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ON COMBINATORIAL CRITERIA FOR NON-DEGENERATE

SINGULARITIES
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Abstract

In this article we give a su‰cient and necessary condition for a Kouchnirenko non-

degenerate holomorphic function to have an isolated singularity at 0 in terms of its

support. As a corollary we give some useful su‰cient conditions for singularity to be

isolated.

1. Introduction

Let f : ðCn; 0Þ ! ðC; 0Þ be the germ of a holomorphic function. One of
the problems in the theory of singularities is to check e¤ectively that f has an
isolated singularity at 0: Many authors deal with this problem in various
context. For instance, by the local Nullstellensatz, f has an isolated singularity
at 0 if and only if the Milnor number mð f Þ is finite. Similarly, the Łojasiewicz
exponent £0ð f Þ is finite if and only if f has an isolated singularity at 0 (for
definitions see Preliminaries).

Kouchnirenko in [9] gave for a set MHNn a necessary and su‰cient
condition that f with supp f HM, has an isolated singularity at 0 (see Theorem
2.8). Other authors: Wall [22], Orlik and Randell [16], Shcherbak [21] obtained
similar results. One can find more historical comments on this topic in [15]
and [7].

The quasihomogeneous case was considered by the authors mentioned
above as well as by Saito ([19], [20]), Kreuzer and Skarke [10], Hertling and
Kurbel [7].

In this paper we examine the problem in the class of non-degenerate holo-
morphic functions. As the main result we prove that a non-degenerate function
(see Preliminaries for the definition) with the support satisfying a combinatorial
condition has an isolated singularity at 0 (Theorem 3.1). As a corollary we give
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some useful su‰cient conditions for a holomorphic function to have an isolated
singularity at 0 (Corollary 3.16). We also prove that Kouchnirenko condition
for M is equivalent to the finiteness of the Newton number of lM (Corollary
3.12). It was announced already by Kouchnirenko [8, Remarque 1.13 (ii)] but
without a proof. C. T. C. Wall considered di¤erent type of non-degeneracy from
the Kouchnirenko one. He got similar results for his non-degeneracy to the ones
obtained in this paper (see Lemma 1.2 and Theorem 1.6 in [23]).

We also explain some details concerning non-convenient singularities.
Kouchnirenko in his celebrated paper gave the formula for the Milnor number
only in the convenient case [8, Théorème I (ii)]. Consequently, many authors
cited this formula only in this case. For example Damon and Ga¤ney wrote
‘‘Note that Kouchnirenko only carries out his analysis for fit germs’’ [4, Section
2] and Wall wrote ‘‘Although Kouchnirenko gives rather general definition of
non-degeneracy, his main results are proved only for function satisfying an
additional condition called (in French) ‘commode’ ’’ [23]. However, Kouchnir-
enko did prove his formula also for non-convenient functions (see [8, Section
3]). Therefore, we explicitly give the formula for the Milnor number (Corollary
3.10) without the assumption that function is convenient. Kouchnirenko proved
this formula for non-convenient functions using [8, Théorème 3.7]. We will use
Lemma 3.8 instead.

In Appendix we give the e¤ective bound for the constant C of Lemma 3.6.
This bound is expressed in terms of the Łojasiewicz exponent. This invariant
may be e¤ectively computed using e.g. Gröbner basis techniques (see [18]) or may
be estimated (see [5]).

2. Preliminaries

Let f : ðCn; 0Þ ! ðC; 0Þ be a non-zero holomorphic function in an open
neighborhood of 0 A Cn: We say that f has a singularity at 0 if f ð0Þ ¼ 0,
‘f ð0Þ ¼ 0, where ‘f ¼ ð fz1 ; . . . ; fznÞ: It is equivalent to the condition ord f b 2,
where ord f means the order of f at 0: We say that f has an isolated
singularity at 0 if f has an isolated critical point at the origin i.e., additionally
‘f ðzÞ0 0 for z0 0 near 0: We denote N ¼ f0; 1; 2; . . .g and Rþ ¼ fx A R :
xb 0g: Let

P
n AN n anz

n be the Taylor expansion of f at 0: We define the
set supp f by supp f ¼ fn A Nn : an 0 0g and call it the support of f : Let
w1; . . . ;wn; d be positive rational numbers. A polynomial f A C½z1; . . . ; zn� is
called quasihomogeneous of type ðw1; . . . ;wn; dÞ if

Xn
i¼1

niwi ¼ d for any n A supp f :

The numbers w1; . . . ;wn are called weights of f and the number d is called
weighted degree of f : We define

Gþð f Þ ¼ convfnþ Rn
þ : n A supp f gHRn
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and call it the Newton diagram of f . Let u A Rn
þnf0g. Put

lðu;Gþð f ÞÞ ¼ inffhu; vi : v A Gþð f Þg;
Dðu;Gþð f ÞÞ ¼ fv A Gþð f Þ : hu; vi ¼ lðu;Gþð f ÞÞg:

We say that SHRn is a face of Gþð f Þ if S ¼ Dðu;Gþð f ÞÞ for some u A Rn
þnf0g.

