback strategies are nonstationary. Finally, notice that this argument
works also for corner solutions as long as the pair of partial differential
equations (6) is identical to the pair of partial differential equations (10).
We recall that, for dealing with corner solutions for the SFNE, we use the
conditions χh(x)∈ Ūh, h=1,2. Then, if ψ(x) is equal to χ1(x) and if ω(x)
is equal to χ2(x), for an interior solution, the set of pairs of partial differ-
ential equations originating by the partition of the set L defined by the
binding constraints is going to be the same for both equilibria.

Notice that, if the partial derivatives ∂fi/∂uhk are independent of uj

and there does not exist any strategic interdependence through the pay-
off functions (∂vh/∂uhk is independent of uj ), then as the variation of the
state variable is instantaneous, the reaction functions are orthogonal with
respect to the control variables; the first movement advantage disappears,
so that the two equilibria coincide. In Definition 2.4, we have established
the conditions which yield this coincidence over the primitive functions of
the game so that they can be checked directly before solving the system of
partial differential equations (6). This means that the issue of the existence
of the equilibria can be separated from the issue of their coincidence and
they can be studied independently. Obviously, for the class of differential
games with orthogonal reaction functions, if the SFNE does not exist, nei-
ther does the SFSE; then, the issue of the coincidence becomes irrelevant.
Moreover, they are necessary and sufficient conditions.11

11 Notice that the additive separability between u1 and u2 in vh and fi is not sufficient
to yield orthogonal reaction functions. If vh and f i are additive separable, then we can
write them as vh=F [vh1(u1;x)+vh2(u2;x)] and fi =G[fi1(u1;x)+fi2(u2;x)] so that only
when F ′ and G′ are constant will the conditions in Definition 2.4 be satisfied.
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A straightforward consequence of the previous result is the following
corollary.

Corollary 2.1. Let us assume that ∂vh/∂uhk and ∂fi/∂u
hk are inde-

pendent of uj , but that ∂vj /∂ujl and ∂fi/∂u
jl depend on uh for h, j =

1,2, h �= j, k=1, . . . ,mh, l=1, . . . ,mj , and i=1, . . . , n. Then, if the SFSE
where player h is the leader and player j is the follower and the SFNE
exist, those two equilibria are different. However, when the leader is player
j , the SFSE coincides with the SFNE.

According to our results, the set of differential games can be divided
in three classes: the class of differential games with orthogonal reaction
functions; the class of differential games for which there is only one SFSE
different from the SFNE; and the class of differential games that have two
different SFSEs that are also different from the SFNE.12

Example 2.1. Next, we present an example with orthogonal reaction
functions, Example 5.7 in Ref. 1. This example describes the joint exploita-
tion of a pesticide. A pesticide possesses the property that its effectiveness
declines with the accumulated number of doses. Let uh(t)≥ 0 denote the
firm h rate of application of the pesticide, h= 1,2. Let x(t)≥ 0 stand for
the effectiveness of the pesticide. Assume that the doses can be produced
costlessly and that the profit rate of the firm h is

vh(x(t), uh(t))= [uh(t)x(t)]α,

where 0<α<1/2. We assume also that the decline in effectiveness is equal
to the total application by both firms. Therefore, we have

ẋ(t)=f (x(t), u1(t);u2(t))=
{−u1(t)−u2(t), if x(t)>0,

0, if x(t)=0.
(13)

Each firm seeks to maximize the discounted profit integral,

max
uh≥0

∫ ∞

0
e−rt [uh(t)x(t)]αdt,

12 Some economic applications of differential games for which there exists only one feed-
back Stackelberg equilibrium different from the feedback Nash equilibrium can be found
in the following references: Ref. 2 (capitalistic accumulation), Ref. 4 (optimal dynamic
profit taxation) and Refs. 5, 9 and 10, (strategic Pigovian taxation with stock externali-
ties).
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subject to (13) and an initial condition x(0)= x0> 0, where r is the firm
rate of discount and h=1,2.

It is straightforward that this differential game satisfies the conditions
of Definition 2.4. Notice that neither ∂vh/∂uh nor ∂f/∂uh depend on the
control variable of the other firm. For the SFNE, the equilibrium strate-
gies must satisfy the following HJB equations:

rV h(x)=max
uh≥0

{(uhx)α −V hx (x)(u1 +u2)}, h=1,2. (14)

The maximization on the right-hand side ignores the constraint on
the control variable and yields directly the following stationary feedback
strategies:

uh
∗ = [αxα/V hx (x)]

1/(1−α), h=1,2. (15)

Then, by substitution into the HJB equations, the following differential
equation is obtained under the symmetry assumption and after some
manipulations:

rV h(x)[V hx (x)]
α/(1−α)= (1−2α)[αx]α/(1−α).