The vector u is called a vector supporting S: It is easy to see that S is a closed
and convex set and SHFrðGþð f ÞÞ, where FrðAÞ denotes the boundary of A:
One can check that a face SHGþð f Þ is compact if and only if there exists a
vector supporting S which has all coordinates positive. We call the family of all
compact faces of Gþð f Þ the Newton boundary of f and denote it by Gð f Þ. We
denote by Gkð f Þ the set of all compact k-dimensional faces of Gþð f Þ, k ¼ 0; . . . ;
n� 1: For each compact face S A Gð f Þ we define quasihomogeneous polynomial
fS ¼

P
n AS anz

n. We say that f is non-degenerate on the face S A Gð f Þ if the
system of equations

qfS

qz1
¼ � � � ¼ qfS

qzn
¼ 0

has no solution in ðC�Þn, where C� ¼ Cnf0g. We say that f is non-degenerate in
the sense of Kouchnirenko (shortly non-degenerate) if it is non-degenerate on each
face of Gð f Þ: We say that f is convenient if Gþð f Þ has non-empty intersection
with each coordinate axis. We say that f is nearly convenient if the distance of
Gþð f Þ to each coordinate axis does not exceed 1. Denote by On the local ring of
germs of holomorphic functions in n-variables at 0 A Cn: Let us recall that the
Milnor Number mð f Þ is defined as mð f Þ ¼ dimC On=ð f 0

z1
; . . . ; f 0

zn
Þ: Moreover, the

Newton number nð f Þ for convenient f is defined as

nð f Þ ¼ n!Vn � ðn� 1Þ!Vn�1 þ � � � þ ð�1ÞnV0;

where Vi denotes the sum of i-dimensional volumes of the intersection of the
cone (with apex at 0) spanned by Gð f Þ with the coordinate subspaces of dimen-
sion i: We may also define the Newton number for non-convenient holomor-
phic function (see [8, Définition 1.9]). Namely, let f be non-convenient and
I H f1; 2; . . . ; ng be a non-empty set such that Gþð f ÞVOXi ¼ j for i A I and
Gþð f ÞVOXi 0j for i B I : We define

nð f Þ ¼ sup
m AN

n f þ
X
i A I

zmi

 !
:

Now, we recall some known results concerning support of holomorphic
function having an isolated singularity at 0: Kouchnirenko in [9, Theorem 1]
gave for a set MHNn a necessary and su‰cient condition for existence of f ,
supp f HM, having an isolated singularity at 0: In addition, one can deduce
from his reasoning that if M satisfies this condition, every holomorphic function
f , supp f HM, ord f b 2, with generic coe‰cients has an isolated singularity
at 0: Before giving his result we state definitions.
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Let MHNn: Define the sets Mi ¼ fn A Nn : nþ ei A Mg, where e1; . . . ; en,
is the standard basis in Rn: Notice that if we take lMðzÞ ¼

P
m AM zm then

Mi ¼ supp qlM=qzi for every i ¼ 1; 2; . . . ; n:
Let I H f1; . . . ; ng be a non-empty set. Set

OXI ¼ fx A Rn : xi ¼ 0 for i B Ig:

We may notice that OXI is the hyperplane spanned by the axes OXi, i A I : We
say that M satisfies the Kouchnirenko condition for I if there exist at least jI j non-
empty sets among the sets M1 VOXI ;M2 VOXI ; . . . ;Mn VOXI : We say that M
satisfies the Kouchnirenko condition if M satisfies the Kouchnirenko condition for
every I H f1; 2; . . . ; ng:

Remark 2.1. If M satisfies the Kouchnirenko condition, it may happen
that lM does not have an isolated singularity at 0: For example let lMðzÞ ¼
ðz1 þ z2Þðz1 þ z3Þ: It is easy to check that lM does not have an isolated
singularity at 0 and that is degenerate on the face S ¼ convfsuppðlMÞg:

Example 2.2. a) Let f ðz1; z2Þ ¼ z21 þ z1z2: We shall show that supp f
satisfies the Kouchnirenko condition. Put M ¼ supp f : Then M1 ¼ fð0; 1Þ;
ð1; 0Þg, M2 ¼ fð1; 0Þg: If I ¼ f1; 2g we easily check that M satisfies the
Kouchnirenko condition for I : If I ¼ f1g or I ¼ f2g, then M1 VOX1 0j:

b) Let f ðz1; z2; z3Þ ¼ z1ðz1 þ z2 þ z3Þ: We shall show that supp f does not
satisfy the Kouchnirenko condition. Indeed, take I ¼ f2; 3g then jI j ¼ 2 but
M1 VOXI 0j and M2 VOXI ¼ M3 VOXI ¼ j:

Now, we explain the Kouchnirenko condition for I in the extreme cases
jI j ¼ 1 and jI j ¼ n: It is easy to check the following property.

Property 2.3. Let f : ðCn; 0Þ ! ðC; 0Þ be a holomorphic function which has
a singularity at 0: The following holds:

(i) supp f satisfies the Kouchnirenko condition for every I ¼ fig, i ¼ 1;
2; . . . ; n if and only if f is nearly convenient,

(ii) supp f satisfies the Kouchnirenko condition for I ¼ f1; 2; . . . ; ng if and
only if f 0

zi
0 0, i ¼ 1; 2; . . . ; n:

The next simple property shows that the Kouchnirenko condition for supp f
implies that the Newton diagram of holomorphic function f which defines
an isolated singularity at 0, has non-empty intersection with every ðn� 1Þ-
dimensional coordinate hyperplane in Rn, nb 3:

Property 2.4. Let f : ðCn; 0Þ ! ðC; 0Þ, nb 3, be a holomorphic function
which has a singularity at 0: If supp f satisfies the Kouchnirenko condition then
Gþð f ÞVOXI 0j for every set I H f1; 2; . . . ; ng, jI j ¼ n� 1:
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The following two propositions, which are easy consequences of the defi-
nition, give conditions equivalent to the Kouchnirenko condition for supp f in
terms of the Newton diagram of f in two and three variables.

Proposition 2.5. Let f : ðC2; 0Þ ! ðC; 0Þ be a holomorphic function which
has a singularity at 0: Then the following conditions are equivalent:

(i) f is nearly convenient,
(ii) supp f satisfies the Kouchnirenko condition.

Proposition 2.6. Let f : ðC3; 0Þ ! ðC; 0Þ be a holomorphic function which
has a singularity at 0: Then the following conditions are equivalent:

(i) f is nearly convenient and Gþð f ÞVOXfi; jg 0j for every i; j A f1; 2; 3g,
i0 j,

(ii) supp f satisfies the Kouchnirenko condition.

There are some combinatorial conditions equivalent to the Kouchnirenko
condition. Hertling and Kurbel collected such conditions for a quasihomoge-
neous polynomial in [7, Lemma 2.1] but their lemma is also true without the
assumption of quasihomogeneity.

Lemma 2.7. Let MHNn and ord lM b 2: Set SI ¼ fk : Mk VOXI 0jg,
I H f1; 2; . . . ; ng: Then the following conditions are equivalent:

ðKÞ aI aaSI for EI (the Kouchnirenko condition for M )

ðK 0Þ aI aaSI for EI with 1aaI a
nþ 1

2
ðC1Þ ½M VOXI ¼ j )aI aaðSInIÞ� for EI
ðC1 0Þ ½M VOXI ¼ j )aI aaðSInIÞ� for EI with 1aaI a

nþ 1

2ðC2Þ If aJ <aI , then SInJ0j.

Proof. The proof is the same as the proof of Lemma 2.1 in [7]. 9

Now, we recall Theorem 1 in [9].

Theorem 2.8 ([9, Theorem 1]). Let MHNn and ord lM b 2: Then the
following conditions are equivalent:

(ISe) there exists an isolated singularity f : ðCn; 0Þ ! ðC; 0Þ such that
supp f HM,

(K) M satisfies the Kouchnirenko condition.

As a direct consequence of Theorem 2.8 we get the following corollary.