Guessing a value function V h(x)=ax2α, the parameter a can be calculated
yielding the following stationary feedback strategies:

uh
∗ = rx/(2−4α), h=1,2. (16)

Finally, it is easy to check that

uh
∗ ∈Uh, for all x ∈L.

Notice that, in this case, L=Uh=R+ so that, according to (16),

uh
∗ ≥0, for all x≥0;

we can conclude that the stationary feedback strategies (16) are the equi-
librium strategies.

In order to compute the SFSE, we assume that the firm 1 acts as the
leader. Then, taking into account the firm 2 reaction function (15), the
HJB equation for the leader optimization problem is

rV 1(x)=max
u1≥0

{
(u1x)α −V 1

x (x)

(
u1 +

[
αxα

V 2(x)

]1/(1−α))}
.

The maximization on the right-hand side of this equation yields the
same strategy as the maximization on the right-hand side of equation (14).
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This coincidence occurs because the reaction functions (15) are indepen-
dent of the control variable of the other player. In fact, in this class of
differential games, the maximization on the right-hand side of the HJB
equation yields directly the optimal policy of the player. Obviously, this
result does not depend on the symmetry assumption.

2.3. Stationary Global Stackelberg Equilibrium. Other Stackelberg
equilibrium concepts have been proposed in the literature of differential
games: the open-loop Stackelberg equilibrium and the global Stackelberg
equilibrium. In general, the first is not time consistent. Thus, it is not a
plausible equilibrium concept in situations where economic agents cannot
credibly commit to an entire control path.13 On the other hand, the global
Stackelberg equilibrium has been proposed to avoid this drawback. Let
player 1 be the leader again. It announces to the follower, the strategy
that it will use throughout the game. Let this strategy be denoted by u1 =
φ1(x). The follower, taking this strategy as given, seeks to maximize his
payoff. The strategy chosen by the follower must satisfy the HJB equation

rV 2(x)= max
u2∈U2

{
v2(x, φ1(x), u2)+

n∑
i=1

∂V 2(x)

∂xi
fi(x, φ

1(x), u2)

}
.

The maximization on the right-hand side yields

∂v2(x, φ1(x), u2)

∂u2k
+

n∑
i=1

∂V 2(x)

∂xi

∂fi(x, φ
1(x), u2)

∂u2k
=0,

where k= 1, . . . ,m2. From this system, the stationary feedback strategies
can be obtained, u2∗ =φ2(x;φ1(x),∇V 2(x)). Then, by substitution into the
HJB equation, we get

rV 2(x)=v2(x, φ1(x), φ2(x;φ1(x),∇V 2(x)))

+
n∑
i=1

∂V 2(x)

∂xi
fi(x, φ

1(x), φ2(x;φ1(x),∇V 2(x))). (17)

These strategies reduce to u2 = φ2(x;φ1(x)) if a solution for this HJB
equation can be found. Then, the leader, using this strategy, chooses
among all possible strategies φ1(x) the one that maximizes its objective

13We do not discuss this equilibrium concept in this paper; for a thorough discussion,
see Section 5.2 in Ref. 1. We use also this reference for the presentation of the global
Stackelberg equilibrium developed in this subsection.
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function. Usually, the space of functions from which the leader can choose
the strategy φ1 is restricted in order to make this equilibrium concept
operative.

It is easy to conclude that, for this kind of equilibrium, Proposition
2.3 no longer applies. If the conditions in Definition 2.4 hold, we get

u2∗ =φ2(x;∇V 2(x)),

so that Eq. (17) is written as

rV 2(x)=v2(x, φ1(x), φ2(x;∇V 2(x)))

+
n∑
i=1

∂V 2(x)

∂xi
fi(x, φ

1(x), φ2(x;∇V 2(x))).

Then, if a value function V 2(x) that satisfies the HJB equation can be
found, we would finally obtain that

u2∗ =φ2(x;φ1(x))

as long as the solution for the value function depends on φ1(x). Thus,
the follower equilibrium strategy would be seen to be affected by the deci-
sions taken by the leader and the stationary global Stackelberg equilibrium
would be different from the SFNE.