Corollary 2.9. If f has an isolated singularity at 0, then the support of f
satisfies the Kouchnirenko condition.
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Remark 2.10. It seems that Saito [19, Lemma 1.5] was the first to state the
corollary above, since he proved that a support of holomorphic function having
an isolated singularity at 0, satisfies condition (C1), which by Lemma 2.7 is
equivalent to the Kouchnirenko condition. It can also be extracted from
[21, Remark 3].

As a direct consequence of the corollary above and Property 2.3(i) we give
the following property.

Property 2.11. If f has an isolated singularity at 0, then f is nearly
convenient.

3. Main result

We begin with the main result.

Theorem 3.1. Let f : ðCn; 0Þ ! ðC; 0Þ, nb 2 be a non-degenerate holomor-
phic function which has a singularity at 0: If supp f satisfies the Kouchnirenko
condition, then f has an isolated singularity at 0:

We deduce the main theorem follows from the one below.

Theorem 3.2. Let f : ðCn; 0Þ ! ðC; 0Þ, nb 2 be a non-degenerate holomor-
phic function which has a singularity at 0: If nð f Þ is finite, then f has an isolated
singularity at 0:

In fact, in Corollary 3.12 below we will show that Kouchnirenko condition
for supp f is equivalent to the finiteness of nð f Þ: This together with Theorem
3.2 gives Theorem 3.1.

Remark 3.3. Theorem 3.1 was given by Lenarcik [11, Property 3.2] in the
case n ¼ 2 and by the second author in [15, Theorem 5.4] in the case na 3: It
also confirms Conjecture 5.5 stated in [15].

Remark 3.4. By Theorem 3.1 and Corollary 2.9 we see that in the class of
non-degenerate function having a singularity at 0 the Kouchnirenko condition for
supp f is equivalent that f defines an isolated singularity at 0:

Now, we give some lemmas and propositions needed in the proof
of Theorem 3.2. The following proposition was discovered independently
by many authors, see for example [8, Théorème I (ii)], [13, Remark 2.7],
[3, Proposition 4.4], [15, Corollary 5.8].

Proposition 3.5. If f is convenient and non-degenerate, then f has an
isolated singularity at 0:
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The lemma below says that the Newton number of a non-convenient
holomorphic function is independent of the way we make it convenient. More
precisely, we have the following lemma.

Lemma 3.6. Let f : ðCn; 0Þ ! ðC; 0Þ, nb 2 be a holomorphic function.
Assume that nð f Þ is finite. Let I ¼ fi1; . . . ; ikgH f1; 2; . . . ; ng be a non-empty
set such that Gþð f ÞVOXi ¼ j for i A I and Gþð f ÞVOXi 0j for i B I : Then
there exists Cb 2 such that

n f þ
X
i A I

zmi

i

 !
¼ nð f Þ for every mi bC; i A I

Proof. Without loss of generality we may assume that I ¼ f1; 2; . . . ; kg:
Put fm ¼ f þ

Pk
i¼1 z

m
i , mb 2: By assumption nð f Þ ¼ supm AN nð fmÞ < y:

Since Gþð fmþ1ÞHGþð fmÞ, by monotonicity of the Newton number (see for
example [6]) we have nð fmÞa nð fmþ1Þ: Therefore the sequence nð fmÞ is con-
vergent. Since nð fmÞ A N, we get that there exists C such that

nð fmÞ ¼ nð f Þ for mbC:ð1Þ
Take m1; . . . ;mk bC: Set mmax :¼ maxfm1; . . . ;mkg, mmin :¼ minfm1; . . . ;mkg:
From the inclusion

Gþ f þ
Xk
i¼1

zmmax

i

 !
HGþ f þ

Xk
i¼1

zmi

i

 !
HGþ f þ

Xk
i¼1

zmmin

i

 !
;

and monotonicity of the Newton number and (1) we infer

n f þ
Xk
i¼1

zmi

i

 !
¼ nð f Þ: 9

The next lemma allows us to make f both convenient and non-degenerate.

Lemma 3.7. Let f : ðCn; 0Þ ! ðC; 0Þ, nb 2, be a non-degenerate holomorphic
function which has a singularity at 0: Assume that Gþð f ÞVOXi ¼ j for some
i A f1; 2; . . . ; ng: Then there exists Cb 2 such that fi ¼ f þ zmi is non-degenerate
for every mbC:

Proof. Let S A Gð f Þ: Since S is compact we can choose uS A ð0;yÞn such
that S ¼ DðuS;Gþð f ÞÞ (see Preliminaries). Put

W ¼ 6
S AGð f Þ

fv A Rn
þ : huS; via lðuS;Gþð f ÞÞg:

It is easy to check that W is compact and intersects every coordinate axis.
Hence we may choose Cb 2 so large that the points in Rn

þ determined by
the monomials zmi , mbC, do not lie in W : Let mbC: We show that
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fi ¼ f þ zmi is a non-degenerate. Let P A Rn be the point determined by the
monomial zmi : From the choice of C, we observe that P is a vertex of Gð fiÞ:
By nearly-convenience of Gþð f Þ there exists a point Q, which is at distance 1
from the axis OXi: Hence the segment PQ is a face of Gð fiÞ and G1ð fiÞ0j:
Therefore we get Gð fiÞ ¼ Gð f ÞUD, where D is the family of the faces in Gð fiÞ
containing P as a vertex. Since f is non-degenerate, fi is non-degenerate
on each face of Gð f Þ: Now take d A DVGkð fiÞ, kb 1: From the choice of
C we get that d is the convex hull of P and some face s A Gð f Þ such that
dim s < dim d: Therefore ð fiÞd ¼ zmi þ fs, where fs is a quasihomogeneous
polynomial. Since dim s < n� 1, the weights of fs are not uniquely determined.
Let ð fiÞd be of type ðw1; . . . ;wi�1; 1=m;wiþ1; . . . ;wn; 1Þ: Take m 0 > m and con-
sider the polynomial fs þ zm

0

i : Let P 0 A Rn
þ be the point determined by the

monomial zm
0

i : Since s is compact and s A Gð f Þ, the set convðs;P 0Þ is also
compact and there exist positive weights ðw 0

1; . . . ;w
0
i�1; 1=m

0;w 0
iþ1; . . . ;w

0
n; 1Þ of

fs þ ðziÞm
0
: Thus fs is simultaneously of the types

ðw1; . . . ;wi�1; 1=m;wiþ1; . . . ;wn; 1Þ and ðw 0
1; . . . ;w

0
i�1; 1=m

0;w 0
iþ1; . . . ;w

0
n; 1Þ:

Using Euler’s formula for these weights we getX
j0i

ðwj � w 0
j Þzj

qfs

qzj
þ 1

m
� 1

m 0

� �
zi
qfs

qzi
¼ 0ð2Þ

Now we show that fi is non-degenerate on d: Suppose to the contrary that
there exists z0 A ðC�Þn, such that ‘ð fiÞdðz0Þ ¼ 0: Hence ð fsÞzj ðz

0Þ ¼ 0 for j0 i:
By (2) we get also z0i ð fsÞ

0
zi
ðz0Þ ¼ 0: Summing up, ‘fsðz0Þ ¼ 0, which contradicts

non-degeneracy of f on the face s: 9

Now, using induction we extend the previous lemma as follows.

Lemma 3.8. Let f : ðCn; 0Þ ! ðC; 0Þ, nb 2, be a non-degenerate holomor-
phic function. Let I ¼ fi1; . . . ; ikgH f1; 2; . . . ; ng be a non-empty subset such that
Gþð f ÞVOXi ¼ j for i A I and Gþð f ÞVOXi 0j for i B I : Then for every Cb 2
there exist m1; . . . ;mk bC such that fk ¼ f þ

Pk
j¼1 z

mj

ij
is non-degenerate and

convenient.

Proof. Without loss of generality we may assume that I ¼ f1; 2; . . . ; kg:
For every j ¼ 0; 1; . . . ; k denote by ðAjÞ the assertion ‘‘For every Cb 2 there
exist m1; . . . ;mj bC such that fj ¼ f þ

P j
i¼1 z

mi

i is non-degenerate.’’ We show
inductively (with respect to j) that ðAjÞ holds for every j ¼ 0; 1; . . . ; k: The
assertion is true for j ¼ 0 by the assumption. Let j A f0; 1; . . . ; kg: Suppose
that ðAjÞ is true. We show that ðAjþ1Þ is also true. Let Cb 2: Since ðAjÞ is
true there exist m1; . . . ;mj bC such that fj ¼ f þ

P j
i¼1 z

mi

i is non-degenerate.

By Lemma 3.7 there exists mjþ1 bC such that fjþ1 ¼ fj þ z
mjþ1

jþ1 is non-degenerate.
By induction ðAjÞ is true for every j ¼ 0; 1; . . . ; k: In particular, ðAkÞ is true.