Example 2.2. To illustrate this conclusion, we go back to Example
2.1. Restricting the space of strategies to the linear ones, u1 =bx with b>
0, the follower seeks a solution to the HJB equation

rV 2(x)=max
u2≥0

{(u2x)α −V 2
x (x)(bx+u2)}.

The maximization on the right-hand side yields the same stationary feed-
back strategy as the one obtained for the SFNE [see (15)]; but now, after
substituting it into the HJB equation we find a different expression which
depends on b,

rV 2(x)[V 2
x (x)]

α/(1−α)+b[V 2
x (x)]

1/(1−α)x= (1−α)[αx]α/(1−α).

Applying this differential equation to the value function

V 2(x)=ax2α,

the equilibrium stationary feedback strategies for the follower can be
obtained,

u2∗ = (r+2bα)x/2(1−α).
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Notice that this strategy is different from the one obtained for the SFNE
[see (16)].

In order to calculate b, the following problem must be solved

max
b∈R++

∞∫
0
e−rt (bx2)αdt,

s.t. ẋ=−[b+ (r+2bα)/2(1−α)]x, x(0)=x0>0.

It is easy to check (see Ref. 1, p. 173) that the SFSE for this game displays
the property of time consistency. This is a consequence of the fact that the
leader is restricted to play stationary strategies as long as it has to choose
a constant control variable b. The main objection to this approach is well
known. According to this approach, a game with feedback strategies for
the follower and open-loop strategies for the leader is solved, but not a
game in which both players have a feedback or closed-loop information
structure.

3. Leadership in Economic Applications of Differential Games

In this section, we evaluate the scope of the applicability of the SFSE
in differential games in order to have an idea of the scope of Proposition
2.3. In this paper, we focus on only economic applications of differential
games. In order to address this issue, we are going to define a class of
differential games representing the underlying structure of a good number
of economic applications.

This class of differential games is characterized by state equations
which depend linearly on the control variables,

fi(x, u
1, u2)=fi(x)+αi1u1 +αi2u2, i=1, . . . , n, (18)

where αi1 ∈Rm1
and αi2 ∈Rm2

are two vectors of constants. Moreover, the
payoff functions of the players do not depend on the other player control
variables,

vh(x, u1, u2)=vh(x, uh), h=1,2. (19)

For this class of differential games, the strategic interdependence
between the players appears only through the state variable, so that the
payoffs of a player do not depend directly on the control variable of the
other player.
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Clearly, the class of differential games defined by (18) and (19) is a
subset of the class of differential games with orthogonal reaction func-
tions; for this reason, the conditions in Definition 2.4 are going to be sat-
isfied. Then, from Proposition 2.3, we obtain the following corollary.

Corollary 3.1. For the class of differential games defined by (18) and
(19), the leader first movement advantage disappears. Then, if the SFNE
exists, there is no difference between that equilibrium and the SFSE inde-
pendently of which player acts as the leader.14

Finally, we are going to present an economic applications of differ-
ential games to show how common the underlying structure presented
in this section is in economics and also to show that it makes sense
to model an economic problem as a differential game with orthogonal
reaction functions.

Fershtman and Kamien (Ref. 7) extend the analysis of duopolistic
competition to a dynamic setting in a natural way assuming that the price
does not adjust instantaneously to the level given by the demand function
for a given level of output. This adjustment takes time and the rate of
change of price is a function of the gap between the current market price
and the price indicated by the demand function for the currently produced
quantities. Accordingly, the price is governed by the differential equation

ṗ= s(a−u1 −u2 −p), (20)

where a− (u1 +u2) is the price on the demand function for the given level
of output u1 +u2 and s denotes the speed at which the price converges to
its level on the demand function.

The authors assume a quadratic cost function,

C(uh)= cuh+ (1/2)(uh)2,
where uh≥0 is the firm h output rate and c<a, so that the firm h profit
function is given by

πh(p,uh)=puh− cuh− (1/2)(uh)2,

14A list of economic applications that belong to this class of differential games (25
references) is available from the author upon request. Many examples in this list are
linear-quadratic differential games, although each of them has a different structure.
However, our conclusion about the equivalence of both equilibria is more general and
applies to any differential game that satisfies conditions in Definition 2.4.
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where p≥0. Then, the objective function of each firm is

max
uh≥0

∫ ∞

0
e−rt [puh− cuh− (1/2)(uh)2]dt,

subject to (20) and a given initial price. In this way, the duopolistic com-
petition with sticky prices can be analyzed resorting to a differential game
with orthogonal reaction functions.15 For this problem, the associated
HJB equations are given by

rV h(p)=max
uh≥0

{puh− cuh− (1/2)(uh)2 + sV hp (p)(a−uh−uj −p},
(21)

with h, j =1,2, h �= j, and the f.o.c. for an interior solution yield

MC= c+uh∗ =p− sV hp (p)=MR, h=1,2.