9
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Remark 3.9. We may notice that this way we are able to prove a stronger
version of the lemma above, namely it is also true for fk ¼ f þ

Pk
j¼1 ajz

mj

ij
with

arbitrary aj 0 0 (compare [8, Théorème 3.7]).

Proof of Theorem 3.2. If f is convenient, the assertion follows from
Proposition 3.5. Suppose that f is not convenient. Let I ¼ fi1; . . . ; ikgH
f1; 2; . . . ; ng be a set such that Gþð f ÞVOXi ¼ j for i A I and Gþð f ÞVOXi 0
j for i B I : Without loss of generality we may assume that I ¼ f1; 2; . . . ; kg:
By Lemma 3.6 there exists Cb 2 such that

n f þ
Xk
i¼1

zmi

i

 !
¼ nð f Þ for every mi bC; i ¼ 1; . . . ; k:ð3Þ

By Lemma 3.8 there exist m1; . . . ;mk bmaxfC; nð f Þ þ 1g such that fk ¼
f þ

Pk
i¼1 z

mi

i is non-degenerate and convenient. By Proposition 3.5 we get that
fk has an isolated singularity at 0: Hence by (3) and Théorème I (ii) in [8],
we get

ordð fk � f Þ ¼ min
k

i¼1
mi b nð f Þ þ 1 ¼ nð fkÞ þ 1 ¼ mð fkÞ þ 1:ð4Þ

From (4) and since fk is mð fkÞ þ 1 right determined (see for example [2,
Section 6.3]) we get that f and fk are right (biholomorphically) equivalent. This
implies f has an isolated singularity at 0 and

mð f Þ ¼ mð fkÞ:ð5Þ 9

From the proof above we easily get Théorème I (ii) in [8] without the
assumption that f is convenient. More precisely, we get the following corollary.

Corollary 3.10. Let f : ðCn; 0Þ ! ðC; 0Þ, nb 1, be a non-degenerate holo-
morphic function which defines an isolated singularity at 0: Then mð f Þ ¼ nð f Þ:

Proof. If f is a convenient singularity, the assertion follows from Théorème
I (ii) in [8]. In the opposite case, repeating the proof of Theorem 3.1 with the
same notations and by (5), Théorème I (ii) in [8] and (3) we get

mð f Þ ¼ mð f̂fkÞ ¼ nð f̂fkÞ ¼ nð f Þ: 9

As a direct consequence of Theorem 3.2 and Corollary 3.10, we get the following.

Corollary 3.11. Let f : ðCn; 0Þ ! ðC; 0Þ, nb 1, be a non-degenerate holo-
morphic function which has a singularity at 0: Then mð f Þ < y , nð f Þ < y:

The next corollary says that Kouchnirenko condition for M is equivalent to the
finiteness of the Newton number of lM : It was announced already by Kouch-
nirenko [8, Remarque 1.13 (ii)] but without proof.
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Corollary 3.12. Let MHNn and ord lM b 2: A set M satisfies the
Kouchnirenko condition if and only if nðlMÞ is finite.

Proof. ‘‘)’’ Suppose that M satisfies the Kouchnirenko condition, then by
Theorem 2.8 there exists f : ðCn; 0Þ ! ðC; 0Þ, supp f HM, which has an isolated
singularity at 0: Hence Gþð f ÞHGþðlMÞ and by monotonicity of the Newton
number (see for example [6]) we have nðlMÞa nð f Þ: On the other hand, since
f has an isolated singularity at 0, we have nð f Þa mð f Þ < y by [8, Théorème
1(i)]. Summing up nðlMÞ is finite.

‘‘(’’ Now, suppose that nðlMÞ < y: Then by [8, Théorème 6.1] we
may choose non-degenerate f with supp f ¼ M: Then nð f Þ ¼ nðlMÞ < y:
Therefore by Theorem 3.2 we get that f has an isolated singularity at 0: Hence,
by Corollary 2.9 we get the assertion. 9

Remark 3.13. Gwoździewicz proved monotonicity of the Newton number
for convenient function using [8, Théorème I (ii)] and semi-continuity of the
Milnor number. It it is easy to generalize his result to the non-convenient case
using only definition of the Newton number and simple properties of Newton
diagram.

The following lemma has already been announced by Kouchnirenko
[8, Subsection 6.5] (without proof ).

Lemma 3.14. Let SHRn be a d-dimensional simplex, da n� 1, and let
vertðSÞ be the set of the vertices of S. Assume that 0 B a¤ S, the a‰ne hull of S.
Then every f A C½z1; . . . ; zn� satisfying suppð f Þ ¼ vertðSÞ is non-degenerate.

Proof. First we consider the case d ¼ n� 1. Let f ¼
P

n A vertðSÞ anz
n, where

an 0 0. The system of equations f‘f ¼ 0g is equivalent to the system

z1
qf

qz1
¼ � � � ¼ zn

qf

qzn
¼ 0

� �

in ðC�Þn. Since zi
qf

qzi
¼
P

n A vertðSÞ anniz
n, we see that this last system can be

viewed as linear in unknowns fzng. This means that it has a non-zero solution
in Cn if and only if D :¼ det½anni�n A vertðSÞ

1aian

is zero. We have

D ¼
Y
n

an � det½ni�:

The assumption 0 B a¤ S implies dimðspan SÞ ¼ n so that the set vertðSÞ consists
of n linearly independent vectors. Hence, det½ni�0 0 and also D0 0 as the an
are non-zero. This means that the system f‘f ¼ 0g has no solutions in ðC�Þn.
Moreover, every choice of a face s of the simplex S corresponds to deletion of
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some columns in the matrix ½anni�n A vertðSÞ;1aian. Such truncated matrix still has
maximal possible rank which implies that f is non-degenerate on s. Hence, f is
non-degenerate.

In the general case, one can extend the d dimensional simplex S to an
ðn� 1Þ-dimensional one and similarly add some missing terms to the function f
and in this way return to the first case. 9

Example 3.15. The assumption that supp f ¼ vertðSÞ cannot be omitted
in the above lemma. Indeed, take f ðz1; z2Þ ¼ z21 þ 2z1z2 þ z22 : Observe that
supp f 0 vertðSÞ and f ¼ ðz1 þ z2Þ2 is degenerate.

Also the assumption that S is a simplex cannot be omitted. Indeed, take

f ðz1; z2; z3; z4Þ ¼ z21 � z22 þ z1z
2
3 þ z2z

2
3 :

We may observe that S spanned by supp f is not a simplex and supp f ¼
vertðSÞ: Take fðtÞ ¼ ð�t2=2; t2=2; tÞ: Then ð‘f Þ � f ¼ 0, so f is degenerate.

From Lemma 3.14 and Theorem 3.1 we immediately get the following.

Corollary 3.16. Let f : ðCn; 0Þ ! ðC; 0Þ be a holomorphic function which
has a singularity at 0: Assume that all the faces S A Gð f Þ are simplices and
supp fS ¼ vertðsÞ, the set of vertices of S. If supp f satisfies the Kouchnirenko
condition, then f has an isolated singularity at 0:

Example 3.17. Let f ðz1; z2; z3Þ ¼ z61z3 þ z42 þ z123 z2 þ z1z
2
3 þ z2z

4
3 : It is easy

to check that all the faces S A Gð f Þ are simplices and supp fS ¼ vertðSÞ:
Moreover, it is easy to verify that supp f satisfies the Kouchnirenko condition.
Hence by the corollary above we infer that f has an isolated singularity at 0:
Observe that f is not convenient.

4. Appendix

Now, we find the constant C in Lemma 3.6. Namely, we prove that Ca

£0ð f Þ þ 2 (Proposition 4.2). First we give some definitions and theorems.
Let F ¼ ð f1; . . . ; fnÞ : ðCn; 0Þ ! ðCn; 0Þ be a holomorphic mapping having an

isolated zero at the origin. We define the number

l0ðF Þ :¼ inffa A Rþ : bC > 0 br > 0 Ekzk < r kFðzÞkbCkzkagð6Þ

Let f : ðCn; 0Þ ! ðC; 0Þ be a holomorphic function which has an isolated
singularity at 0: We define the number £0ð f Þ ¼ l0ð‘f Þ and we call it the
Łojasiewicz exponent f :

First we recall the following.

Lemma 4.1 ([17, Lemma 1.4]). Let F ;G : ðCn; 0Þ ! ðCn; 0Þ be holomorphic
mappings in some neighbourhood of 0 A Cn: Suppose that F has an isolated zero.
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If ordðG � FÞ > l0ðF Þ, then G has an isolated zero and

l0ðGÞ ¼ l0ðFÞ; i0ðGÞ ¼ i0ðF Þ;

where i0ðFÞ denotes the multiplicity F at 0 A Cn:

Now, we give a constructive version of Lemma 3.6.