This condition is the well-known “marginal cost equals marginal revenue,”
but in this case the marginal revenue has two elements: the price that is
the instantaneous marginal revenue and −sV hp (p), the long run effect of
an incremental change in the output rate. This condition can also be writ-
ten as

uh
∗ =p− c− sV hp (p). (22)

Notice that the reaction function of the firms does not depend on the
output rate of the other firm, so that (22) defines directly the optimal
strategies of the firms.

By substitution (under the symmetry assumption) into the HJB equa-
tion, the following differential equation is obtained:16

(3/2)s2V hp (p)
2 + s(a+2c−3p)V hp (p)− rV h(p)=−(1/2)(p− c)2. (23)

This equation is satisfied by a quadratic value function,

V h(p)= (1/2)Kp2 −Ep+g,
which yields the following strategies from (22):

uh
∗ = (1− sK)p+ (sE− c),

15It is easy to check that this game satisfies the conditions of Definition 2.4.
16 In fact, the authors show that only a symmetric SFNE can be asymptotically stable. See

Appendix 3 in Ref. 7.
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where

K=
[
r+6s−

√
(r+6s)2 −12s2

]/
6s2,

E= (−asK+ c−2sKc)/(r−3s2K+3s),

and

1− sK >0, sE− c<0.

In this case, it is clear that there exists a critical price

p̂= (c− sE)/(1− sK)>0

such that, if p<p̂, the nonnegativity constraint on the output rate is not
satisfied. This leads to a partition of the set L=R+ in an open subset
defined by p > p̂ and a closed subset defined by 0 ≤ p ≤ p̂, so that the
SFNE must satisfy (23) for p>p̂ and the HJB equation

rV h(p)= sV hp (p)(a−p), (24)

for 0 ≤ p ≤ p̂. Fershtman and Kamien propose a solution also for this
equation, so that finally the equilibrium strategies of the SFNE are given
by17

uh
∗ =

{
0, 0≤p≤ p̂,
(1− sK)p+ (sE− c), p>p̂.

Notice that this strategy (the higher the price, the higher the output rate)
makes sense from an economic perspective, since with sticky prices high
production will pull down the market price slowly so that the firm can
take advantage of the high prices that are going to prevail in the market
for a while.

Now, we show that the SFSE coincides with the SFNE. In order to
calculate the SFSE of the game, we assume that firm 1 acts as the leader,
the HJB equation for the leader being

rV 1(p)=max
u1≥0

{pu1 − cu1 − (1/2)(u1)2 + sV 1
p (p)

×(a−u1 − (p− c− sV 2
p (p))−p)}.

17 See details in Ref. 7.
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The maximization of the right-hand side of the above equation yields
the same optimal policy as the maximization of the right-hand side of
equation (21), so that we get the same differential equation as the one
obtained for the SFNE and, consequently, the same partition of the set L
for the state variable.

4. Conclusions

In this paper, we have investigated the scope of the applicability of
the feedback Stackelberg equilibrium concept in differential games. As a
result of our investigation, we have found a set of necessary and suffi-
cient conditions that yields the coincidence between the stationary feed-
back Stackelberg equilibrium (SFSE) and the stationary feedback Nash
equilibrium (SFNE). When these conditions are present in a differential
game, the instantaneous reaction functions are orthogonal and the first
movement advantage disappears.

In order to avoid this limitation, the global Stackelberg equilibrium
has been proposed. However, this procedure presents also some problems.
Another alternative is to change the framework and use a discrete-time
approach for the analysis of leadership in a dynamic setting. It is easy to
check that the limitation of differential games to capture through the f.o.c.
the interdependence among the players disappears in discrete-time differ-
ence games. For difference games, the optimal strategy of a player at time
t depends on the state variable value at time t+1; then, as the state vari-
able values at time t+1 depend on the control variable values of the other
player at time t , we finally find that the optimal policy of a player at time
t depends on the control variable values of the other player also at time t ,
even if the conditions in Definition 2.4 are satisfied by the utility functions
and state equations. In other words, the set of conditions on the primitive
functions of the game that yield orthogonal reaction functions in a differ-
ential game has not the same effect in a difference game.
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