Proposition 4.2. Let f : ðCn; 0Þ ! ðC; 0Þ, nb 2 be a holomorphic function
which has an isolated singularity at 0: Let I H f1; 2; . . . ; ng be a non-empty set
such that Gþð f ÞVOXi ¼ j for i A I and Gþð f ÞVOXi 0j for i B I : Let mi b

½£0ð f Þ� þ 2, i A I : Then

n f þ
X
i A I

zmi

i

 !
¼ nð f Þð7Þ

m f þ
X
i A I

zmi

i

 !
¼ mð f Þð8Þ

£0 f þ
X
i A I

zmi

i

 !
¼ £0ð f Þð9Þ

Proof. Let mi b ½£0ð f Þ� þ 2, i A I and fk ¼ f þ
P

i A I z
mi

i : We begin with
the proof of (8) and (9). We get

ordð‘fk � ‘f Þb ½£0ð f Þ� þ 1 > £0ð f Þ:

Hence by Lemma 4.1 we have £0ð fkÞ ¼ £0ð f Þ and mð fkÞ ¼ mð f Þ:
Now we pass to the proof of (7). Since the Kouchnirenko non-degeneracy

is a Zariski open condition (see for example [13, Appendix]), we may choose non-
degenerate f̂f with supp f̂f ¼ supp f : Since f has an isolated singularity at 0, by
Corollary 2.9 we get that supp f satisfies the Kouchnirenko condition. Hence
supp f̂f also satisfies the Kouchnirenko condition. Therefore by Theorem 3.1 we
get that f̂f has an isolated singularity at 0: Since the Kouchnirenko non-
degeneracy is a Zariski open condition we choose generic ai 0 0 such that f̂fk ¼
f̂f þ

P
i A I aiz

mi

i is non-degenerate. We have

ordð‘f̂fk � ‘f̂f Þb ½£0ð f̂f Þ� þ 1 > £0ð f̂f Þ:
Hence by Lemma 4.1 we have mð f̂fkÞ ¼ mð f̂f Þ: Summing up by Corollary

3.10, we get

n f þ
X
i A I

zmi

i

 !
¼ nð f̂fkÞ ¼ mð f̂fkÞ ¼ mð f̂f Þ ¼ nð f̂f Þ ¼ nð f Þ: 9

Example 4.3. The following example shows that in some cases the bound
½£0ð f Þ� þ 2 for mi of Proposition 4.2 is the least possible. Indeed, take
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f ðz1; z2Þ ¼ z62 þ z31z
3
2 þ z61z2: One may check that f is non-degenerate and f has

an isolated singularity at 0: Using the main result of [11] we calculate
£0ð f Þ ¼ 6:5 and by Corollary 3.10 we get mð f Þ ¼ nð f Þ ¼ 28: Hence
½£0ð f Þ� þ 2 ¼ 8: Now take f̂f ¼ f þ z71 : Using the same techniques one may
calculate £0ð f̂f Þ ¼ 6, mð f̂f Þ ¼ nð f̂f Þ ¼ 27:

Example 4.4. The following example shows that in some cases the bound
½£0ð f Þ� þ 2 for mi of Proposition 4.2 is not the least possible. Indeed, take
f ðz1; z2Þ ¼ z81 þ z21z

2
2 þ z1z

3
2 : One may check that f is non-degenerate and f has

an isolated singularity at 0: Using the main result of [11] we calculate £0ð f Þ ¼ 7
and by Corollary 3.10 we get mð f Þ ¼ nð f Þ ¼ 13: Hence ½£0ð f Þ� þ 2 ¼ 9: Now
take fN ¼ f þ zN2 , Nb 5: Using the same techniques one may calculate
£0ð fNÞ ¼ 7, mð fNÞ ¼ nð fNÞ ¼ 13 for every Nb 5:

Remark 4.5. For non-degenerate functions Fukui [5] gave the inequality

£0ð f Þam0ð f Þ � 1;

where m0ð f Þ is a combinatorial number calculated from Gþð f Þ: Also Abder-
rahmane [1] gave a similar estimation in terms of nð f Þ: In the case n ¼ 2; 3 there
are more exact formula for the Łojasiewicz exponent of non-degenerate holomor-
phic functions (see [11] and [14]).

Remark 4.6. One may also give an estimation of the constant C in Lemmas
3.7 and 3.8 in terms of m0ð f Þ: Kouchnirenko [8, Théorème 3.7] also gave an
estimation of the constant C in generic version of Lemma 3.8, but his estimation
is in general too large.
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